

1. Motivation and Objectives

- **Large scale circulation patterns** have long been associated with **local weather** conditions (i.e. rain!)
- Obs. rainfall time series often too short/incomplete need for stochastic simulation!
- A conditioning of a stochastic precipitation model should hopefully improve it's ability to better reproduce observed rainfall, especially extremes
- Can other atm. variables improve CP classification?
- Conditioning allows synthesis of **future climates**

2. Study Area and Data

Observed Rainfall (German Weather Service DWD):

- □ 1 minute temporal resolution, aggregated to 1hr
- □ Rainfall gauges in/near German federal state of Lower Saxony (Figure 1)
- Continuous observations between 1996-2016

Atmospheric data (NCEP-DOE Reanalysis 2):

- □ 1979 onwards, 2.5 degree grid coverage, daily
- Geopotential heights: 500hPa, 850hPa, 1000hPa
 - Spatial scale: 35°N to 65°N, 30°W to 45°E
 - Anomalised: $A(i,t) = (P_i P_{min,t}) / (P_{max,t} P_{min,t})$
 - PCA transformed to 14 principal components, explaining >95% variance

Regional climate variables (extent: Lower Saxony)

- 2m daily temp. / seasonal temp. anomaly
- 10m V-wind, U-wind
- Daily max convective available potential energy
- 2m specific humidity
- Relative humidity at selected pressure level
- Precipitable water
- □ All fields PCA transformed, scaled and centered

^(a) University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Dept. of Hydrology and Geohydrology, Stuttgart, Germany.

Institute of Hydrology and Institute of Hydrology and Water Resources Management pidoto@iww.uni-hannover.de

Rainfall synthesis conditioned on circulation patterns

Ross Pidoto, Uwe Haberlandt, Faizan Anwar^(a)

Figure 1: Study area outlining rain gauge locations (N=9)

3. Methodology

- A: Stochastic Precipitation Model (hourly timestep)
- □ Alternating Renewal Model (Callau, Haberlandt 2017)
- Output Describes and the series of independent wet and dry spells.
- External structure: wet spell amount/duration, dry spell duration
- □ Internal structure: distribution of rainfall within wet spell
- **B: CP Classification (daily timestep)**
- of each input variable: very low, low, high, very high, not relevant
- **Automated objective fuzzy based** classification (Bardossy et al. 2002) □ Simulated annealing (SA) optimisation to assign 'best' fuzzy rules **A** A fuzzy rule is a set of membership functions, which describes the state □ The SA objective function favours **divergent CPs** (wetter/drier) • The fuzzy rule with the highest **degree of fulfilment** is chosen as the CP **Calib. period**: 12/1996 – 11/2006; **Valid. period**: 12/2006 – 11/2016

- **Trialed CP counts**: 4, 6, 8, 10
- CP synthesis for use by precipitation model via first order Markov chain

References: Bárdossy, A.; Stehlík, J.; Caspary, H. J. (2002): Automated objective classification of daily circulation and temperature downscaling based on optimized fuzzy rules. In Clim. Res. 23, pp. 11–22. Callau Poduje, A. C.; Haberlandt, U. (2017): Short time step continuous rainfall modeling and simulation of extreme events. In Journal of Hydrology 552, pp. 182–197.

Wetness index = $\overline{P}_{CP}/\overline{P}_{all}$

5. Conclusions and Outlook

- and varied CPs (wetter and drier)
- \Box Overall precipitation model performance declined ∇

EGU General Assembly, April 8 – 12, 2019, Vienna

	Wet Spell Volume	Dry Spell Duration	Wet Spell Duration	Wet Spell Intensity
S	0.40	0.40	3.72	0.45
S	0.44	0.41	3.66	0.39
nann	0.99	2.31	4.51	2.37
nod	1.28	1.25	3.73	0.91

Table 1: Median Cramer von Mises test statistic for 9 stations
 50×20yrs simulated against observed (≈20yrs). Lower is better.

obs and sim for ARI 2, 5, 10, 20, 9 Stations

Addition of further atmospheric variables led to more robust

 \Box Generally better representation of extreme events \mathcal{L}

□ Issues due to a mismatch in the temporal resolution between CPs (daily) and precipitation events (hourly, arbitary lengths)