1. Motivation & Objectives

- Australia experiences often long periods of drought. Reduced runoff leads to water restrictions within cities. Need for better prediction methods for water resources planning.
- **Problem**: High inter- and intra-annual variability of P. Melbourne lies in a zone less effected by the SOI.
- **Solution:** seasonal rainfall forecasting model based on a SOM (fig. 3) using gridded SST data, antecedent precipiation and climate indices as training data.

3. Methodology

Predictor selection via Random Forests Breiman (2001)

- SST datasets at a lead of 3 months (Fig. 4)
- Climate indices at leads of 3-12 months
- Each season was assessed separately, plus all observations.

Self-Organizing Map (SOM) Kohonen (1990)

- •5 models: the four seasons and annual
- •Hexagonal grid, large neuron count
- Stepwise predictor testing step to determine optimal predictor ensemble

Assessment of model performance

- Leave-one-out cross validation
- Performance criteria:
- Pearson's correlation, R
- Nash–Sutcliffe model efficiency (NSE)
- Root mean square error (RMSE)

References: Breiman, L. (2001) Random Forests. *Machine Learning*, 45(1):5-32. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464-1480. Mekanik, F., et al. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503:11–21.

Seasonal precipitation forecasting for the Melbourne region using a Self-Organizing Maps approach

Ross Pidoto, Markus Wallner, Uwe Haberlandt

- 2. Study Area & Data
- **Target variable**: seasonal precipitation anomaly
 - Three month moving average
 - Arithmetic mean over study area
- **Predictor variables:**
- Climate indices: SOI, N3.4, DMI, ONI, SOI phase
- Antecedent P, drought index, lowest 10% index
- Gridded aggregated SST anomalies:
 - 210 cells (2° x 2°) around south eastern Australia 100 cells (12° x 6°) across the tropical Pacific/Indian

4. Results

- Final predictor variable selction:

 - Annual: **13** vars P_3 , SOI₃, N3.4_{1&3}, 2 SST cells, drought, $P_{10\%}$ Spring: 9 vars $-P_3$, SOI₃, DMI, N3.4, 4 SST cells, $P_{10\%}$ Summer: 8 vars – P₃, DMI, N3.4₃, 3 SST cells, drought, P_{10%} Autumn: 6 vars – P_3 , N3.4_{1&3}, 1 SST cell, drought , $P_{10\%}$ Winter: **12** vars – SOI₃, DMI₃, N3.4_{1&3}, 6 SST cells, drought Most lead times (73%) were at the minimum of 3 months
- Final model performance:

Criteria	Annual	Spring	Summer	Autumn	Winter
Correlation, r	0.54	0.61	0.52	0.41	0.57
NSE	0.14	0.31	0.10	0.00	0.22
RMSE [mm]	29.0	28.7	24.9	29.8	29.7
RMSE / SD _{obs}	0.92	0.83	0.95	1.00	0.88

Figure 4: Example output of the Random Forest predictor selection – spring, local SST.

Figure 5: Component planes of the spring SOM. Red indicates high values, blue low.

Figure 2: Study area outlining rain gauge locations

5. Summary and Conclusions

- Results obtained were favourable compared to other studies (Mekanik 2013)
- The SOM had difficulties handling the large number of predictor variables. This also led to high computational times.
- The SST dataset was relatively ineffective compared to the climate indices. The fixed SST variable lead time of 3 months is not realistic on a global scale. The climate indices were often with leads > 3 months.
- Future inclusion of a step to reduce collinearities.

Figure 6: Scatter plots of the observed seasonal precipitation versus the simulated seasonal precipitation for both the spring and annual SOM models.

