

1 Motivation

- Future rainfall time series are important for rainfall-runoff modeling and derived flood frequency analysis
- Time series of climate models show high uncertainties
- Alternative: Rainfall time series generation with a cascade model
- Aim: Generation of future high-resolution rainfall time series

2 Study area & data

Lower Saxony with 5 recording rain gauges (Fig. 1)

 \rightarrow Time series length 18 – 20 yrs

Related REMO raster cell time series (3 realisations), 10 x 10 km

→ C20 (1971-2000), short (2021-2050) and long-term (2071-2100) future

3 Analysis of REMO data

\Box Comparison of station and REMO data \rightarrow Observation vs. C20 (Table 1)

Table 1: Comparison of rainfall characteristics of observed and REMO time series for station Norderney

Data origin	Wet spell duration <i>wsd</i> [h]	Wet spell amount <i>wsa</i> [mm]	Dry <i>s</i> pells <i>dsd</i> [h]	Frac. dry intervals P _o [%]	Average intensity AvInt [mm/h]
Observation	2.8	1.8	22.0	88.9	0.7
REMO-BFG	5.0	2.1	13.9	73.6	0.4
REMO-ENS	7.6	1.9	8.7	53.4	0.2
REMO-UBA	4.8	2.2	15.2	76.0	0.4

• Comparison of rainfall characteristics in C20, near- and long-term future (Table 2 & Fig. 3) **Table 2: Changes of rainfall characteristics** (x_i>4 mm, Bias in [%],

IIaliu	ver)			
		REMO-BFG	REMO-ENS	REMO-UBA
Near-term	wsd	1.9	0.8	1.5
	wsa	4.7	-3.3	-0.2
	dsd	-6.2	-9.4	-13.1
	P_{o}	0.0	0.0	0.0
	AvInt	2.8	-4.0	-1.7
Long-term	wsd	9.1	2.7	9.0
	wsa	10.6	8.1	6.0
	dsd	-9.2	-21.2	-10.9
	P_{o}	0.0	0.0	0.0
	AvInt	1.4	5.3	-2.8

Generation of future high-resolution rainfall time series with a disaggregation model

Hannes Müller & Uwe Haberlandt

 \rightarrow for two volume classes

6 Results

periods (Fig. 4)

Station REMO

4 Disaggregation model

Disaggregation with a **multiplicative cascade model** according to Müller & Haberlandt (2015) (Fig. 2)

Parameter for **b=3**: P(1/0/0), $P(\frac{1}{2}/\frac{1}{2}/0)$, $P(\frac{1}{3}/\frac{1}{3}/\frac{1}{3})$

Parameter for **b=2**: P(1/0), P(0/1), P(x/(1-x)), F(x)

 \rightarrow for four position and two volume classes

Parameter can be **estimated** directly from highresolution time series by aggregation

Parameter are interpretable in a physical way

Unrealistic rainfall extremes are generated for future

 \rightarrow in comparison to control period (with parameters only estimated from observed time series)

EGU General Assembly, 24. – 28. April 2017, Vienna

- Climate changes in REMO are not robust
- Parameter from REMO and stations differ significantly for b=3, less for b=2
- Parameter for splitting with b=3 are of **major importance** for the generation of extreme values
- Differences for b=3 result from spatial **resolution** of the data sets
- Possible solutions:

Spatial downscaling of REMO data & subsequent parameter estimation

Bias correction of the parameter estimated from REMO

References

MÜLLER, H., HABERLANDT, U. (2015): Temporal rainfall disaggregation with a cascade model: from single-station disaggregation to spatial rainfall, J. Hydrol. Eng, ISSN (print): 1084-0699

> Institute of Hydrology and Water Resources Management (mueller@iww.uni-hannover.de)

