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Abstract

Understanding hydrological connectivity is one of the main objectives in hydrological

research. Hydrological models have been proved to be an efficient tool for a better under-

standing of hydrological connectivity. Conceptual models have shown certain advantages

compared to physically-based distributed models in terms of data requirement and compu-

tational time. However, the hydrological connectivity in conceptual models is usually not

well represented. In this study, the Soil and Water Assessment Tool (SWAT) was selected

for further improvements to have a better representation and simulation of hydrological

connectivity.

SWAT is a semi-distributed hydrological model used to simulate the effect of land use

management practices on water, sediment, and nutrient yields at a basin scale. SWAT

has been tested and applied worldwide. However, the non-spatial characteristic of the

hydrologic response unit (HRU) concept used in SWAT has been identified as one of the

main disadvantages for modeling hydrological connectivity. In this study, the hydrologic

routing subroutine of SWAT was examined and the groundwater subroutine was modified

to account for hydrological connectivity in porous and karst-dominated aquifers.

Results show that the current hydrologic routing subroutines of SWAT are not able

to simulate hydrological connectivity between river segments in the river network. The

Muskingum routing method in SWAT could (1) cause unphysical oscillations in the simu-

lated streamflow and (2) overestimate the evapotranspiration loss in the river and results

in a hydrologic disconnectivity during low flow periods. For improving the representation

of hydrological connectivity in the subsurface porous aquifer, the multicell aquifer model

was proposed and incorporated into SWAT. The modified model, the so-called SWAT-

MCA model, was validated in two basins located in Niedersachsen, Germany. The results

show that the SWAT-MCA model could well simulate the regional groundwater flow and

return flow from aquifer to stream. For improving the representation of hydrological con-

nectivity in the karst-dominated aquifer due to interbasin groundwater flow (IGF) was

added to SWAT, the SWAT IGF was developed. The developed model was applied in
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a karst area located in the Southwest Harz Mountains, Germany. The model was vali-

dated with the observed streamflow and spring flow. Results show that the SWAT IGF

could well represent the hydrological connection due to interbasin groundwater flow in

karst areas. The modified models, SWAT-MCA and SWAT IGF could be applied for

other regions to regional groundwater flow in porous aquifer and IGF in karst-dominated

aquifers.

Keywords: SWAT, hydrological connectivity, flood routing, karst, groundwater flow



Kurzfassung

Das Verständnis der hydrologischen Konnektivität ist eine der Hauptaufgaben in der

hydrologischen Forschung. Hydrologische Modelle haben sich als effizientes Werkzeug

für ein besseres Verständnis der hydrologischen Konnektivität erwiesen. Konzeptmodelle

haben im Vergleich zu physisch basierten verteilten Modellen hinsichtlich Datenbedarf und

Rechenzeit gewisse Vorteile gezeigt. Die hydrologische Konnektivität in in konzeptuellen

Modellen ist jedoch nicht gut dargestellt. In dieser Studie wurde das Soil and Water

Assessemnt Tool (SWAT) für weitere Verbesserungen ausgewählt, um die hydrologische

Konnektivität besser darstellen und simulieren zu können.

SWAT ist ein semi-verteiltes hydrologisches Modell, das verwendet wird, um

die Auswirkungen von Landmanagementpraktiken auf den Wasser-, Sediment- und

Nährstoffhaushalt in Flussgebieten zu simulieren. SWAT wurde weltweit getestet und

angewendet. Die nichträumlichen Eigenschaften des in SWAT verwendeten HRU-

Konzepts (Hydrologic Response Unit) wurden jedoch als einer der Hauptnachteile für

die Modellierung der hydrologischen Konnektivität identifiziert. In dieser Studie wurde

das Unterprogramm für hydrologisches Routing von SWAT weiter getestet und das

Grundwasser-Unterprogramm wurde modifiziert, um die hydrologische Konnektivität in

porösen und karstdominierten Aquiferen zu berücksichtigen.

Die Ergebnisse zeigen, dass die aktuellen Unterprogramme für hydrologisches Rout-

ing von SWAT keine hydrologischen Verbindungen im Flussnetz simulieren können.

Das Muskingum-Routing-Verfahren in SWAT könnte (1) unphysikalische Oszillationen

im simulierten Stromfluss verursachen und (2) den Evapotranspirationsverlust im Fluss

überschätzen und zu einer hydrologischen Diskontektivität bei niedrigen Abflüssen. Zur

Verbesserung der Darstellung der hydrologischen Konnektivität im unterirdischen porösen

Aquifer wurde das Multicell-Aquifer Modell in SWAT integriert. Das modifizierte Mod-

ell, das sogenannte SWAT-MCA Modell, wurde in zwei Flussgebieten in Niedersachsen

validiert. Die Ergebnisse zeigen, dass das SWAT-MCA Modell den regionalen Grund-

wasserfluss gut simulieren kann. Um die Darstellung der hydrologischen Konnektivität im
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karstdominierten Grundwasserleiter durch Interbasin Groundwater Flow (IGF) in SWAT

zu verbessern, wurde der SWAT IGF entwickelt. Der SWAT IGF wurde in einem Karst-

gebiet im Südwesten des Harzes in Deutschland angewendet. Das Modell wurde mit

dem beobachteten Abfluss des Flusses und der Karstquelle validiert. Die Ergebnisse

zeigen, dass der SWAT IGF die hydrologische Verbindung aufgrund des Grundwasser-

flusses zwischen den Becken in Karstgebieten gut darstellen könnte. Die modifizierten

Modelle SWAT-MCA und SWAT-IGF könnten für andere Regionen eingesetzt werden,

um IGF in porösen und karstdominierten Aquiferen zu simulieren.

Schlüsselwörter: SWAT, hydrologische Konnektivität, Hochwasserführung, Karst,

Grundwasserfluss
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Chapter 1

Introduction

1.1 Research Problem and Motivation

Water covers most of the earth’s surface and it is one of the vital sources of life. The water

cycle (Figure 1.1) is one of the governing processes on Earth and it plays an important

role in the Earth’s climate self-regulation (Allen, 2009; Nordstrom et al., 2005). Water

is abundant on Earth, however, only 2.5% of the total water amount is freshwater. In

addition, only a small portion of freshwater is accessible (Oki and Kanae, 2006). Fresh-

water distribution on Earth varies with space and time (Piao et al., 2010). The uneven

distribution of water could cause water shortage or flood (Imamura and Van To, 1997;

Oki and Kanae, 2006; Shiklomanov, 1991). Water shortage or flood has been identified

as one of the controlling factors of social and economic welfare (Gleick, 1993; Lehner et

al., 2006).

The natural redistribution of water on the Earth’s surface and subsurface occurs in the

form of surface and subsurface flows. Different landscape units could be hydrologically

connected by surface and/or subsurface flows (Garven, 1995; Tockner et al., 1999). The hy-

drological connection between different landscape units is called hydrological connectivity.

Hydrological connectivity describes the linkage between upstream with downstream, sur-

face with subsurface, hillslope with riparian zone, terrestrial with aquatic (Covino, 2017).

These linkages can occur at various spatio-temporal scales (local to regional scales) and

different directions (vertical, lateral, longitudinal) (Covino, 2017). These linkages control

the transport of water and solute and affect the hydrological cycles.

In a broader sense, hydrological connectivity refers to the transfer of water and its

associated components (e.g., nutrients and sediments) between different landscape units
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Figure 1.1: The water cycle and global distribution of water resources (Oki and Kanae,

2006).

(e.g., hillslope, floodplain, and river) or between different components of the hydrolog-

ical cycle (Pringle, 2003). It should be noted that there exist different definitions of

hydrological connectivity depending on the geomorphic domain (Bracken et al., 2013).

Understanding the hydrological connectivity between different landscape units could help

water resource managers in formulating appropriate management strategies, especially

in terms of transboundary water resources management (Bracken et al., 2013). For ex-

ample, identifying the critical source areas which contribute most of the pollutants and

their hydrological connection with other landscape units are crucial for developing effec-

tive measures. This has been long of interest in the hydrological community (e.g., Covino,

2017; Niraula et al., 2013; Srinivasan and McDowell, 2009). In the region where interbasin

groundwater flow is significant, understanding the transport of water and solute fluxes

via interbasin groundwater flow (subsurface connectivity) has significant implications for

water management.

There have been various studies focused on improving the understanding the hydro-

logical connectivity. Different approaches could be used to understand different types

of hydrological connectivity, ranging from experimental studies to numerical study using

hydrological models (Bracken et al., 2013). This study focuses on developing modeling
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tools to have a better representation and understanding of hydrological connectivity. In

this study, the term “hydrological connectivity” is restricted to (1) the lateral surface and

subsurface flow between different landscape units and (2) the vertical flow between the

soil layers and the aquifer.

Various models have been developed to help in understanding and predicting the hy-

drological connectivity, ranging from lumped conceptual to distributed physically-based

models. Lumped conceptual models consider a whole basin as a single unit. They only

consider the vertical hydrological connectivity between different vertical storages (e.g.,

percolation of water between different soil layers, and groundwater recharge). Some ex-

amples of these models are the NAM (Nielsen and Hansen, 1973), PDM (Moore, 2007)

and VHM (Willems, 2014) models.

In conceptual (semi-)distributed models, a basin is divided into subbasins and fur-

ther divided into smaller spatial units. One of the most frequently used methods for

basin delineation is the hydrologic response unit (HRU) concept (Leavesley et al., 1983).

Within the HRU concept, each HRU has a unique combination of land use, soil type and

slope within a subbasin. HRU is considered to be homogeneous in hydrologic response.

A single HRU can be scattered over different areas in a subbasin. Some models of this

type are the Soil and Water Assessment Tool (SWAT, Arnold et al., 1998), Hydrologiska

Byr̊ans Vattenbalansavdelning (HBV, Bergström, 1992), Precipitation-Runoff Modeling

System (PRMS, Markstrom et al., 2015), and Hydrological Predictions for the Environ-

ment model (HYPE, Lindström et al., 2010). In these models, hydrological connectivity

is considered (1) between different soil layers and aquifers within an HRU (vertical hy-

drological connectivity), and (2) between subbasins via the stream network (longitudinal

hydrological connectivity). In general, the subsurface of each HRU in conceptual mod-

els is assumed as a system of connected reservoirs. These reservoirs represent the water

storage in different soil zones and in the aquifers. Flow between these reservoirs is often

simulated using simple routing equations. There is no lateral hydrological connectivity

(surface and subsurface flows) between HRUs. Flow from each HRU is assumed to be

independent of other HRUs and it does not interact with each other. The summation of

all HRUs’ responses within a subbasin is considered as the subbasin’s response.

Other delineation approaches were also used in (semi-)distributed models. For exam-

ple, the Water Erosion Prediction Project (WEPP, Flanagan and Nearing, 2015) model

divides a basin into hillslope, channel, and impoundment. The mesoscale hydrologic

model (mHM, Kumar et al., 2013; Samaniego et al., 2010) divides a basin into grid cells.

However, both of the aforementioned models do not model the subsurface flow between
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different landscape units.

With physically-based distributed models, e.g., the Modular Three-Dimensional

Finite-Difference Ground-Water Flow Model (MODFLOW, Harbaugh and McDonald,

1996), HydroGeoSphere (Therrien et al., 2009), and OpenGeoSys (Kolditz et al., 2012),

the study area is divided into grid cells and surface and subsurface flow between grid

cells is simulated by using physical equations (e.g, Darcy’s law and Richards’ equation).

However, the disadvantages of physically-based distributed models are the extensive re-

quirement of data and computational capacity.

Compared to physically-based distributed models, conceptual (semi-)distributed mod-

els often require less simulation time while preserving the spatial heterogeneity in land use

and soil type. The main disadvantage of the conceptual distributed models is the lack of

lateral hydrological connectivity between HRUs or subbasins (e.g., SWAT, HBV, HYPE).

Some studies have compared the performance between physically distributed models and

conceptual distributed models (e.g., Devia et al., 2015; Liu et al., 2016). Results show

that more complex models do not always guarantee a better result than simpler models.

SWAT is a conceptual distributed model for assessing the impact of land use man-

agement practices on water, sediment, and chemical yields at a basin-scale (Arnold et

al., 1998). SWAT has been widely used and tested worldwide (Arnold and Fohrer, 2005).

SWAT has been proved to be a unique model which could incorporate various natural and

anthropogenic processes (e.g., dynamic land use change, sediment, and nutrients flow in

karst) (Arnold and Fohrer, 2005; Pai and Saraswat, 2011; Nerantzaki et al., 2015). There-

fore, improving SWAT for simulation of hydrological connectivity will bring a significant

benefit to the SWAT community.

1.2 Literature Review

1.2.1 SWAT

In SWAT, a basin is divided into subbasins which are further divided into HRUs according

to different land use, soil type, and slope classes (Arnold et al., 1998; Neitsch et al., 2011).

One HRU could be scattered across different places within a subbasin. SWAT simulates

two phases of the hydrological cycle, the land phase (HRU-related processes, Figure 1.2)

and the routing phase (stream-related process, Figure 1.3). The HRU-related processes

are evapotranspiration, surface runoff, lateral flow, infiltration, percolation, groundwater
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recharge, return flow, etc. (Figure 1.2). The stream processes are flow and transport in

the stream network (Figure 1.3).

Evaporation 

Transpiration

Precipitation

Revap Percolation

Recharge to deep aquifer
Flow out of watershed

Shallow Aquifer

Deep Aquifer

Confining Layer

Vadose zone

Root zone

1

Figure 1.2: Land phase processes in SWAT (modified from Neitsch et al., 2011)

The land phase considers hydrological connectivity in the vertical direction between

different soil layers and between the soil zone and the aquifers. The soil layers and aquifers

are represented as a system of connected reservoirs. Infiltrated rainfall first fills up the

uppermost soil layer. If the water content in the soil layer exceeds its field capacity, the

excess water will be routed to the next soil layer. The infiltrated water that exits the

bottom of the soil profile is considered as groundwater recharge. Groundwater recharge

is split into shallow groundwater and deep groundwater recharge. Recharge to the deep

aquifer is considered as a loss from the system (Figure 1.2).
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transformation

dilution and 
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deposition and resuspension
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deposition and 
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Figure 1.3: Stream processes in SWAT (modified from Neitsch et al., 2011)

The daily water balance for the soil zone (all soil layers) for an HRU (Figure 1.2) is

calculated as follows (Arnold et al., 1998; Neitsch et al., 2011):

SWi = SWi−1 + Pi −Qsurf − ETa − wseep −Qlat (1.1)

where SWi and SWi−1 (mm H2O) are the total soil water content in the soil on day i

and i− 1, respectively, Pi (mm H2O) is the amount of precipitation on day i, Qsurf , ETa,

wseep, and Qlat (mm H2O) are the amount of surface runoff, actual evapotranspiration,

percolated water out of the soil profile, and the total amount of lateral flow from all soil

layers on day i.

In each HRU, infiltrated water is routed from the topsoil layer to the aquifer using

the routing technique described below. Water percolates from the upper soil layer to the

lower soil layer if the water content in the upper soil layer exceeds the field capacity. In

this case, the amount of drainable water volume SWly,excess (mm H2O) from the upper

soil layer is calculated as follows:

SWly,excess = SWly − FCly (1.2)

where SWly and FCly (mm H2O) are the soil water content and the field capacity of the

upper soil layer on day i, respectively. The actual amount of water percolating to the
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lower soil layer, wper,ly (mm H2O), is:

wper,ly = SWly,excess · (1 − e−∆t/TTper) (1.3)

where ∆t (hour) is the number of hours in a day, and TTper (hour) is the travel time for

percolation within the respective soil layer, which is expressed as follows:

TTper =
SATly − FCly

Ksat

(1.4)

where SATly (mm H2O) is the amount of water in the soil when the soil is fully saturated,

Ksat (mm/h) is the saturated hydraulic conductivity of the soil layer.

Percolated water out of the lowest soil layer and infiltration losses from secondary

channels, ponds and wetlands are considered as groundwater recharge, wseep (mm H2O).

The hydraulic connection between the lowest layer, the unsaturated zone, and the shallow

aquifer is represented by the groundwater delay time, δgw (days). Therefore, the actual

amount of groundwater recharge, wrchrg,i (mm H2O), to both shallow and deep aquifers

during day i is:

wrchrg,i = (1 − e−1/δgw) · wseep + e−1/δgw · wrchrg,i−1 (1.5)

where wrchrg,i−1 is the total groundwater recharge on previous day. The total groundwater

recharge is separated into shallow, wrchrg,sh, and deep groundwater recharge, wrchrg,deep,

as follows:

wrchrg,sh = (1 − βdeep) · wrchrg,i (1.6)

wrchrg,deep = βdeep · wrchrg,i (1.7)

where βdeep is the portion of recharge to the deep aquifer. The daily water balance for

the shallow aquifer is expressed as follows:

aqsh,i = aqsh,i−1 + wrchrg,sh −Qgw − wrevap − wpump (1.8)

where aqsh,i and aqsh,i−1 (mm H2O) are the amount of water in the shallow aquifer on

day i and i − 1, Qgw, wrevap, wpump (mm H2O) are the return flow from shallow aquifer,
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revaporation, and pumping, respectively. Recharge to the deep aquifer is considered as

loss from the system.

In SWAT, there is no lateral hydrological connectivity between HRUs due to their non-

spatial characteristics. Summation of all HRU responses within a subbasin is considered

as a subbasin response. Streamflow generated from upstream subbasin is routed to down-

stream subbasin using a simple hydrological routing method. Streamflow is considered as

the only hydrological connection between subbasins in SWAT.

1.2.2 Current approaches and challenges for simulating hydro-

logical connectivity with SWAT

Some studies have been conducted to improve the representation of hydrological con-

nectivity in SWAT. These studies focus on improving (1) the hydrological connectivity

between river segments in the river network (e.g., Kim and Lee, 2010; Nguyen et al.,

2018a; Pati et al., 2018), (2) the hydrological connectivity between HRUs within a sub-

basin (e.g., Arnold et al., 2010; Rathjens et al., 2015), and (3) hydrological connectivity

in the subsurface (e.g., Bailey et al., 2016; Kim et al., 2008).

Kim and Lee (2010) found that the Muskingum routing method used in SWAT is inap-

propriate for estimating the shape and magnitude of the flood wave as it moves from the

upstream to downstream. The Muskingum method used in SWAT (Cunge, 1969; USDA,

2004) could cause unphysical oscillations during the recession and an underestimation of

the peak flows. The modified Muskingum method proposed by Kim and Lee (2010) was

proved to be an error-free and a robust approach for stream routing. Nguyen et al. (2018a)

integrated SWAT with the HEC-RAS model (which uses the hydraulic method for flood

routing). HEC-RAS model has been widely used to simulate hydrological connectivity in

the stream network. Results showed that the coupled model could represent changes of

the flood waves better than the original SWAT. Pati et al. (2018) replaced the Muskingum

routing method in SWAT with the variable parameter MacCarthy-Muskingum (VPMM).

They found that the VPMM could account for the nonlinear behavior of the flood wave

in small slope and steep slope channels.

For improving the representation of hydrological connectivity between landscape units

in SWAT, different landscape delineation techniques were proposed, e.g., the catena and

grid delineation techniques (Arnold et al., 2010; Rathjens et al., 2015). With these delin-

eation techniques, the spatial location of each landscape unit is identified for flow routing.

Therefore, the flow routing between these landscape units is possible. With the catena
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approach, the basin is divided into a divide, hillslope, and valley bottom (Figure 1.4).

Hydrological connectivity between the divide, hillslope, and valley bottom can be rep-

resented by surface runoff, lateral flow, and groundwater flow between these landscape

units (Figure ?? Arnold et al., 2010). The catena approach could be used to assess the

impact of upslope management on downslope landscape units (Arnold et al., 2010).

In the catena approach, flow is routed according to the surface topographic gradient

(from the divide to the hillslope and the valley bottom). In lowland regions, however, the

topographic gradient could be small and groundwater flow might not follow the surface

topographic gradient. In addition, the catena approach only simulates hydrological con-

nectivity within a basin. Therefore, the catena approach is not applicable for modeling

interbasin groundwater flow. Furthermore, there is no general technique for an automatic

delineation using the catena approach (Arnold et al., 2010; Gallant and Dowling, 2003).

In the grid base version, the basin is divided into grid cells. Surface and subsurface

runoff follow surface topographic gradient. Hydrological connectivity between grid cells

was simulated in the same way as the catena approach (Figure 1.5). The application of

the grid version of SWAT, however, is not difficult for large river basins (Arnold et al.,

2010). This is because of the extensive requirements of input data and computational

capacity (Arnold et al., 2010).
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Figure 3. Landscape delineation methods used on the USDA‐ARS Brushy Creek watershed (17.3 km2).
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Figure 4. Processes considered in landscape routing units.

Shallow groundwater in this region has been evident since
the early farming days of the late 1800s, as shown by the
abundance of shallow hand‐dug wells across the Blackland
prairie. This shallow groundwater system has been studied
and shown to follow local topography at an average depth of
3 m. Recharge occurs through aerial infiltration at the outcrop
(Allen et al., 2005).

LANDSCAPE DELINEATION METHODS

Lumped method. For the lumped method, one HRU was
chosen to represent the watershed that consisted of the
dominant soil (Houston Black), dominant land use (pasture),
and average land slope.

HRU or hydrotope method. To develop an HRU, the land
use and soils maps were overlaid and unique land use and soil
combinations were lumped together to form the HRU. The
average watershed slope was used for each HRU. In this
watershed, 155 HRUs with distinct soil and land
combinations were used (fig. 3). When an HRU is formed,
there is no reference to landscape location, and there is no

routing of flow across HRUs. Flow from each HRU is
summed to estimate water yield at the watershed outlet.

Catena method. Existing methods to delineate landscape
units range from simple soil considerations to complex
methods using multivariate statistics and iterative
segmentation algorithms to interpolate the continuous
character of the landscape (Fluegel and Staudenrausch, 1999;
Blaschke and Strobl, 2003; Gallant and Dowling, 2003;
MacMillan et al., 2004; Moeller et al., 2008). Gallant and
Dowling (2003) point out that “there are no published
methods for mapping valley bottoms by automated
algorithms, although a number of methods exist that are
designed to map floodplains.” We searched for an effective
but simplified solution for large‐scale application and for
potential integration into SWAT. After an intensive
evaluation,  we selected the slope position method (USDA,
1999) as a useful method to delineate landscape units (Volk
et al., 2007).

For this application, the watershed was divided into three
landscape units: the divide, hillslope, and valley bottom. A

a) Catena b) Grid

1
Figure 1.4: Discretization of the basin using a) the catena and b)grid approaches in SWAT

(Arnold et al., 2010).
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summed to estimate water yield at the watershed outlet.
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Figure 1.5: Hydrological connectivity between different landscape units in the grid-based

SWAT model (Arnold et al., 2010).
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Recent studies have integrated SWAT with the Modular Three-Dimensional Finite-

Difference Ground-Water Flow Model (MODFLOW, Harbaugh and McDonald, 1996) to

improve the subsurface hydrological connectivity (Kim et al., 2008). In this integrated

SWAT-MODFLOW model, SWAT is used to simulate land surface processes and soil-

water dynamics. The percolated water out of the soil profile from SWAT is considered as

input (groundwater recharge) for the MODFLOW model Fig. 1.6. Results show that the

couple SWAT-MODFLOW model was able to capture surface, subsurface flow, and river-

aquifer interaction better than the original SWAT model (Kim et al., 2008). However, the

MODFLOW model is a physically-based distributed groundwater model, which requires

extensive input data and computational time. In regions where hydrogeological data are

scared, the applicability and performance of the SWAT-MODFLOW are questionable.

Figure 1.6: The schematic description of the SWAT-MODFLOW model (Kim et al., 2008).

For improving the simulation of hydrological connectivity in karst areas, different ver-

sions of the modified SWAT model were introduced, e.g., the KarstSWAT (Palanisamy

and Workman, 2014) and KSWAT (Malagó et al., 2016; Nerantzaki et al., 2015) models.

The KarstSWAT model was developed mainly to represent the hydrological connection

between sinkholes and springs (flow from sinkholes to springs). However, springs could

be fed by diffuse recharge sources (areal recharge). The KSWAT model combines the two

sub-models, the adapted SWAT model (Fig. 3, Malagó et al., 2016) and the karst-flow

model (Nikolaidis et al., 2013). The KSWAT model assumes that percolated water out of

the soil profile is karst groundwater recharge (Fig. 3, Malagó et al., 2016). This assump-

tion might be invalid if the underlying aquifer of a subbasin is not entirely a karst aquifer
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(e.g., Palanisamy and Workman, 2014). In this case, part of the infiltrated water could

be hydrologically connected with streamflow in form of lateral flow and baseflow. In ad-

dition, the adapted SWAT model does not differentiate different components of recharge

(concentrated recharge and diffuse recharge). The karst-flow model uses the two-linear-

storage reservoir model to represent the hydrological connection between recharge (which

is simulated by the adapted SWAT model or from the original SWAT model) and spring.

Discharge from the two reservoirs of the karst-flow model represents discharge from the

conduit system and matrix (Malagó et al., 2016). The KSWAT model does not differenti-

ate between diffuse recharge and concentrated recharge, and between matrix storage and

conduit storage.

Figure 1.7: Hydrological connectivity between different spatial objects in SWAT+ (Bieger

et al, 2017). SUR is surface runoff, LAT is lateral flow, RHG is groundwater recharge,

TOT is total flow.

A recent revised version of SWAT, so-called SWAT+, has been developed and could

be used to simulate hydrological connectivity in a very flexible way (Bieger et al, 2017).

Within SWAT+, landscape units (LUs), HRUs, aquifer (AQU), channel (CHA), reservoir

(RES), pond (PND) are considered as different spatial objects. The hydrological con-

nection between these spatial objects is defined by the users (Figure 1.7). The aquifer

delineation in SWAT+ is no longer tied to HRU and basin delineation. Due to the flexi-

bility of SWAT+, it could be used to represent various kinds of hydrological connections.

For example, SWAT+ was used to represent the hydrological connection between upland

areas, flood plain, and river (Bieger et al, 2019). The SWAT+ model could potentially
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be used to simulate interbasin groundwater flow by hydrologically connecting different

aquifer units. However, the main difficulties with SWAT+ are the identification (or verifi-

cation) of the hydrological connection and its magnitude between different spatial objects.

For a large river basin that has numerous spatial objects, defining these connections could

require extensive work.

Figure 1.8: Represention of hydrological connectivity between upland area, floodplain,

and river in SWAT+ (Bieger et al, 2019).

Compared to the original SWAT model, the SWAT+ model has a higher number of

model parameters due to the additional parameters for defining the hydrological connec-

tion between different spatial objects. The uncertainty and equifinality of the additional

parameters introduced in SWAT+ have not been fully explored. The magnitude of hy-

drological connection between different spatial objects in SWAT+ is often difficult to

validate directly/indirectly with measured/observed data. Therefore, the improvement of

the SWAT+ model compared to the SWAT is in question.

Besides the major changes to the SWAT model structure as aforementioned, there have

been several minor changes to improve the representation of hydrological connectivity. For

example, (Rahman et al., 2016) modified the wetland module of SWAT to improve the

representation of hydrological connectivity between riparian depressional wetlands, rivers,

and aquifers. Hoang et al (2017) added a routing function to hydrological connect the

upland areas with the riparian zones.
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1.3 Research Objectives and Methodology

The main objective of this research is to improve the representation of hydrological con-

nectivity in a conceptual distributed model, the Soil and Water Assessment Tool (SWAT)

model. Specifically, the hydrological connectivity in this research refers to (1) the hydro-

logical connection between river segments in the river network, (2) the regional groundwa-

ter flow (interbasin groundwater flow) in porous aquifers, and (3) the regional groundwater

flow in karst-dominated aquifers.

To have a better understanding of the hydrological connectivity between river seg-

ments in the river network, a detailed review and testing of the flood routing methods

(Muskingum and variable storage method) of SWAT were conducted. The advantages

and disadvantages of each routing method were discussed. The flood routing subroutines

of SWAT were tested and validated separately from other subroutines. Testing the flood

routing is one of the prerequisite objectives. This is because the flood routing is one of the

main components of the model. It describes the changes of the flood waves along the river

network. In other words, it describes the hydrological connection and the transformation

of the flood wave as it moves from upstream to downstream sections of a reach.

To represent hydrological connectivity in porous aquifers, a different delineation tech-

nique for the subsurface was proposed. The new delineation technique is expected to be

simple and can be done automatically. In addition to the new discretization technique, a

physically-sound approach for modeling hydrological connectivity between the subsurface

units were proposed. For these aforementioned objectives, the Thiessen polygon technique

was used for delineating the aquifer and Darcy’s law was used to simulate flow between

aquifer units. A linear-storage reservoir was used to simulate the hydrological connection

(via baseflow) between the aquifer and stream. The proposed model should be able to

capture groundwater flow dynamics and surface runoff

For a better representation of hydrological connectivity in karst-dominated aquifers, a

new discretization technique was introduced. The proposed discretization is expected to

be independent of the surface topographic basin and be able to differentiate between karst

and non-karst areas, karst recharge and discharge areas. To achieve these objectives, the

discretization technique was based on the geological map and information obtained tracer

tests. This is because the information obtained from tracer tests indicates the hydrolog-

ical between different areas in the karst region. For modeling hydrological connectivity

between different areas in karst areas, a two-reservoir model was proposed to represent

different types of recharge and discharge in the karst area.
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The overall results of this research are expected (1) to have a better simulation of

hydrological connectivity between different river segments in the river network, and (2) to

offer a compromise solution between physically based and conceptual models for simulat-

ing regional groundwater in porous aquifers and (3) to have new approach for simulating

interbasin groundwater flow in karst-dominated aquifers. Although the SWAT model was

specially selected in this study, the methodology presented here could also be applied for

other conceptual distributed models.

1.4 Thesis Structure and Author Contribution

The remainder of this study was structured as follows.

1. Chapter 2 presents an approach for improving the simulation of hydrological con-

nectivity between river segments in the river network with SWAT. In this chapter,

the two flood routing techniques used in SWAT as well as their implementations in

the code were reviewed and discussed. Application and testing of the revised code

for flood routing in a reach segment located in the Wesser catchment were presented.

Chapter 2 is the paper Verification and Correction of the Hydrologic Routing in

the Soil and Water Assessment Tool published in Water (Nguyen et al., 2018). In

this paper, the author contributed to the formulation of the idea, reviewing and

developing the model code, and writing of the paper.

2. Chapter 3 presents a solution for improving the simulation of regional groundwater

flow in porous aquifers. In this chapter, different approaches as well as their advan-

tages and disadvantages for simulating hydrological connectivity (regional ground-

water flow) in porous aquifers were discussed. It is followed by a description of the

modified groundwater module using the Multicell Aquifer Model (MCA). The case

study section presents the application of the proposed models in two different sub-

basins located in Niedersachsen, Germany. The remainders of chapter 3 represent

the model results, discussion, conclusion and recommendations.

Chapter 3 is the paper Modification of the SWAT Model to Simulate Regional

Groundwater Flow Using A Multi-Cell Aquifer published in Hydrological Processes

(Nguyen and Dietrich, 2018). In this paper, the author developed the idea, wrote

the paper, and set up test cases with the co-author. The model code was written

by the author.
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3. Chapter 4 introduces a new approach for improving the simulation of subsurface

connectivity in karst-dominated aquifers. In this chapter, a detailed review of the

karst system and its hydrological characteristics were presented. Different mod-

els for simulating hydrological connectivities in the karst aquifer, especially inter-

basin groundwater flow between different basins, were discussed. It is followed by

the formulation of the modified SWAT model using a two-reservoir model and the

case study in southwest Harz Mountains, Niedersachsen, Germany. The result and

discussions, conclusion and recommendations were presented in the remainders of

chapter 3.

This chapter is the paper Modeling Interbasin Groundwater Flow in Karst Areas:

Model Development, Application, and Calibration Strategy published in the Envi-

ronmental Modelling and Software (Nguyen et al., 2020). In this paper, the author

formulated the problem, test case study and wrote the paper with the co-authors.

The model code was written by the author.

4. Chapter 5 summarizes the main findings from this research. In addition, this chapter

also provides some suggestions for further improvements of the original SWAT as

well as the modified SWAT model in this study.
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Chapter 2

Verification and Correction of the

Hydrologic Routing in the SWAT

Nguyen, V. T., Dietrich, J., Uniyal, B., Tran, D. A., 2018. Verification and Correction

of the Hydrologic Routing in the Soil and Water Assessment Tool. Water, 10, 1419.

Abstract

The Soil and Water Assessment Tool (SWAT) is one of the most widely used eco-

hydrological models. SWAT has been undergoing constant changes since its development.

However, compartment review and testing of SWAT, especially the hydrologic routing

functions, are comparably limited. In this study, the daily hydrologic routing subroutines

of different SWAT versions were reviewed and tested using a well observed segment of

the Weser River located in Germany. Results show several problems with the routing

subroutines of SWAT. The variable storage subroutine of SWAT (Revision 664) does not

transform the stream flow. Unphysical results could be obtained with the variable storage

routing of SWAT (Revision 528). The Muskingum subroutine of SWAT (Revisions 664

and 528) overestimates daily channel evaporation (resulting in a bias of up to 6.3% in

streamflow in our case studies) and underestimates daily transmission losses. Simulated

results show that the timing and shape of flood waves, as well as the volume of low flows,

could be improved with a corrected Muskingum subroutine. Based on the results of this

study, we suggest that the SWAT user community review their existing SWAT models to

see how the aforementioned issues will affect their methods, findings, and conclusions.

Keywords: SWAT; hydrologic routing; flood routing; low flow; Muskingum; variable
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storage

2.1 Introduction

Flood routing is predicting the timing and magnitude of a flood wave at a downstream

point of a reach from the known data at an upstream point (Chow, 1964). It plays an

important role in flood forecasting, reservoir design, and flood control. In semi-distributed

hydrologic models, simplified hydrologic routing methods are often applied for flood rout-

ing instead of hydraulic methods. Hydrologic routing also serves as a basic function for

sediment and nutrient routing (Arnold et al., 1998). The parameters of hydrologic models

are often calibrated against observed streamflow, sediment, and/or nutrient yields. There-

fore, having a robust and well-tested hydrologic routing function in hydrologic models is

important.

The Soil and Water Assessment Tool (SWAT) is a conceptual semi-distributed hy-

drologic model used to predict the effect of land use management practices on water,

sediment, and nutrient yield (Arnold et al., 1998; Neitsch et al., 2011). SWAT has been

undergoing constant changes since its development (Krysanova et al., 2008). SWAT has

been tested and applied worldwide (Arnold et al., 2005; Krysanova et al., 2008; Gassman

et al., 2007). However, compartment verification of SWAT is limited, especially regarding

its hydrologic routing functions.

With SWAT, users can select either the variable storage method (Williams, 1969)

or the Muskingum method (Cunge, 1969; USDA, 2004) for hydrologic routing (Neitsch

et al., 2011). There have been some modifications to the routing functions in SWAT,

e.g.,(Kim and Lee, 2010; Pati et al., 2018). Kim and Lee (Kim and Lee, 2010) suggested

implementing a nonlinear storage equation obtained by coupling continuity and Manning’s

equations, to avoid underestimation of peak flows and false signals during the recession

period with the Muskingum used in SWAT. Pati et al. (Pati et al., 2018) replaced the

Muskingum used in SWAT with the variable parameter McCarthy–Muskingum to enhance

channel routing. In the official SWAT revisions (https://swat.tamu.edu/), however, the

model uses the two aforementioned methods (Cunge, 1969; USDA, 2004; Williams, 1969)

for hydrologic routing. Despite this, our preliminary studies show that there is a significant

difference in terms of simulated streamflow between the two methods and between the

same method in different SWAT versions (as shown in Section 2.4).

The main objective of this study is to explain the differences in simulated stream-
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flow and motivate users of the model to draw more attention to the hydrologic routing

processes. This study provides (1) an overview into the technical aspects of the two hydro-

logic routing methods used in SWAT, (2) an insight to the code implementation of these

concepts in different SWAT revisions, and (3) an improvement of the SWAT hydrologic

routing functions. A case study for a well observed segment of the Weser River, Germany,

is used as a verification example.

2.2 Theoretical Background

2.2.1 Variable Storage Method

The variable storage method is based on the continuity equation (Williams, 1969):

I −O =
dS

dt
(2.1)

where I (m3/s) and O (m3/s) are the inflow and outflow rate for a river reach, respectively,

t (s) is the time, S (m3) is the storage. In discrete form, Equation 2.1 becomes

∆t · I1 + I2

2
− ∆t · O1 +O2

2
= S2 − S1 (2.2)

where the subscripts “1” and “2” refer to the start and end of the routing time interval

∆t (s), respectively. Equation 2.2 can be rearranged to have the following form:

Ia +
S1

∆t
− O1

2
=
S2

∆t
+
O2

2
(2.3)

where Ia = 0.5(I1 + I2) is the average inflow rate during the time interval. The travel

time, T (s), is calculated as follows:

T =
S1

O1

=
S2

O2

(2.4)

Equation 2.3 can be rewritten using Equation 2.4 to obtain the relation between the

storage coefficient and the travel time:

Ia +
S1

∆t
T

· S1

O1

− O1

2
=

S2

∆t
T

· S2

O2

+
O2

2
(2.5)
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O2 =
2∆t

2T + ∆t
· Ia − (1 − 2∆t

2T + ∆t
) ·O2 (2.6)

O2 = C · (Ia +
S1

∆t
) (2.7)

where C is the storage coefficient:

C =
2∆t

2T + ∆t
. (2.8)

The condition C ≤ 1 must be satisfied to avoid unphysical results.

2.2.2 Muskingum Method

The Muskingum method is based on the continuity equation (Equation 2.1 and 2.2) and

the empirical linear storage equation (Diskin, 1967; USDA, 2004):

S = K[X · I + (1 −X) ·O] (2.9)

where S (m3) is the total storage in channel, K (s) is the storage constant, X (-) is a

weighting factor, ranging from 0 to 0.5, and I (m3/s) and O (m3/s) are inflow and outflow

rate. From Equations 2.2 and 2.9, the following relation can be obtained:

O2 = C1 · I2 + C2 · I1 + C3 ·O1 (2.10)

where

C1 =
∆t− 2KX

2K(1 −X) + ∆t
(2.11)

C2 =
∆t+ 2KX

2K(1 −X) + ∆t
(2.12)

C3 =
2K(1 −X) − ∆t

2K(1 −X) + ∆t
(2.13)

where C1, C2, and C3 are coefficients. To avoid numerical instability, the following con-

dition must be satisfied:
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2KX < ∆t < 2K(1 −X). (2.14)

2.3 Hydrologic Routing with SWAT

In this section, the daily variable storage and Muskingum method in SWAT2000,

SWAT2005, SWAT2009 (Revision 528), and SWAT2012 (Revision 664) are reviewed.

The source code of these SWAT versions was downloaded from the official SWAT website

(https://swat.tamu.edu/). The daily variable storage and Muskingum routing subrou-

tines in these SWAT versions are named “rtday” and “rtmusk,” respectively.

2.3.1 Variable Storage Routing Subroutine

The hydrologic routing in SWAT was originally performed only with the variable storage

method (Arnold et al., 1995, 1998). Although the four aforementioned SWAT versions

were reported to incorporate the variable storage routing method as described in previous

sections (Arnold et al., 2012; Neitsch et al., 2005, 2002; Neitsch et al., 2011), our study

showed that the rtday subroutine of SWAT2012 did not perform a transformation of

the outflow compared to the inflow. In this subroutine, the outflow from a reach was

calculated as follows:

rtwtr = vc · rcharea · 86400 (2.15)

where rtwtr (m3) is the outflow volume during a day, rcharea (m2) is the cross-sectional

area of flow, 86,400 (s) is the number of seconds in a day, vc (m/s) is the average flow

velocity, calculated as using the equation:

vc =
sdti

rcharea
(2.16)

where sdti (m3/s) is the average flow rate, calculated as follows:

sdti =
vol

86, 400
(2.17)

where vol (m3) is the volume of water in reach at the beginning of a day and the inflow

volume. Combining Equations 2.15, 2.16, and 2.17 yields
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rtwtr = vol. (2.18)

Equation 2.18 shows that the rtday subroutine of SWAT2012 does finally not transform

the flow hydrograph. The outflow volume is simply assigned as the volume of water in

reach at the beginning of a day, i.e., the inflow volume.

In the rtday subroutine of other SWAT versions (SWAT2000, SWAT2005, and

SWAT2009), routing is performed using Equation 2.7. In these SWAT versions, C is

assigned as 1, if C > 1 to avoid unphysical results. It means that the outflow volume is

assigned the total inflow volume and storage volume.

2.3.2 Muskingum Routing Subroutine

The Muskingum routing method in SWAT was reported to follow the concept described

in the previous section (Arnold et al., 2012; Neitsch et al., 2005, 2002; Neitsch et al.,

2011). However, revision of the “rtmusk” subroutine in four SWAT versions shows that

SWAT2000 and SWAT2005 do not check the numerical stability condition (Equation 2.14).

Within SWAT2009 and SWAT2012, if the numerical stability condition is not satisfied, the

daily time step is divided into smaller time steps, 12, 6, or 1 h. However, it does not always

guarantee the numerical stability condition. In addition, (1) the calculated evaporation

in a reach for each sub-daily time step in SWAT2009 and SWAT2012 was taken as daily

evaporation and (2) the calculated transmission losses were not summed up during each

time step to have the total amount of transmission losses during a day. These result in an

overestimation of reach evaporation and underestimation of transmission losses, which, in

combination, can affect the SWAT simulated stream flow in different ways depending on

the characteristics of the case study area. Due to the calibration of different parameters

of the model against streamflow at the outlet, the parameter uncertainty of the model is

increased by the reported issues.

In this study, the rtmusk routing subroutine of SWAT2012 was modified (1) by chang-

ing the calculation of the internal sub-daily time step to ensure that the numerical stability

condition (Equation 2.14) is always met and (2) by correcting the summation of daily chan-

nel evaporation and transmission losses from internal time steps. The source code of this

modified subroutine is available at https://github.com/tamnva/updated_SWAT2012.

The storage constant K in SWAT is a function of the storage time constant of a reach

at 0.1 and at 0.9 bankfull (model parameters MSK CO1 and MSK CO2). These and the

weighting factor X (parameter MSK X) in the four aforementioned SWAT versions are
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user-defined and their usage was not modified in this study.

2.4 Verification Examples

2.4.1 Study Area and Data

The study area is a segment of the Weser River between Bad Karlshafen and Vlotho lo-

cated in Lower Saxony and North Rhine-Westphalia, Germany (Figure 2.1). This Weser

River segment has a total length of 142 km, an average slope of 0.01%. Daily inflow data

at the Karlshafen gauging station and outflow data at the Vlotho gauging station were

obtained from the the Wasser und Schifffahrtsdirektion Mitte. Daily streamflow data at

three tributary channels were taken from the Niedersächsische Landesbetrieb für Wasser-

wirtschaft, Küsten- und Naturschutz (NLWKN). The drainage areas corresponding to the

Karlshafen and Vlotho gauging stations are 14,790 km2 and 17,620 km2, respectively.

The tributary river Emmer was simulated at the gauging station Welsede (509 km2).

Weather data in this area were taken from the Deutscher Wetterdienst. The Digital Ele-

vation Model (DEM) of 200 m resolution resolution shows that the elevation of the study

area varies between 42 and 522 m above mean sea level (a.m.s.l). Land cover and soil

maps were obtained from the CORINE Land Cover project and the Bundesanstalt für

Geowissenschaften und Rohstoffe (BGR), respectively.

2.4.2 Simulation Scenarios

Due to the similarities (1) in the variable storage subroutine between SWAT2000,

SWAT2005, and SWAT2009 and (2) in the Muskingum routing subroutine between

SWAT2009 and SWAT2012, simulations in this study were only performed with four

different routing subroutines (Table 2.1). The numerical instability due to neglecting

the condition in Equation 2.14 in the Muskingum routing subroutine of SWAT2000 (or

SWAT2005) was discussed in detail by Kim and Lee Kim and Lee (2010). In order to

compare the effects of using different hydrologic routing subroutines (Table 2.1) on the

simulated streamflow, the runoff generated from the intermediate catchments was simu-

lated using the same subroutines and parameters in all scenarios. This is done to ensure

that the simulated runoff entering the Weser River in all simulations is the same. In addi-

tion, to minimize the error of simulated flow at the outlet of the study area, (1) observed

flow at the Uchtdorf, Afferde, and Welsede gauging stations was used as model inflow con-

dition, and (2) contributing flow from other ungauged tributary channels and intermediate
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Figure 2.1: Location of the Weser River segment and its tributary rivers.
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Table 2.1: List of the hydrologic routing subroutines used for this study.

Flood Routing Subroutine Description

V2012 Variable Storage routing subroutine of SWAT2012

V2009 Variable Storage routing subroutine of SWAT2009

M2012 Muskingum routing subroutine of SWAT2012

M2012* corrected Muskingum routing subroutine of SWAT2012

subbasins was simulated by using parameters obtained when calibrating for streamflow at

the Welsede gauging station. For hydrologic routing, the best calibrated parameter values

of the variable storage and Muskingum in this study are as follows: Manning’s rough-

ness coefficient CH N(2) = 0.025, MSK X = 0.25, MSK CO1 = 0.75, and MSK CO2 =

0.25. The channel width (parameter CHW2) was overestimated by the ArcSWAT pre-

processing and was corrected by evaluating aerial images. The model was simulated for

the years 1990–2000. However, in order to demonstrate the hydrologic routing for flood

events and for low flow, shorter time periods were evaluated.

2.4.3 Results and Discussions

Simulated streamflow at the Vlotho gauging station easily shows by visual evaluation

that V2009 and V2012 failed to perform flood routing (Figures 2.2a,c). Nash–Sutcliffe

efficiency (NSE, Nash and Sutcliffe, 1970) and percentage bias (PBIAS) show good values

due to the high influence of inflow taken from observed values (Table 2.2). For example,

(1) the timing of simulated peaks is earlier than the observed and (2) the simulated peaks

are higher than the observed. The simulated outflow from V2009 and V2012 is almost

identical to inflow. The variable storage method does not show a transformation of the

flood wave as it moves downstream. V2012 simply assigns inflow as outflow as previously

discussed. The similarities between simulated outflow from V2009 and V2012 are due to

the fact that V2009 assigns C = 1 most of the time (to avoid C > 1). We found that the

unphysical oscillation of simulated flow with V2009 (as shown in the red circles in Figures

2.2a,c) occurs when flow in the channel flood plain occurs (or disappears). This is due to

the assumption about the flood plain geometry and the use of the Manning’s equation.

The flood plain width in SWAT is assumed five times the top width of the channel. When

flow starts to change from non flood-plain flow to flood-plain flow (or from flood-plain

flow to non flood-plain flow), there is a sudden increase (or decrease) in the flow velocity,

the travel time T, the storage coefficient C, and ultimately the simulated outflow. We also
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Figure 2.2: Simulated outflow at the Vlotho gauging station for two flood events using

(a,c) V2009 and V2012 and (b,d) M2012 and M2012*.
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Table 2.2: Model performance statistics for flood event 1 (17 January 1990 to 17 April

1990, Figures 2.2a,b) and flood event 2 (18 December 1990 to 1 February 1991, Figures

2.2c,d).

Subroutine Flood Event 1 Flood Event 2

NSE PBIAS NSE PBIAS

V2012 0.898 7.24 0.955 1.34

V2009 0.902 7.24 0.953 1.27

M2012 0.975 8.49 0.995 2.35

M2012* 0.981 7.25 0.997 1.49

found that, in the case C > 1, changing the simulation time step during a simulation in

order to have C ≤ 1 could also cause the same problem. The simulation time step should

be the same for the entire simulation time. A solution to this problem could be selecting

a sufficiently small time step (small ∆t) and a sufficiently long river section (high T ), but

this is event-based and reach-specific. Therefore, the V2009 and V2012 are not practical

for long-term simulations at basin-scale.

Figures 2.2b,d shows simulated outflow at the Vlotho gauging station using M2012

and M2012*. It is seen that simulated outflow from M2012 and M2012* is better than

that from V2009 and V2012 (Figures 2.2a,c and Table 2.2). The timing of simulated

peaks and the shape of the flood wave matched well with observed outflow. The effect of

the overestimation of channel evaporation with M2012 is negligible in this case (Figures

2.2b,d) because the flow rate is high compared to the evaporation rate. The underestima-

tion of flow from M2012 and M2012* as shown by the PBIAS (Table 2.2) is also due to

the underestimation of flow from tributary reach and intermediate subbasins. The effect

of overestimating channel evaporation with on simulated streamflow with M2012 during

flood events is negligible (Figure 2.2 and Table 2.2).

The effect of overestimation of channel evaporation on simulated streamflow with

M2012 is more pronounced when the entire catchment response is evaluated, especially

during periods of low flows. Figures 2.3a–c shows the simulated flow duration curves at

three gauging stations (Figure 2.1) using M2012 and M2012* during 1990–2000. It is seen

that the effect of overestimating channel evaporation on low flow (¡Q75) is significant. The

simulated streamflow volumes (from 1990 to 2000) with M2012 at the Welsede, Afferde,

and Uchtdorf gauging stations are 6.3%, 2.4%, and 4.2%, respectively, less than that with

M2012*. The effect of overestimation of channel evaporation with M2012 is expected to

increase with an increase in (1) river density, (2) channel evaporation rate (arid or semi-
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Figure 2.3: Flow duration curves of the simulated streamflow (logarithmic scale) at the

(a) Welsede, (b) Afferde, and (c) Uchtdorf gauging stations during 1990–2000 with M2012

and M2012*.

arid areas), (3) river width/depth ratio, and (4) the number of sub-daily time steps used

in the Muskingum routing subroutine.

2.5 Conclusions and Recommendations

In this study, we validated and corrected the hydrologic routing subroutines of different

SWAT revisions. Results show that there are major issues in both routing subroutines

of SWAT, the variable storage and Muskingum. In case of simulation with the variable

storage method, (1) SWAT2012 (Revision 664) does not perform hydrologic routing, and

(2) unphysical oscillation of simulated flow was observed with SWAT2009 due to the as-

sumption of the flood plain geometry and the use of the Manning’s equation. In case

of simulation with the Muskingum subroutine (SWAT2009 Revision 528 and SWAT2012

Revision 664), (1) a high portion if not all of streamflow volume in low flow periods could

be lost due to overestimation of channel evaporation, (2) unphysical results could be ob-

tained due to violating the numerical stability condition, and (3) channel transmission loss

is underestimated if it is activated. A corrected Muskingum subroutine from SWAT2012

(Revision 664), here called M2012*, shows a good estimation of the two flood waves in

our simulation period and a reduced channel evaporation loss.

Based on the results of this study, we suggest that the SWAT user community check

and upgrade their existing SWAT models, which used the aforementioned affected SWAT

versions. It is recommended that whether the updated result supports their methods and

conclusions be checked. This is especially important for studies focused on (1) basins
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with short reaches, and/or (2) low flow simulation, (3) event-based simulation, and/or (4)

basins in (semi-) arid regions, where evaporation is high but channel transmission losses

can be significant. A bias contribution of streamflow in an order of 5% is considered

significant for the calibration of other components of the model, in particular during low

flow periods, where soil and groundwater parameters might be estimated wrongly due to

the error in channel routing. Although SWAT+ is announced as the next generation of

SWAT, there are still many SWAT users working with existing SWAT models. Therefore,

verifications of other functions of SWAT are also suggested in order to decrease the model

structure uncertainty.
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Chapter 3

Modification of the SWAT Model to

Simulate Regional Groundwater

Flow Using A Multi-Cell Aquifer

Nguyen, V. T., Dietrich, J., 2018. Modification of the SWAT model to simulate regional

groundwater flow using a multicell aquifer. Hydrological Processes, 32 (7), 939 - 953.

Abstract

The soil and water assessment tool (SWAT) has been widely used and thoroughly tested

in many places in the world. The application of the SWAT model has pointed out that 2

of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic

response unit concept and to the simplified groundwater concept, which contribute to its

low performance in baseflow simulation and its inability to simulate regional groundwater

flow. This study modified the groundwater module of SWAT to overcome the above

limitations. The modified groundwater module has 2 aquifers. The local aquifer, which

is the shallow aquifer in the original SWAT, represents a local groundwater flow system.

The regional aquifer, which replaces the deep aquifer of the original SWAT, represents

intermediate and regional groundwater flow systems. Groundwater recharge is partitioned

into local and regional aquifer recharges. The regional aquifer is represented by a multicell

aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen

polygon method, where centres of the cells are locations of groundwater observation wells.

Groundwater flow between cells is modelled using Darcy’s law. Return flow from cell to
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stream is conceptualized using a non-linear storage–discharge relationship. The SWAT

model with the modified aquifer module, the so-called SWAT-MCA, was tested in 2 basins

(Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany.

Results from the Wipperau basin show that the SWAT-MCA model is able (a) to simulate

baseflow in a lowland area (where baseflow is a dominant source of streamflow) better

than the original model and (b) to simulate regional groundwater flow, shown by the

simulated groundwater levels in cells, quite well.

Keywords: Baseflow, Groundwater flow, Hydrological connectivity, multicell aquifer,

SWAT-MCA

3.1 Introduction

Hydrological models are often used to gain understanding of the surface and subsurface

hydrologic processes within the interested region. Furthermore, they can be applied as

systems analytic tools in water resources management. Hydrological models can be clas-

sified into lumped, semidistributed, and fully distributed models (Jajarmizadeh et al.,

2012; Pechlivanidis et al., 2011). Lumped models consider a basin as a single unit. Fully

distributed models, especially the ones with physically based approach, discretize the

basin into grid cells and simulate surface and subsurface flow between these grid cells.

However, the use of fully distributed models at the basin scale is often restricted due to

extensive data requirements and high computational cost. Semidistributed models appear

as compromise models between lumped models and fully distributed models even though

semidistributed models often neglect groundwater flow between subbasin units, for exam-

ple, HBV (Bergström, 1992), SLURP (Kite, 1997), and TOPMODEL (Beven and Kirkby,

1979).

The soil and water assessment tool (SWAT) is a semidistributed hydrological model

used to assess the impact of land management practices on water, sediment, and agri-

cultural chemical yields (Neitsch et al., 2011). The SWAT model (a) operates at a basin

scale, (b) is continuous in time, (c) is computationally efficient, (d) uses readily available

inputs, and (e) is a free and open-source software. SWAT can simulate most aspects of

the hydrologic cycle in agricultural catchments and has been widely used and thoroughly

tested worldwide (Arnold and Fohrer, 2005; Bieger et al., 2017; Francesconi et al., 2016;

Gassman et al., 2007; Strauch et al., 2013; Wagner et al., 2016). Although there exist

numerous semidistributed models, few of them can simulate groundwater flow between

subbasin units (Efstratiadis et al., 2008; Joodavi et al., 2016; Lindström et al., 2010; Rozos
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et al., 2004). However, it is hardly to find a model, which has all of the aforementioned

advantages like the SWAT model in agricultural water management at catchment scale.

Therefore, the SWAT model was selected for further modification in this study in order

to improve its horizontal subsurface hydrological connectivity.

Applications of the SWAT model showed that one of the major weaknesses of SWAT is

related to the nonspatial reference of the hydrologic response unit (HRU) concept (Arnold

and Fohrer, 2005; Bieger et al., 2017; Bosch et al., 2010; Gassman et al., 2007). HRUs are

created by lumping all areas having the same combination of land use, soil type, and slope

within a subbasin (Leavesley et al., 1983). The HRU concept is computationally efficient

while representing the abovementioned landscape heterogeneity. However, the HRU has

no explicit spatial information, which is required to simulate flows between HRUs.

Simulation of groundwater flows between HRUs, subbasins, or different landscape units

(LUs) is considered as an important part of water resources management (Refsgaard et al.,

2010). In many places, groundwater is considered as one of the main sources for domestic

uses and/or irrigation (e.g., Hutson et al., 2004; Siebert et al., 2010; Wittenberg, 2003,

2015). Groundwater flow can alter the overall water budget or affect the subsurface and

surface water quality of a region.

In recent years, some studies have been carried out to simulate groundwater flow be-

tween different LUs in the SWAT model. Volk et al. (2007) and Arnold et al. (2010)

developed a SWAT landscape model by using a catena approach (Kirkby, 1998; Lane

and Nearing, 1989) to delineate the basin into three different LUs, the so-called divide,

hillslope, and flood plain (each LU can be further delineated into HRUs). Within this

approach, groundwater is routed from the divide through the hillslope, the flood plain,

and ultimately to the stream as flow through a series of linear storage elements (e.g.,

Brutsaert, 2005). Rathjens et al. (2015) developed a grid-based version of the SWAT

landscape model. In this model, groundwater flow between grid cells is also modelled as

flow through a series of linear storage elements. The model performance in streamflow

simulation significantly depends on the grid size and the routing algorithm implemented.

In addition, this model requires significant computation time (Pignotti et al., 2017). Sun

et al. (2016) further developed the SWAT landscape model by delineating the flood plain

into three smaller LUs corresponding to flooded areas with different flood return periods.

Groundwater flow between LUs within the flood plain and the groundwater–surface water

interaction were modelled using Darcy’s law. The model is capable of simulating ground-

water levels in the flood plain LUs. Both the models (Sun et al., 2016; Volk et al., 2007),

however, only considered groundwater flow driven by topographic gradient (from the di-
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vide through the hillslope, the flood plain, and ultimately to the stream) and neglected

groundwater flow at larger scales (at intersubbasin and interbasin scales). Groundwa-

ter flow at larger scales might not follow local topographic lows and highs (Tóth, 1963).

In addition, in lowland areas, it is difficult to differentiate (a) between the divide, the

hillslope, and the flood plain and (b) between groundwater and soil water.

The SWAT model also has a poor performance in baseflow simulation, which is nor-

mally associated with the return flow from groundwater (Bosch et al., 2010; Eckhardt et

al., 2002; Guse et al., 2014; Kalin and Hantush, 2006; Luo et al., 2012; Lv et al., 2014;

Pfannerstill et al., 2014a). This is not only due to the unaccounted effect of the flows

between HRUs but also due to the simplified representation of the aquifer system and the

return flow from groundwater. SWAT uses a two-layer aquifer model, shallow or uncon-

fined aquifer (typically 2–20 m) and deep or confined aquifer (> 20 m), to represent the

aquifer system in each HRU (Luzio et al., 2004; Neitsch et al., 2011). The deep aquifer in

SWAT is inactive, which means that water entering the deep aquifer is considered a loss to

the hydrological system (Neitsch et al., 2011). The contribution of groundwater from the

shallow aquifer to streamflow is modelled using a linear aquifer storage–discharge relation

approach.

Modifications of the SWAT model regarding the aquifer structure and the interac-

tion between aquifer and stream have been made to improve baseflow simulation. For

example, Luo et al. (2012) allowed groundwater from the deep aquifer to contribute to

streamflow in a similar manner as of the shallow aquifer. Gan and Luo (2013) added

another aquifer layer and used a non-linear aquifer storage–discharge relation approach

to simulate return flow. Pfannerstill et al. (2014a) divided the shallow aquifers into active

fast and active slow shallow aquifers to account for fast and slow response components,

respectively, of the return flow. Wang and Brubaker (2014) used a non-linear aquifer

storage–discharge relation approach instead of a linear aquifer storage–discharge relation

approach to simulate return flow. Results from the abovementioned studies showed that

the modified SWAT models are able to simulate baseflow better than the original SWAT

model. However, these studies have not considered lateral groundwater flow.

Another approach, which enables a reasonable representation of streamflow, ground-

water flow, and groundwater–surface water interaction, integrates SWAT with the modu-

lar three-dimensional finite-difference groundwater flow (MODFLOW) model (McDonald

and Harbaugh, 1988). MODFLOW is a fully distributed physically based groundwater

model. There have been several versions of integrated SWAT and MODLFOW models,

for example, SWATMOD (Sophocleous et al., 1999), SWAT-MODFLOW (Bailey et al.,
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2016; Kim et al., 2008), and SWATmf (Guzman et al., 2015). Results showed that these

models are able to simulate streamflow, groundwater flow, and groundwater–surface water

interactions at a basin scale (Guzman et al., 2015; Kim et al., 2008; Sophocleous et al.,

1999) with satisfactory results. However, the integrated models are not always applica-

ble because they require extensive computational time and input data. In addition, the

aforementioned models are not easy to use for modellers, who are not familiar with the

MODFLOW model.

There is also an ongoing development and testing of the next generation of the SWAT

model called SWAT+ (Bieger et al., 2017). SWAT+ allows users to discretize the aquifer

in a flexible way. Aquifers could be discretized into a number of aquifer units (also called

spatial objects), which are no longer tied to HRUs. Although there is an option for flow

routing between these aquifer units (as flow through a series of linear storage elements)

with SWAT+, however, users have to manually define a connection between these aquifer

units and also a connection between these aquifer units with other spatial objects (e.g.,

HRU, channel, and LUs). This could be problematic with many spatial objects in large

basins. In addition, the groundwater height in these aquifer units has the same meaning

with the groundwater height of the original SWAT model, which is not referenced to a

physical datum.

The research objective of the present study is to develop a simple semidistributed,

physically based groundwater module for SWAT. The developed model is expected to

be capable of simulating streamflow (especially baseflow) and groundwater flow at a

basin/regional scale with fast computational time, less input data requirement, and sat-

isfactory results for porous aquifers. In order to achieve the abovementioned objective,

we applied a different discretization technique to delineate the aquifer while keeping the

surface discretization as in the original SWAT model. The multicell aquifer (MCA; Bear,

1979; Bear and Cheng, 2010) model was used as a replacement of the deep aquifer in the

original SWAT model. The modified SWAT was applied in two lowland basins, where

contribution of groundwater to streamflow is dominant.

3.2 Methodology

3.2.1 The original groundwater module of SWAT

As mentioned in the previous section, SWAT divides the aquifer system in each HRU into

two types of aquifers, shallow and deep aquifers. Percolated water from the unsaturated
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zone is partitioned into the shallow and deep aquifer recharges via a parameter, which is

typically calibrated. Water entering the deep aquifer is considered a loss to the system

(Neitsch et al., 2011). This makes SWAT more flexible to calibrate, especially when there

is a substantial amount of groundwater storage in the shallow aquifer, which results in

an overestimation of baseflow. Groundwater in the shallow aquifer can be “revaporated”

(wrevap) or contribute to streamflow as return flow (Qgw) or be removed by pumping

(wpump,sh). The volumetric water balance equation for the shallow aquifer in the original

SWAT model on each day (e.g., day i) is as follows (Neitsch et al., 2011):

aqsh,i = aqsh,i−1 + wrchrg,sh −Qgw − wrevap − wpump,sh, (3.1)

where aqsh,i and aqsh,i−1 are the amount of water stored in the shallow aquifer on

day i and on day i − 1, respectively, wrchrg,sh is the groundwater recharge, and other

variables were as described previously. SWAT can simulate groundwater height in the

shallow aquifer in each HRU (Neitsch et al., 2011). However, this variable provides only

information about the groundwater storage content and has limited physical meaning

because (a) it is not referenced to any physical datum; hence, it does not represent the

groundwater level (Vazquez-Amábile and Engel, 2005); and (b) it does not account for

groundwater flow between adjacent HRUs. Moreover, this variable has a unique value for

each HRU, whereas a single HRU can be scattered over different areas having different

altitudes. It should be noted that there is no groundwater flow between HRUs, and return

flow from each HRU is routed directly to the stream outlet of the respective subbasin. The

groundwater module in SWAT was documented in more detail in Neitsch et al. (2011).

Hereinafter, when the SWAT model is mentioned, we refer to the one documented in

Neitsch et al. (2011) unless otherwise stated.

3.2.2 The modified groundwater module

In this section, a brief review of the natural groundwater flow systems and groundwater

flow dynamics at the basin scale is first provided. Tóth (1963) suggested that groundwater

flow can be classified into local, intermediate, and regional groundwater flows. The local

groundwater flow originates from the recharge area (local topographic high) and ends in

the discharge area (adjacent local topographic low). Therefore, local groundwater flow is

strongly driven by the topographic gradient. The intermediate and regional groundwater

flows have recharge and discharge areas separated by several topographic highs and lows.

Tóth (1963) also pointed out that the aforementioned types of groundwater flow systems
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Figure 3.1: Schematic representation of the vertical structure of the modified groundwater

module in SWAT. Qsurf , Qlat, Qr,local, Qr,regional, and Qregional are the surface run-off,

lateral flow, return flow from local aquifer, return flow from regional aquifer, and regional

groundwater flow, respectively. The numbers indicate the average annual water balance

components in millimeters per year in the Wipperau (numbers outside parentheses) and

the Neetze (numbers inside parentheses) basins

might not exist simultaneously in all types of aquifers and the boundaries between them

might not be well defined.

To mimic the groundwater flow systems as described above in the modified SWAT

model, we modified the concept of the two-aquifer layer in the original SWAT model

(Figure 3.1). The local aquifer layer in this study represents local groundwater flow,

whereas the regional aquifer layer represents intermediate and regional groundwater flow.

To be more precise, local groundwater flow in the modified SWAT model is restricted

within a subbasin, which has a subbasin divide (topographic high) as recharge area and a

stream of that subbasin (adjacent topographic low) as discharge area. In addition, the area

between the subbasin divide and the stream is also considered as recharge area for the local

groundwater flow system. Modelling local groundwater flow between local aquifers will

not be the focus of our model. Therefore, we only model recharge and discharge and use

a function to route local groundwater from recharge area to discharge area. Considering

the above concept, the shallow aquifer in the original SWAT model will be considered as

the local aquifer in our modified model. Therefore, discretization of the local aquifers is
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identical to that of HRUs, and all simulations applied to the shallow aquifer in the original

SWAT will be applied to the local aquifers in our modified model. The main differences

between the modified SWAT model presented here with the original SWAT model lie

in the regional aquifer layer. We used the MCA model to replace the deep aquifer in

the original SWAT model and to represent intermediate and regional groundwater flows.

The resulting model hereafter is referred to as the SWAT-MCA model. Delineation of

the regional aquifer layer differs from that of the local aquifer because intermediate and

regional groundwater flows are not restricted within a subbasin. The regional aquifer layer

is discretized into cells (polygons) using Thiessen (1911) polygons constructed around the

locations of the groundwater observation wells. Hence, one cell can be fully or partially

overlaid by a single subbasin or several subbasins (Figure 3.2). It should be noted that

the selected groundwater observation well must be representative for that cell and the

screening depth must be within the unconfined aquifer. Groundwater flow between cells

is modelled on the basis of Darcy’s law. Considering the fact that there could be no

clear boundary between local, intermediate, and regional groundwater flows and the local

aquifer might only be filled after rainfall, flow in the regional aquifers in the SWAT-

MCA model is assumed to be unconfined. This assumption is valid if the study area has

discontinuous clay layers (lenses) or no distinct stratigraphic layers within the aquifer at

the regional scale. Therefore, the volumetric water balance equation for each cell (e.g.,

cell i) has the following form:

k∑
j=1

Qij +W = SYi
∆hi
∆t

Ai, (3.2)

where Qij (L3T−1) is the total inflow (+) and outflow (-), which is calculated by using

Darcy’s law, k is the number of the neighbouring cells of cell i, W (L3T−1) represents

sources (+) and sinks (-), SYi (-) is the specific yield of cell i, ∆hi (L) is the change in

groundwater level at cell i, ∆t (T) is the time step size, which is 1 day in this study, and

Ai (L2) is the surface area of cell i. In finite-difference form with implicit time-stepping

scheme, Equation 3.2 has the following form:

k∑
j=1

Kijaij
htj − hti
Lij

+W t = SYi
hti − ht−1

i

∆t
Ai, (3.3)

where Kij (LT−1) is the harmonic mean hydraulic conductivity between cells i and j, aij

(L2) is the average saturated area between cells i and j, aij is a function of hti (L) and htj

(L), which are the hydraulic heads of cells i and j, respectively, on the current day, Lij

(L) is the distance between centres of cells i and j, and ht−1
i (L) is the hydraulic head of
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Figure 3.2: Schematic representation of the multicell aquifer model

cell i on the previous day.

Sources (+) and sinks (-) can be a portion of recharge from the unsaturated soil zone

(+), return flow (-), and pumping for irrigation (-). We applied the HRU cell conversion

technique used by Kim et al. (2008) to assign a spatial linkage between HRUs and cells.

The amount of recharge from an HRU to a cell is proportional to the overlapping area

between that HRU and that cell. To calculate recharge from an HRU to a cell, the

overlapping area matrix between HRUs and cells is needed (Table 3.1). The total amount

of recharge to a cell, which is not overlaid completely by the basin, is assumed to be area

proportional to the recharge from the overlapping area.

Return flow from cell to stream is conceptualized using the non-linear storage-discharge

relation suggested by Wang and Brubaker (2014). The total amount of return flow from

each cell is calculated as follows:

Qr,regional = (α(S − Smin))1/β, (3.4)

where Qr, regional (L3T−1) is the total amount of return flow, S (L3) is the total ground-

water storage, Smin (L3) is the minimum groundwater storage for return flow to occur

(if S < Smin, then Qr,regionalr, regional = 0), and α (TβL3(1−β)) and β (-) are coefficient

parameters. Return flow from one cell can contribute to streamflow in several subbasins.
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Table 3.1: The overlapping area matrix between HRUs and cells

hru1 hru2 hrum

cell1 cell1 hru1 cell1 hru2 cell1 hrum

cell2 cell2 hru1 cell2 hru2 cell2 hrum

- - - - -

celln celln hru1 celln hru2 celln hrum

Conversely, one subbasin can receive return flow from several cells. This concept rep-

resents the recharge and discharge area of intermediate and regional groundwater flows.

The amount of return flow from a cell to a subbasin is proportional to the overlapping

area between the respective cell and subbasin (Table 3.1).

3.2.3 Input data preparation

In addition to the input data as described by Arnold et al. (2013), input data for the

SWAT-MCA model must be prepared in ASCII text files. They are named “parame-

ters.txt,” “hru.txt,” and “cell.txt.” The “parameters.txt” file contains information re-

garding the cell’s number, cell’s geometry (coordinates of the cell’s centre, bottom and

top elevations of the cell, and ID of the neighbouring cells), cell’s hydrogeological char-

acteristics (saturated hydraulic conductivity and specific yield), cell’s initial condition

(initial groundwater level), and the parameters to control the amount of return flow (α,

β, and Smin). If the cell is used as a variable-head boundary cell, the name of the file,

which contains observed daily groundwater levels of that cell during the simulation time,

must be provided. Other types of boundary conditions could be also implemented with

minor modification of the code. The “hru.txt” and “cell.txt” files are used to assign a

spatial linkage between HRUs and cells and to calculate the overlapping area matrix be-

tween HRUs and cells (Table 3.1). The “hru.txt” and “cell.txt” files can be created using

geographic information system (GIS) tools.

3.2.4 Model integration framework

The MCA model was integrated into SWAT (SWAT2012 rev. 664) by using two main

subroutines. The first subroutine, “read process,” reads and processes input data for

MCA. This subroutine is called only once (at the beginning of the simulation). The second

subroutine, “simulate gw,” simulates groundwater flow between cells, groundwater levels,
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Figure 3.3: Integration framework of the soil and water assessment tool–multicell aquifer

model

and return flow from the regional aquifer (Equations 3.3 and 3.4). This subroutine is called

each time step after the subroutine “subbasin,” which simulates all land phase processes

for each HRU, and before the subroutines “route,” “add,” and other subroutines, which

simulate the routing phase of the hydrologic cycle. After each simulation day, results are

printed out. For more information regarding the subroutines “subbasin,” “route,” and

“add,” one could refer to Arnold et al. (2013). Minor modifications in the SWAT code

were also made to transfer variable values between subroutines of SWAT and MCA and

to print out daily results, resulting in only one executable program (Figure 3.3). The

source code of the SWAT-MCA model could be available upon request.

3.3 Case Study

3.3.1 Study areas and data

The study areas, the Wipperau and the Neetze basins, are located in a lowland area

within the Lüneburger Heide region in Lower Saxony, Germany (Figure 3.4). The two
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Table 3.2: Characteristics of the study areas

Wipperau basin Neetze basin

Total area (km2) 200.4 172.8

Agricultural land (% total area) 65.6 56.0

Forest (% total area) 31.2 39.3

Average annual precipitation (mm) 721 751

Average annual water yield (mm) 66.3 173.4

Average annual baseflow (mm) 49.4 151.8

(% average annual water yield) 75 88

basins are part of the Ilmenau basin, which drains to the Elbe River in the north-west.

The digital elevation model of 10-m resolution was provided by the Lower Saxony Water

Management, Coastal Defence and Nature Conservation Agency (NLWKN). The study

areas are relatively flat with elevation ranges from 19 to 139 m above mean sea level

(Figure 3.4). Daily weather data (precipitation, wind speed, sunshine hours, and relative

humidity) from 1976 to 2007 were obtained from the German Weather Service (DWD).

Weather data were interpolated for all subbasins using the inverse distance weighting

method. Daily sunshine hours were converted to solar radiation using the formulae sug-

gested by Ångström (1924). The average annual precipitation values of the two basins

from interpolated data are of similar magnitude (Table 3.2). Daily streamflow records

at the outlets of the Wipperau basin (Oetzmühle gauging station) and the Neetze basin

(Süttorf gauging station) from 1976 to 2007 were obtained from NLWKN. Streamflow

data show that the average annual water yields of the two basins are significantly differ-

ent (Table 3.2). Baseflow analysis using the baseflow filter program (Arnold et al., 1995)

indicates that (a) return flow from groundwater is a dominant source of streamflow in

both basins and (b) return flow from the Neetze basin is much higher than return flow

from the Wipperau basin (Table 3.2).

Land use/land cover map and soil map 1:200000 (BÜK200) were taken from the

CORINE Land Cover project and the Federal Institute for Geosciences and Natural Re-

sources (BGR), respectively. The dominant land cover types in both basins are agricul-

tural land and forest (Table 3.2). The majority of the agricultural land (about 90%)

is irrigated with an average annual amount of groundwater extraction for irrigation of

around 73 mm (Riediger et al., 2014; Wittenberg, 2015). The dominant soils in the Wip-

perau basin are (a) podzols and brown podzolic soils, 43.4% of the total area, and (b)

brown earth and podzolic-brown earth soils, 32.4% of the total area. In the Neetze basin,
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Figure 3.4: Location and digital elevation model (DEM) of the Neetze and Wipperau
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the dominant soils are (a) podzols and brown podzolic soils, 47.2% of the total area, and

(b) brown earth soil, 23.2% of the total area. Soil hydraulic properties were derived by

using the pedotransfer functions/tables from Wessolek et al. (2009).

Average annual groundwater recharge recorded at the lysimeters at Hohenzethen,

which are operated by the Landesamt für Bergbau, Energie, und Geologie, in the Wip-

perau catchment from 2001 to 2015 varied between 328 and 347 mm. However, simulated

annual groundwater recharge from Lemke et al. (2008) was around 225 mm. These values

along with the estimated return flow from groundwater (Table 3.2) indicate that in both

basins, the majority of groundwater recharge does not become return flow.

Hydrogeological cross sections of the area published by Landesamt für Bergbau, En-

ergie, und Geologie indicate that aquifers and aquitards are sandwiched and the aquitards

are discontinuous at regional scale. Thus, the assumption that the regional aquifer is un-

confined in the SWAT-MCA model is valid in this case. The dominant hydrogeological

layers of the underlying aquifer are aquifers of classes L3 to L6 according to the classifi-

cation given by Manhenke et al. (2001). This means that the hydraulic conductivity of

the underlying aquifers varies between 0.86 and 86.4 m/day.

Observed groundwater levels from 1980 to 2007 within and nearby the study areas

(Figure 3.5) were obtained from NLWKN. Groundwater levels were observed at different

time steps, from monthly to daily time steps. Linear-in-time interpolation was applied to

get daily groundwater levels at the boundary cells.

3.3.2 Spatial discretization

Figure 3.5 shows the spatial discretization of the surface and subsurface of the Wipperau

and Neetze basins. The Wipperau basin was divided into 8 subbasins and 221 HRUs,

whereas the Neetze basin was discretized into 12 subbasins and 213 HRUs. Discretization

of the subbasins into HRUs was not shown because HRUs are not easy to recognize

visually. The local aquifers within the two basins were delineated identically with the

delineation of their HRUs, resulting in 221 local aquifer units in the Wipperau basin and

213 local aquifer units in the Neetze basin. The regional aquifers of the Wipperau and the

Neetze basins were delineated into 33 and 26 cells, respectively, using Thiessen polygon

method with locations of the groundwater observation wells as cell’s centre.
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Figure 3.5: Delineation of the subbasin and the regional groundwater aquifer of (a) the

Neetze basin and (b) the Wipperau basin
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Chapter 3. Hydrological Connectivity in Porous Aquifers

3.3.3 Calibration and validation strategy

The SWAT and SWAT-MCA models were run for 32 years (1976–2007) with 4 years for

warm-up (1976–1979), 14 years for calibration (1980–1993), and 14 years for validation

(1994–2007). The regional groundwater module was activated after the warm-up period

with initial groundwater levels obtained from observed groundwater levels. By doing

that, the groundwater recharge is expected to be reasonably estimated when the regional

groundwater module is activated. Similar with Guzman et al. (2015), we first calibrated

and validated the original SWAT model against the observed streamflow to ensure that the

surface processes are adequately represented and the amount of groundwater recharge is

reasonably estimated. Parameters used for calibrating the original SWAT were selected on

the basis of the dominant conditions in the basin, sensitivity analysis, and literature review

of the most commonly used parameters (Arnold et al., 2013). The selected parameters

are shown in Table 3.3. Assuming the aquifer recharge is satisfactorily estimated by the

original SWAT, the best calibrated parameter values from the original SWAT model will be

kept unchanged during the calibration of the SWAT-MCA model, except the RCHRG DP,

GW DELAY, and ALPHA BF. In the SWAT-MCA model, RCHRG DP represents the

portion of groundwater recharge percolating to the regional aquifer. Parameters used for

calibrating the SWAT-MCA model are RCHRG DP, GW DELAY, ALPHA BF, K, SY ,

α, β, and Smin.

Daily streamflow at the basin outlet was used to calibrate and validate the original

SWAT model. To calibrate and validate the SWAT-MCA model, however, both time

series of observed daily streamflow at the basin outlets and observed groundwater levels

at active cells were used. As the numbers of subbasins and cells are small, calibration

of both models was performed manually by adjusting one parameter at a time until

satisfactory model performance is achieved.

The common parameters of the SWAT and SWAT-MCA models (Table 3.3) were

adjusted in the ranges suggested by Arnold et al. (2013) and other studies in lowland

basins in Germany (e.g., Kiesel et al., 2010; Uniyal et al., 2017), whereas K was varied

within the range mentioned in the previous section, from 0.864 to 86.4 m/day. SY was

varied between 0.5 and 0.3, which is the range for various geologic materials (Morris and

Johnson, 1967). The constant value of β = 2 was taken for all cells to represent the

non-linear behaviour of the baseflow as pointed out by other studies (e.g., Pfannerstill et

al., 2014a). Smin and α were varied cell to cell. It should be noted that for each active

cell, five parameters need to be calibrated (K, SY , Smin, α, and β). However, only one
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Table 3.3: Best calibrated parameter values of the original SWAT and SWAT-MCA models

Variables
Wipperau basin Neetze basin

SWAT SWAT-MCA SWAT SWAT-MCA

r CN2 -15% - -10% -

v SURLAG (days) 0.1 - 0.1 -

r SOL AWC (mm H2O) -20% - -15% -

r SOL K (mm/hr) -3% - -10% -

v RCHRG DP 0.75 0.86 0.15 0.45

v ALPHA BF (days) 0.15 0.25 0.2 0.2

v GW DELAY (days) 175 75 750 500

Note. “r ” and “v ” mean relative change and replacement of the default values, CN2 is the

SCS curve number for moisture condition II, SURLAG is the surface run-off lag coefficient in the

HRU, SOL AWC is available soil water content, SOL K is soil saturated hydraulic conductivity,

RCHRG DP is deep aquifer percolation coefficient, ALPHA BF is baseflow recession constant,

and GW DELAY is delay time for aquifer recharge. MCA = multicell aquifer; SWAT = soil

and water assessment tool.

parameter (K) needs to be calibrated for each boundary cell. With these parameters,

there could be a problem of equifinality because K and SY were varied in a wide range

and the actual return flow from the deep aquifer to stream is unknown.

Model performance in terms of simulated streamflow and simulated groundwater lev-

els was evaluated qualitatively and quantitatively. Qualitative evaluation of simulated

streamflow was based on time series plots and the flow–duration curve, whereas qualita-

tive evaluation of simulated groundwater levels was done on the basis of time series plots.

Quantitative evaluation of both simulated streamflow and groundwater levels was based

on three statistical indices: the Nash–Sutcliffe efficiency (NSE), the percent bias (PBIAS),

and the ratio of the root mean square error to the standard deviation of measured data

(RSR, Moriasi et al., 2007; Sun et al., 2016). In addition, the boxplot of the absolute

differences between observed and simulated groundwater levels was used to qualitatively

evaluate simulated groundwater levels. The logarithmic NSE (lnNSE) index was used to

quantitatively evaluate the quality of simulated low flow (e.g., Pushpalatha et al., 2012).

To enable the calculation of lnNSE, all time steps with zero values of streamflow were

excluded.
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3.4 Results and Discussion

3.4.1 Calibrated parameter values

The best calibrated parameter values of the original SWAT and SWAT-MCA models are

listed in Table 3.3. It is seen from this table that RCHRG DP was increased from 0.75

and 0.15 in the original SWAT model to 0.86 and 0.45 in the SWAT-MCA model. This

is because in the original SWAT model, more water needs to be stored in the shallow

aquifer to sustain adequate baseflow. In the SWAT-MCA model, however, baseflow is

sustained by both local and regional aquifers. Therefore, less water needs to be stored

in the local aquifer. In contrast, the best calibrated GW DELAY value was decreased

from 175 and 750 days in the original SWAT model to 75 and 500 days in the SWAT-

MCA model. The reason is that the GW DELAY value in the original SWAT model

should represent both fast flow and slow flow responses of the baseflow to precipitation.

In the SWAT-MCA model, the GW DELAY value was reduced to represent the fast flow

response of the baseflow. The slow flow response of the baseflow is controlled by α and

β of the regional aquifer. Additional parameters, which were used to calibrate the new

groundwater module of the SWAT-MCA model, and their best calibrated values were

varied within the ranges given in Section 3.3, except the best calibrated K values were

varied in a smaller range, from 1 to 40 m/day.

3.4.2 Overall water balance

Figure 3.1 provides a schematic representation of the overall water balance from the

calibrated SWAT-MCA model for the Wipperau and the Neetze basins. It clearly shows

that there is a substantial amount of groundwater flow out of the two study areas. Results

from both calibrated models show that (a) the simulated average annual groundwater

recharge in the Wipperau and the Neetze basins is 258 and 243 mm, respectively, (b)

a considerable amount of groundwater recharge, about 222 mm, in the Wipperau basin

percolates to the deep aquifer compared with only 109 mm in the Neetze basin, and (c)

the contribution of groundwater to streamflow (return flow) is dominant. About 71% and

84% of streamflow of the Wipperau basin and Neetze basin, respectively, are baseflow.

The simulated groundwater recharge in this study is lower than the observed percolation

at the lysimeter, but higher than the simulated value from Lemke et al. (2008). The

model currently underestimated irrigation demand compared with the reported values

from Riediger et al. (2014). The incorporation of crop species could be done to improve the
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estimation of irrigation water demand. The amount of baseflow is close to the estimated

values from the baseflow filter program (Table 3.2). In the original SWAT model, all

baseflow is from the shallow aquifer, whereas in the SWAT-MCA model, about 44% of

the baseflow of the Wipperau basin and 71% of the baseflow of the Neetze basin are from

the local aquifer and the rest is from the regional aquifer.

3.4.3 Stream discharge

Figure 3.6a,b shows the observed and simulated daily streamflow at the outlet of the Wip-

perau basin with the original SWAT model and the SWAT-MCA model, respectively. The

streamflow hydrographs were plotted in log scale to emphasize the quality of simulated low

flow because improvement in high-flow simulation is not the focus of this present study.

Visual assessment shows that low flows are poorly simulated with the original SWAT

model, whereas with the SWAT-MCA model, low flows are better simulated. For exam-

ple, simulated streamflow with the original SWAT sometimes dropped to zero, whereas

observed low flows during the respective periods were much higher (Figure 3.6a), which is

not observed with the SWAT-MCA model (Figure 3.6b). Better simulation of low flows

with the SWAT-MCA model is also shown in the flow–duration curve, where low flows are

underestimated with the original SWAT model (Figure 3.7), and in the lnNSE efficiency

(Table 3.4), where there is a significant improvement in the lnNSE with the SWAT-MCA.

The changes in NSE, PBIAS, and RSR indices between the two models are minor (Table

3.4) because these indices are more sensitive to high flows, which were underestimated

in both models (Figure 3.7). The medium range of streamflow values was overestimated

in both models (Figure 3.7). However, all statistical index values (Table 3.4) are within

the “satisfactory” range according to Moriasi et al. (2007), meaning that the SWAT and

SWAT-MCA models for the Wipperau basin were successfully calibrated against stream-

flow and the simulated groundwater recharge can be considered as reasonable.

Figure 3.6c,d shows the observed and simulated daily streamflow of the Neetze basin

with the original SWAT model and the SWAT-MCA model, respectively. Visual assess-

ment shows that there is no significant difference between simulated streamflow from the

original SWAT and the SWAT-MCA models. NSE and lnNSE values show that there are

only minor improvements of simulated streamflow with the SWAT-MCA model (Table

3.4). However, NSE, lnNSE, and RSR indices show that the SWAT and SWAT-MCA

models were less well calibrated against observed streamflow compared with Wipperau.

This could indicate that the surface processes were not sufficiently represented. Never-

55



Chapter 3. Hydrological Connectivity in Porous Aquifers

Observed Simulated

0.01

0.1

1

10

Q
m

3 /s

(a) Original SWAT (Wipperau basin)

0.01

0.1

1

10

Q
m

3 /s

(b) SWAT-MCA (Wipperau basin)

0.1

1

10

Q
m

3 /s

(c) Original SWAT (Neetze basin)

0.1

1

10

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

Time

Q
m

3 /s

(d) SWAT-MCA (Neetze basin)

0

1

2

3

Q
m

3 /s Observed Simulated

0.01

0.1

1

10

Q
m

3 /s

(a) Original SWAT (Wipperau basin)

0.01

0.1

1

10
Q

m
3 /s

(b) SWAT-MCA (Wipperau basin)

0.1

1

10

Q
m

3 /s

(c) Original SWAT (Neetze basin)

0.1

1

10

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

Time

Q
m

3 /s

(d) SWAT-MCA (Neetze basin)

Figure 3.6: Observed and simulated streamflows from (a, c) the original SWAT models and

(b, d) the SWAT-MCA model at the Oetzmühle (Wipperau basin) and Süttorf (Neetze

basin) gauging stations during 1980–2007. A portion of the semi-log plot was shown in

normal plot (a) to show that it is difficult to see the quality of the simulated low flow

with normal plot. SWAT = soil and water assessment tool; MCA = multicell aquifer
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Figure 3.7: Flow duration curves of the observed and simulated streamflows at the

Oetzmühle gauging station from the SWAT and SWAT-MCA models during 1980–2007.

SWAT = soil and water assessment tool; MCA = multicell aquifer

theless, the simulated groundwater recharge is considered as acceptable because of the

following reasons: (a) The annual simulated groundwater recharge of the Neetze basin is

similar with that of the Wipperau basin, (b) the Neetze and Wipperau basins are located

close to each other and have similar climate and physical characteristics (Table 3.2), (c)

the contribution of baseflow to streamflow in the Neetze basin is much larger than that

in the Wipperau basin. This could be an explanation why the simulated streamflow in

the Neetze basin is less satisfactorily calibrated than that in the Wipperau basin.

3.4.4 Groundwater levels

Figure 3.8a–c shows the time series plots of simulated and observed groundwater levels

with the NSE, PBIAS, and RSR indices and the boxplots of the absolute differences be-

tween observed and simulated groundwater levels. In these figures, observed groundwater

levels fluctuated quite smoothly without sudden increases and decreases, indicating that

observed groundwater levels in these cells were not or only minor affected by extraction

wells located nearby (Figure 3.5). Observed groundwater levels in other cells (Figure

3.9), however, were disturbed by extraction wells located nearby (Figure 3.5). This is

shown by the sudden increases and decreases in observed groundwater levels (Figure 3.9).

Therefore, only time series plots were used to evaluate simulated groundwater levels in

these cells.

Figure 3.8a illustrates that in cells where there are no sharp increases and decreases
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Figure 3.8: Time series

plots of the observed and simu-

lated groundwater levels during

1980–2007 and statistical in-

dices (Nash–Sutcliffe efficiency

[NSE], percent bias [PBIAS],

and ratio of the root mean

square error to the standard

deviation of measured data

[RSR]): (a) good match be-

tween observed and simulated

groundwater levels, (b) mis-

match between the time of oc-

currences of the high and low

groundwater levels between ob-

served and simulated ground-

water levels, and (c) well re-

produced of short- and long-

term groundwater fluctuations.

Boxplots of the absolute dif-

ferences between simulated and

observed groundwater levels are

attached to the right of the time

series plots
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Figure 3.8: Continued
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Table 3.4: Performance of the calibrated SWAT and SWAT-MCA model (in terms of

streamflow at the Oetzmühle and Süttorf gauging stations)

Oetzmühle station (Wipperau basin) Süttorf station (Neetze basin)

SWAT SWAT-MCA SWAT SWAT-MCA

NSE 0.62 (0.65) 0.64 (0.65) 0.50 (0.27) 0.46 (0.42)

lnNSE -0.07 (0.38) 0.63 (0.60) 0.38 (0.29) 0.39(0.46)

PBIAS 9.5 (-13.8) 2.8 (-11.8) 4.4 (-10.5) 8.7 (-3.8)

RSR 0.61 (0.59) 0.59 (0.60) 0.70 (0.86) 0.73 (0.76)

Note. According to Moriasi et al. (2007), model performance is considered as satisfactory if

NSE > 0.50, PBIAS < ±25%, and RSR < 0.7. Numbers outside parentheses indicate values

of the calibration period, whereas numbers inside parentheses indicate values of the validation

period. MCA = multicell aquifer; SWAT = soil and water assessment tool; NSE = Nash–Sutcliffe

efficiency; lnNSE = logarithmic NSE; PBIAS = percent bias; RSR = ratio of the root mean

square error to the standard deviation of measured data.
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Figure 3.8: Continued
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of the observed groundwater levels, the simulated groundwater levels match well with the

observed. Especially the long-term fluctuations are well reproduced by the SWAT-MCA

model. It is interesting to note that the quality of the simulated groundwater levels in

Cells 7 and 9 in the Neetze basin, which are located in the middle of the modelling domain,

is comparable with the simulated groundwater levels at other cells, which are neighbours

of boundary cells. The boxplots (which were attached to the right of the time series plots)

show that the third quartile varies from less than 0.2 to about 0.4 m, meaning that 75%

of the simulated groundwater level errors are within this range. The statistical indices

NSE, PBIAS, and RSR vary from -0.88 to 0.7, from -0.5% to 0.7%, and from 0.6 to 1.4,

respectively.

Figure 3.8b presents cells, where the observed groundwater levels fluctuate quite

smoothly similar to Figure 3.8a. Although the SWAT-MCA model here reproduces the

long-term fluctuations as well, the time of occurrence of the simulated low and high

groundwater levels mismatch with that of the observed. This problem could be due to

the delay time for groundwater recharge to reach the regional aquifer, which is controlled

by the GW DELAY parameter. The GW DELAY parameter was assigned as the same

value for both the local and regional aquifers. The boxplots (except the boxplots of Cells

10 and 11 in the Neetze basin) and the statistical indices (NSE, PBIAS, and RSR) also

indicate higher errors compared with that of the cells shown in Figure 3.8a. The boxplots

of Cells 10 and 11 in the Neetze basin show that the third quartile is quite small mainly

because the simulated and observed groundwater levels in these cells fluctuate in a narrow

range (less than 0.5 m).

Figure 3.8c shows a group of cells where variations of observed groundwater levels were

in a wider range and a shorter time compared with that of cells in Figure 3.8a,b. However,

results show that the SWAT-MCA model can reproduce both long-term (multiannual)

and short-term (annual) groundwater fluctuations quite well. For example, it is seen that

although observed groundwater levels in Cell 12 of the Wipperau basin varied more than 2

m, the time series plot of simulated groundwater levels is almost identical to the observed

and the third quartile is less than 0.2 m with NSE, PBIAS, and RSR are 0.9, 0%, and

0.3, respectively.

Figure 3.9 shows a group of cells, where observed groundwater levels in these cells

decrease and increase sharply within a short time period. This can be explained by

the effect of extraction wells for irrigation located nearby (Figure 3.5), which has not

been incorporated directly into the model. Depression cones cannot be simulated by the

SWAT-MCA model because of the model concept. The groundwater level is simulated
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Figure 3.9: Time series plots of the observed and simulated groundwater levels during

1980–2007 in cells that are strongly affected by the conesof depression of the extractions

wells located nearby
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for polygons, which are assumed to be homogenous and cover an area larger than a

depression cone from a single well. It is seen in these wells that the long-term fluctuations

were reproduced by the model; however, the short-term fluctuations cannot be reproduced.

Although the extracted amount of groundwater was incorporated into the model indirectly

by activating auto irrigation, however, the effect of extracted water for irrigation on the

simulated groundwater level is weakened because the cell size is large.

3.5 Conclusion and Recommendations

In this study, the SWAT model was modified to account for regional groundwater flow by

replacing the deep aquifer with an MCA, resulting in the SWAT-MCA model. SWAT-

MCA was tested in two basins in Niedersachsen, Germany. Results showed that SWAT-

MCA is able to simulate groundwater levels (which was previously impossible with

the original SWAT model) and baseflow better than the original SWAT model. The

SWAT-MCA model (a) requires less input data regarding the subsurface than fully dis-

tributed groundwater models (e.g., MODFLOW), (b) is computationally efficient due

to its semidistributed characteristic (using big cell size), and (c) is simple and easy to

use. The delineation of the regional aquifer and the flow direction between these aquifers

units with the SWAT-MCA model are flexible. The delineation of the regional aquifer

does not necessarily have to follow HRU or basin delineation and flow direction between

the aquifer units is automatically defined by hydraulic gradient. If a dense network of

groundwater observation wells is not available, SWAT-MCA can work with even a single

cell with given boundary conditions, but the advantage over the original SWAT is min-

imal. The SWAT source code is open and available for download via its official website

(http://swat.tamu.edu/). Additional source codes from the SWAT-MCA model could be

also provided upon request.

In this study, model calibration was done against observed daily streamflow and

groundwater levels. More advanced calibration and evaluation techniques could be ap-

plied to improve the model performance by including more constraints and criteria (Yilmaz

et al., 2008), for example, satellite-based soil moisture and evapotranspiration products

(López et al., 2017), and by applying signature metrics (Pfannerstill et al., 2014b; Pokhrel

et al., 2012).

Further works with the SWAT-MCA model are suggested to overcome its limitations.

At the present, the SWAT-MCA model is only applied to areas with porous and unconfined

aquifers. Discretization of cells with the MCA model can be more flexible. Cells could have
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a rectangular shape while representing any subsurface reservoir with equivalent storage

and hydraulic conductivity. Although the SWAT-MCA model cannot capture drawdown

cones at individual pumping wells because of the large cell size, reducing the cell size and

having more data about the pumping well could solve this problem. However, it should

be noted that this is not the objective of the MCA model, which is developed to use a

small number of cells in order to make a clear difference with fully distributed subsurface

models (Bear, 1979). In addition, the interaction between the regional aquifer and the

river in the SWAT-MCA was simplified using a conceptual non-linear storage–discharge

relationship. A more physically based approach, which is based on the hydraulic head in

the river and the underlying aquifer, could be used to model the aquifer–river interactions.

However, it should be noted that increasing the model complexity could require more

computational time and input data and a more complex model does not always guarantee

better performance.
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Abstract

Karstification is considered as one of the most common reasons for interbasin groundwater

flow (IGF). IGF in some karst areas could be significant such that it must be accounted

for in hydrologic modeling. In this study, the Soil and Water Assessment Tool (SWAT)

was modified to explicitly account for IGF in karst areas. The modified model uses two

conceptual models to simulate hydrologic processes in karst and non-karst regions. The

modified model was applied in the karst-dominated region in the southwest Harz Moun-

tains, Germany. Multisite streamflow data and satellite-derived actual evapotranspiration

(ETa) were used for model calibration. Results show that (1) the modified model can be

satisfactorily calibrated and validated for streamflow and ETa (2) the model performance

for ETa and streamflow at some gauging stations are highly correlated, and (3) the use

of satellite-derived ETa does not affect the model performance.
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Software availability

Name of software: SWAT IGF

Developer and contact address: Van Tam Nguyen (nguyen@iww.uni-hannover.de),

Institute of Hydrology and Water Resources Management, Leibniz Universität Han-

nover, Appelstraße 9A, 30167 Hannover, Germany

Year available: 2019

Availability and cost: the source code is freely available at http://doi.org/10.

5281/zenodo.3574312

Language: Fortran

4.1 Introduction

The term “karst” refers to a region with distinct landscape features (e.g., sinking streams,

sinkholes, and springs) and underground features (e.g., underground conduits and caves).

In some karst regions, the karst landscape features could be absent or subtle, but their

aquifers could be heavily karstified (Ford and Williams, 2007). Karst aquifers are devel-

oped as a result of the dissolution of karstifiable rocks (e.g., limestone, dolomite, gypsum,

and rock salt), the so-called karstification (Bögli, 1980; Ford and Williams, 2007; Howard,

1963). Karst aquifers account for about 10% to 15% of the continental area and karst

groundwater is one of the sources of drinking water for approximately a quarter of the

world’s population (Ford and Williams, 2007). However, karst groundwater is particularly

vulnerable to contamination due to their distinct hydrogeologic characteristics (Doerfliger

et al., 1999; Drew and Hötzl, 1999; Goldscheider, 2005). Therefore, understanding the

hydrogeologic characteristics of karst aquifers plays an important role in water resources

management in karst regions.

Hydrogeologic characteristics of karst aquifers are different from other aquifers

(Bakalowicz, 2005). Karst aquifers often exhibit a duality of recharge, infiltration, poros-

ity, flow and storage (Goldscheider and Drew, 2007; Gun, 1986; White, 2002). Karst
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aquifers also show a high degree of spatial heterogeneity in hydraulic properties (Bonacci

et al., 2006). Especially, the surface drainage basin in karst aquifers usually does not

coincide with the groundwater basin (Dar et al., 2014; Spangler, 2001). Karstification is

considered as one of the most common causes of interbasin groundwater flow (IGF) (Le

Moine et al., 2007). Water recharged to karst aquifers could flow through an underground

conduit system spanning over several basins and emerge at springs located at distant

sites (e.g., Anderson et al., 2006; Belcher et al., 2006; Le Moine et al., 2008). It should

be noted that IGF could also occur in porous aquifer in the form of regional groundwater

flow (Danapour et al., 2019; Nguyen and Dietrich, 2018; Tóth, 1963), however, in this

study we focus on IGF in karst areas. The term IGF in this study could be also un-

derstood as regional groundwater flow across surface topographic divides. IGF in karst

areas could significantly alter the water budget of a basin (e.g., Anderson et al., 2006;

Le Moine et al., 2008). Considering the aforementioned facts, IGF in karst areas should

be accounted for in hydrological modeling, especially in the context of transboundary or

interbasin groundwater management.

Various models have been used to simulate IGF in karst aquifers with varying model

complexity, ranging from physically based distributed to conceptual lumped models.

Physically based distributed models simulate groundwater flow based on hydraulic head

gradient, therefore, groundwater could flow across topographic divide units, which are nor-

mally considered as isolated groundwater units in surface hydrology. Conceptual models

can simulate IGF by allowing the simulation (or routing) of groundwater flow between

topographical basins. Some models of these types are the Modular Three-Dimensional

Finite-Difference Ground-Water Flow Model (MODFLOW, Scanlon et al, 2003), the

modified WetSpa model (Liu et al., 2005), the modified Soil and Water Assessment Tool

(SWAT, Arnold et al., 1998; Malagó et al., 2016; Nerantzaki et al., 2015; Palanisamy and

Workman, 2014), modèle du Génie Rural à 4 paramètres Journalier (GR4J, Le Moine

et al., 2007, 2008; Perrin and Michel, 2003), the tank model (Anaya and Wanakule, 1993),

and the multi-cell aquifer model (Barrett and Charbeneau, 1997; Rozos and Koutsoyian-

nis, 2006). SWAT is one of the most widely-used models to simulate the effect of land

use, agricultural management practices and climate change on water and chemical yields

in non-karst areas (Arnold et al., 2005; Gassman et al., 2007; Krysanova and White, 2007;

Molina-Navarro et al., 2017). Therefore, the modified SWAT versions which account for

IGF in karst areas could potentially help to explore these effects in karst regions.

The aforementioned modified SWAT models, the so-called KarstSWAT (Palanisamy

and Workman, 2014) and KSWAT (Malagó et al., 2016; Nerantzaki et al., 2015), simulate
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IGF in karst regions. The KarstSWAT model was specifically developed for watersheds

dominated by sinkholes and springflow, which is mainly fed by the water from sinkholes

(Palanisamy and Workman, 2014). The KSWAT model combines the adapted SWAT

model (Fig. 3, Malagó et al., 2016) and the karst-flow model (Nikolaidis et al., 2013). The

adapted SWAT model assumes that all water entering the soil profile is karst groundwater

recharge (Fig. 3, Malagó et al., 2016). However, part of the infiltrated water could

contribute to the streamflow as lateral flow and baseflow if the underlying aquifer of

a subbasin is not entirely a karst aquifer (e.g., Palanisamy and Workman, 2014). The

adapted SWAT model does not differentiate between concentrated recharge and diffuse

recharge. The karst-flow model is the two-linear-storage reservoir model, which receives

the recharge simulated from the adapted SWAT model (or from the original SWAT model,

Nikolaidis et al., 2013) and routes it to spring. Outflows from the two reservoirs of the

karst-flow model represent flow from wide conduits and narrow fractures (Kourgialas

et al., 2010; Malagó et al., 2016). Because of the lumped feature of deep recharge from

the adapted SWAT model, the KSWAT model does not explicitly differentiate between (1)

the diffuse recharge and concentrated recharge, (2) between matrix storage and conduit

storage. This is important because these recharges and storages are different in terms of

travel time and storage. In addition to the aforementioned disadvantages, the recharge

area of the karst aquifer in the KarstSWAT and KSWAT models follows the subbasin

delineation of SWAT.

In addition to the model development, parameter identification in karst regions is also

subject to higher uncertainty compared to other regions (Brenner et al., 2018; Hartmann

et al., 2017, 2013). This is because the karst aquifer is highly heterogeneous and the upper

flux (actual evapotranspiration, ETa) and the lower flux (karst groundwater recharge) are

usually unknown. In order to develop a robust model and to minimize the parameter

uncertainty, especially in karst regions, multi-variable calibration is suggested. ETa is one

of the main components of the hydrologic cycle. About 60% of the annual precipitation

on the global land surface returns to the atmosphere as evapotranspiration (Jung et al.,

2010; Oki and Kanae, 2006). Considering the aforementioned facts, observed ETa should

be used for calibrating the model. However, direct observation of ETa is very scarce.

In non-karst areas, many studies have used satellite-derived ETa for model calibration

(e.g., Droogers et al., 2010; Franco and Bonumá, 2017; Immerzeel and Droogers, 2008;

Muthuwatta et al., 2009; Rajib et al., 2018; Rientjes et al., 2013; Vervoort et al., 2014;

Zhang et al., 2009). In these studies, satellite-derived ETa was either used as an indepen-

dent calibration data set or as input data. Results showed that the model performance for

74



Chapter 4. Hydrological Connectivity in Karst-dominated Aquifers

streamflow could decrease when constraining model calibration with satellite-derived ETa

as an additional variable (Vervoort et al., 2014). However, the above-mentioned studies

showed that using satellite-derived ETa in combination with observed streamflow for cali-

brating a hydrologic model could (1) better reproduce the catchment’s water balance, (2)

reduce the parameter uncertainty, (3) increase the model robustness, and (4) detect the

structural model issues. In karst areas, the use of satellite-derived ETa as an additional

calibration variable has not been given enough attention.

In this study, we developed a conceptual model which is able to (1) simulate surface and

subsurface flows in both karst and non-karst areas, (2) apply for a region where the karst

aquifer boundaries do not coincide with the surface subbasin boundaries, and (3) repre-

sent different recharges (diffuse recharge and concentrated recharge) and storages (matrix

storage and conduit storage) in karst areas. The proposed concept was implemented in

the SWAT model. The modified SWAT model was tested in the karst-dominated area in

Lower Saxony, Germany. The effects of using satellite-derived ETa for model calibration

on the model performance was examined in detail. The Moderate Resolution Imaging

Spectroradiometer (MOD16 ETa, Mu et al., 2013) was used for the model calibration.

4.2 Methodology

4.2.1 The original SWAT model

In SWAT, a basin can be divided into subbasins, which are further divided into Hydro-

logic Response Units (HRUs). HRUs are created by lumping all areas having the same

combination of land use, soil type and slope within a subbasin. The HRU concept is

computationally efficient while incorporating the aforementioned landscape properties.

SWAT simulates two phases of the hydrologic cycle, the land phase and the routing

phase. The land phase includes HRU-related processes such as surface processes (e.g.,

evapotranspiration, surface runoff, vegetation-related processes) and subsurface processes

(e.g., percolation, lateral flow, groundwater recharge, return flow) (Fig. 4.1A). The rout-

ing phase includes stream-related processes (e.g., flood routing, nutrient transport) and

reservoir routing. In SWAT, groundwater recharge is partitioned into shallow and deep

aquifer recharge. Recharge into the shallow aquifer ultimately returns to stream as base-

flow while recharge into the deep aquifer is considered as a loss. SWAT is not capable of

simulating groundwater flow between HRUs (or subbasins) due to the non-spatial char-

acteristic of the HRU concept. A more detailed description of the SWAT model is given
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by Neitsch et al. (2011).

4.2.2 The modified SWAT model for IGF

In this section, after a summary of the general hydrogeologic characteristics of karst areas,

the modified SWAT for karst areas is presented. The modified SWAT model for modeling

IGF, hereafter referred to as the SWAT IGF model, is comprised of two conceptual models.

The original conceptual model of SWAT is applied for non-karst areas (Fig. 4.1A) while

modified conceptual model of SWAT is applied for karst areas (Fig. 4.1B). The two

conceptual models were combined into a single program, resulting in a single executable

file. An aquifer classification map is used as an additional criterion for the delineation of

HRUs (Fig. 4.3C). This aquifer classification map contains information about the aquifer

type and the extended recharge area of each spring. Then, the SWAT IGF will assign

the appropriate conceptual model for the karst and non-karst HRUs automatically (Fig.

4.3C) and recharge from the extended karst area will be routed to the corresponding

spring. The user needs to assign the amount of recharge to each spring (in case multiple

springs are fed by the same recharge area).

Recharge into the karst aquifer could either be classified as (1) autogenic or allo-

genic recharge or (2) concentrated or diffuse recharge (Ford and Williams, 2007; Gun,

1986; Taylor and Greene, 2008). Autogenic recharge originates from precipitation falling

on the karst areas while allogenic recharge originates from runoff on non-karst areas.

Concentrated recharge can occur via sinkholes, losing streams, closed depressions, and

well-developed fissures. Diffuse recharge is a areal recharge through the unsaturated soil

zone. Recharge into the karst aquifer is often drained by a well-developed solution-conduit

system and discharged via one or several springs. Flow in the conduit is often fast and

turbulent while flow in the rock matrix is slow and laminar (Hartmann et al., 2014; White,

2002). However, the majority of karst groundwater is stored in the rock matrix. Due to

the fast flow and small storage of the conduit system compared to that of the rock matrix,

the response of discharge to recharge from the conduit system is often faster than that

from the matrix storage.

In this study, the SWAT IGF is proposed for the cases where (1) the recharge area

and discharge points (springs) are located in different subbasins and (2) the discharge

points are located in one subbasin. Further modifications could be done for other cases.

A two-reservoir model is proposed to represent the duality of and storage and discharge of

the karst area (Fig. 4.1B). The first reservoir, hereinafter referred to as the matrix storage
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1Figure 4.1: Conceptual models of the SWAT IGF model. (A) the conceptual model for

the non-karst area (the original conceptual model of SWAT), (B) the conceptual model for

the karst area (modified from SWAT). Qsurf is the surface runoff, Qlat is the lateral flow,

wrevap is the groundwater revap, wrshallow and wrdeep are the shallow and deep groundwater

recharge, respectively, other variables were described in text.
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reservoir, represents groundwater storage in the rock matrix. The matrix storage reservoir

receives diffuse recharge from the overlying zone. The second reservoir, hereinafter referred

to as the conduit storage reservoir, represents groundwater storage in the conduit system.

The conduit storage reservoir receives (1) concentrated recharge from closed depressions,

infiltration losses from streams, fractures and dolines and (2) diffuse discharge from the

matrix storage reservoir. It should be noted that there could be flow from the conduit

storage reservoir to the matrix reservoir (e.g., Screaton et al, 2004), however, it is not

explicitly considered in this study. We consider flow from the matrix to the conduit as

net flow, which already takes into account flow from the conduit to the rock matrix.

Diffuse recharge from the bottom of the soil profile to the matrix storage reservoir on

day i, taking into account the delay time in the unsaturated zone, is calculated using the

exponential decay weighting function (Sangrey et al, 1984; Venetis, 1969):

wrd,i = (1 − e−1/δgw) · β · wseep,i + e−1/δgw · wrd,i−1 (4.1)

where wrd,i and wrd,i−1 (mm H2O) is the amount of diffuse recharge to the matrix reservoir

on day i and i− 1, respectively, δgw (days) is the delay time for infiltrated water to reach

the matrix storage reservoir, β (-) is the recharge separation factor, ranging from 0 to 1,

wseep (mm H2O) is the total amount of water exiting the bottom of the soil profile on day

i.

Outflow from the matrix storage reservoir is simulated using the linear storage-

discharge relationship (e.g., Neitsch et al., 2011; Nikolaidis et al., 2013):

Qmatrix,i = e−αmatrix·∆t ·Qmatrix,i−1 + (1 − e−αmatrix·∆t) ·
nhrus∑
j=1

wrd,i,j · aj · 10−3 (4.2)

where Qmatrix,i and Qmatrix,i−1 (m3 H2O) are the outflows from the matrix storage reser-

voirs on day i and i−1, respectively, αmatrix (1/day) is the recession constant of the matrix

storage reservoir, respectively, ∆t is the time step (∆t = 1 day), wrd,i,j (mm H2O) and aj

(m2) are the diffuse recharge and area of the hydrologic response unit j, respectively, 10−3

is the unit conversion factor (from mm H2O to m H2O), nhrus is the number of HRUs in

the recharge area.

Concentrated recharge from closed depressions, fractures, and sinkholes to the conduit

storage reservoir on day i, wrc,i (mm H2O), is calculated as follows:
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wrc,i = (1 − β) · wseep,i (4.3)

The total amount of recharge to the conduit storage reservoir on day i, Wrconduit,i (m3

H2O), is expressed as follows:

Wrconduit,i =
nhrus∑
j=1

wrc,i,j · aj · 10−3 + rttlci +Qmatrix,i (4.4)

where rttlci (m3 H2O) is the mount of recharge from losing streams on day i. Outflow from

the conduit storage reservoir is simulated using the linear storage-discharge relationship:

Qconduit,i = e−αconduit·∆t ·Qconduit,i−1 + (1 − e−αconduit·∆t) ·Wrconduit,i (4.5)

where Qconduit,i and Qconduit,i−1 (m3 H2O) are outflows from the conduit storage reservoir

on day i and i − 1, respectively, αconduit (1/day) is the recession constant of the conduit

storage reservoir.

The total runoff of a basin where the springs are located, Qriver,i (m3 H2O), is calcu-

lated as follows:

Qriver,i = Qconduit,i +Qdirect,i (4.6)

where Qdirect,i (m3 H2O) is the direct runoff (the sum of surface runoff and lateral flow)

from the basin where the spring is located.

It should be noted that the conduit and matrix reservoirs proposed in this study

correspond to the upper and lower reservoirs of the karst-flow model (Nikolaidis et al.,

2013), respectively. The conduit and the matrix reservoirs are arranged in series while the

upper and lower reservoirs are arranged in parallel. The lower reservoir receives recharge

from the upper reservoir while the conduit receives recharge from the matrix reservoir.

Springflow in the karst-flow model is directly fed by the upper and lower reservoirs while

it is only directly fed by the conduit reservoir in the SWAT IGF model. Outflows from

both reservoirs in both models are simulated using a linear storage-discharge relationship.
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4.3 Case Study

4.3.1 Study area and data

The study area is located in the southwest Harz Mountains (non-karst area) and the

southern Harz rim (karst-dominated area) in Northern Germany with a drainage basin of

about 384 km2 (Fig. 4.2). The study area has two outlets located at the Rhume spring and

Lindau gauging stations. The study area receives inflow from the Odertalsperre reservoir.

The Digital Elevation Model (DEM) obtained from the Niedersächsische Landesbetrieb

für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) shows that the elevation of

the study area varies from 142 m to 929 m above mean sea level (a.m.s.l). Land use/land

cover (LULC) map was taken from the Copernicus Land Monitoring Service. The soil

map (BÜK 200) and soil profile data were obtained from the Bundesanstalt für Geowis-

senschaften und Rohstoffe (BGR) (Fig. 4.3). Initial soil hydraulic conductivity and soil

available water content were derived by using the pedotransfer functions/tables (Wessolek

et al., 2009). The dominant land use/land cover classes are forest and agricultural, ac-

counting for about 55% and 31% of the study area, respectively. The most dominant soil

type in the southwest Harz Mountains is spodic Cambisols from acid igneous and meta-

morphic rocks, covering 46% of the study area. In the southern Harz rim, most of the

soils were developed from gypsum with low water-holding capacity (Schnug et al, 2004).

Observed groundwater level data at three wells located within and nearby the Pöhlder

Becken were collected from the NLWKN (Fig. 4.2).

Daily weather data (precipitation, wind speed, temperature, solar radiation, and rel-

ative humidity) from 1997-2010 were obtained from Deutscher Wetterdienst (DWD).

Weather data from observed stations were interpolated for all subbasins using the inverse

distance weighting (IDW) method. The study area has an average annual precipitation of

1242 mm/yr with high spatial variability. The annual precipitation is up to 1619 mm/yr

in the southwest Harz Mountains, whereas that in the southern Harz rim is 862 mm/year.

Temperature in the study area decreases with an increase in elevation. Daily observed

streamflow and reservoir outflow were obtained from the NLWKN and the Harzwasser-

werke (HWW). The MOD16 ETa at 8-day time step and 1 km2 spatial resolution was

downloaded using the MODISTools (Tuck et al., 2014).
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Figure 4.2: The study area with the Digital Elevation Model.
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4.3.2 Geology

The study area consists of two distinct geologic areas, the southwest Harz Mountains

and the southern Harz rim (Grimmelmann, 1992). The Harz Mountains were part of

the European Variscan fold belt formed by the collision of Africa, Baltica, Laurentia

and other microplates in the early Paleozoic Era (Haggett, 2002; Tait et al., 1997). The

Harz Mountains were later eroded and a large part of it was inundated by the Zechstein

Sea (Haggett, 2002; Koster, 2005). Under hot and dry climatic conditions of the late

Permian period, a large amount of evaporites was formed in the inundated area after

several evaporation cycles (Böttcher, 1999; Kramm and Wedepohl, 1991; Schnug et al,

2004; Taylor, 1998; Tucker, 1991).

After other geologic processes, the underlying geology of the southern Harz Mountains

nowadays mainly consists of Palaeozoic greywacke, shale, and conglomerate (Fig. 4.4)

while in the southern Harz rim, the Permian Zechstein (dolomite, gypsum, anhydrite)

was exposed to the surface and subjected to the karstification process (Böttcher, 1999;

Paul and Vladi, 2001; Schnug et al, 2004; Voigt et al., 2008). There is a 2- to 6-km-

wide strip of exposed Permian Zechstein in the southern Harz rim with various karst

features such as sinking streams, sink holes, caves, and springs (Liersch, 1987). The

karst area in this region is subjected to a continuous karstification process. About 7092

tons of sulfur bound to gypsum are washed from this karst-dominated area each year

(Herrmann, 1969; Schnug and Haneklaus, 1998). Geological cross-sections in the area

show that the Permian Zechstein rocks are exposed to the surface near the southern Harz

rim and overlaid by non-karstifiable rocks in the south. At the Oder and Sieber rivers,

it was overlaid by a Quaternary fluvial deposit layer originated from the Harz Mountains

(Fig. 4.4). Detailed geologic maps and geologic cross-sections of the study area can be

found in Herrmann (1969), Grimmelmann (1992), Liersch (1987), Voigt et al. (2008), and

NIBIS R©Kartenserver (http://nibis.lbeg.de/cardomap3/?TH=647).

4.3.3 Hydrogeology

The main Rhume spring outlet is located in a NW-SE trending fault, where flow in the

underground conduit of the Zechstein deposits is blocked by a low permeability Lower

Buntsandstein stratum (Herrmann, 1969; LaMoreaux and Tanner, 2001). Besides the

main outlet with a diameter of about 20 m, there are about 360 small outlets located

nearby (Herrmann, 1969). They altogether release an average discharge of about 2.2 m3/s

via a small stream with a minimum of 1.5 m3/s during low flow periods. This indicates
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Figure 4.4: Geological map of the study area (BGR). Location of the faults and different

types of streams were identified according to Thürnau (1913) and Grimmelmann (1992).

More information about the geological cross-section could be found in Grimmelmann

(1992).
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that there could be a relatively big subsurface matrix storage in the area compared to

the Rhume spring subbasin. The sum of discharge from the main Rhume spring outlet

and its neighboring outlets is hereafter referred to as the Rhume spring discharge. Many

studies have been conducted to explain the origin of the water from the Rhume spring

discharge since the early 20th century.

Thürnau (1913) conducted tracer tests with Uranine and found that the infiltrated

tracers from the area in the southern Harz rim, which were later known as the Pöhlder

Becken, reappears at the Rhume spring (Fig. 4.2). Thürnau (1913) was also able to

determine the main losing streams (Fig. 4.4) in the Pöhlder Becken as well as the travel

time of tracers from the infiltration points to the Rhume spring. Haase et al. (1970)

analyzed the water balance in the study area and found that there are significant infil-

tration losses in the Sieber and Oder rivers. In 1981, another tracer tests with about 12

kg of Uranine were carried out at sinkholes near Herzberg (Liersch, 1987). The injected

tracers were detected at the Rhume spring about 78 hours after the injection and were

almost undetectable after 25 days. From this experiment, a flow path of about 7500 m

and a horizontal groundwater flow velocity of over 100 m/h were estimated (LaMoreaux

and Tanner, 2001). A three-reservoir storage model was proposed to explain the break-

through curve of tracer concentration at the Rhume spring (Liersch, 1987). Rienäcker

(1987) found that the time-lag between peak discharges of the Sieber (at Hattorf gauging

station), of the Oder (at Scharzfeld gauging station) and the Rhume spring varies between

24 to 72 hours, depending on the existing groundwater reservoir storage level. Results

from various geophysical and tracer experiments showed that infiltrated water from the

Pöhlder Becken, hereinafter referred to as the recharge area of the Rhume spring (Fig.

4.2), and transmission losses of the rivers located in this area are the main sources of the

Rhume spring discharge (Goldmann, 1986; Liersch, 1987).

The recharge area of the Rhume spring receives allogenic recharge from upstream sub-

basins via a connected river network in the area. In addition, it also receives groundwater

inflow from the southwest Harz Mountains. However, the estimated amount is negligible,

< 0.03 m3/s (Grimmelmann, 1992). The estimated contribution of flow from the Rhume

basin (with an area of 8 km2) is about 4% of the Rhume spring discharge. About 96% of

the Rhume spring discharge is from IGF, of which about 60% originates from the infiltra-

tion loss of the Oder and Sieber rivers (Goldmann, 1986; LaMoreaux and Tanner, 2001;

Liersch, 1987). Therefore, the original SWAT IGF should be used instead of the original

SWAT to explain 96% of the flow volume at the Rhume spring.
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4.4 Model setup, calibration and validation

4.4.1 Model setup

The study area was divided into 26 subbasins and 1094 HRUs based on LULC, soil, DEM

and aquifer map (Fig. 4.3). The thresholds for defining HRUs were set to zero to include

all of the basin landscape. The SWAT IGF model uses the conceptual model presented

in Fig. 4.1A for the southwest Harz Mountains and the conceptual model presented in

Fig. 4.1B for the southern Harz rim (Fig. 4.3C). Infiltration losses (wseep) and river

transmission losses (rttlc) from the karst area located outside the recharge area of the

Rhume spring were considered as losses from the hydrologic system. The model was set

to run for the period of 14 years (from 1997 to 2010) with 3 years of warm-up (1997-

1999), 6 years of calibration (2000-2005), and 5 years of validation (2006-2010) at a daily

time step. In order to have a comparable result with MOD16 ETa, the Penman-Monteith

method (Allen, 1986; Allen et al., 1989; Monteith, 1965) (which was used for deriving

MOD16 ETa) was used for calculating evapotranspiration in SWAT IGF.

4.4.2 Calibration and validation strategy

In this study, the Sequential Uncertainty Fitting (SUFI-2) in the SWAT-Calibration and

Uncertainty Programs (SWAT-CUP) was used for parameter sensitivity, model calibra-

tion, validation and uncertainty analysis (Abbaspour, 2013; Abbaspour et al, 2007, 2004).

The selected parameters and their initial ranges (Tab. 4.1) were chosen based on local

expertise and literature review (Arnold et al., 2012; Lam et al., 2012; Maier and Diet-

rich, 2016; Nguyen and Dietrich, 2018; Rajib et al., 2018; Uniyal et al., 2017; White and

Chaubey, 2005). Global sensitivity analysis was used to identify the important influencing

factors and to reduce the number of parameters for model calibration. SUFI-2 uses mul-

tiple regression and t-test to identify the relative sensitivity of each parameter. Within

this approach, a higher absolute value of t-stat and a smaller p-value indicate a higher

sensitivity of the parameter (Abbaspour et al, 2018).

Several multi-criteria objective functions were proposed and tested. The following

form of the multi-criteria objective function was found to be appropriate for this study:

OF = max
(w1 ·

∑5
i=1NSEQi

+ w2 ·NSEQLindau
+ w3 ·NSEQRhumespring

+ w4 ·NSEETa
5 · w1 + w2 + w3 + w4

)
(4.7)
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where OF is the multi-criteria objective function, NSEQi
is the Nash-Sutcliffe efficiency

(Eq. 4.8, Nash and Sutcliffe, 1970) for streamflow at five streamgauging stations in-

side the catchment (Hattorf, Scharzfeld, Herzberg, Kupferhütte, and Pionierbrücke),

NSEQLindau
, NSEQRhumespring

and NSEETa are the NSE for streamflow at the catchment

outlets (Rhume spring and Lindau gauging stations) and the NSE for ETa, respectively, w

is the weight. For sensitivity analysis, the weights in the objective function were assigned

as follows: w1 = 1, w2 = 5, w3 = 5, w4 = 5. Therefore, the model performances for

streamflow at the Lindau, Rhume spring, five aforementioned gauging stations inside the

catchment, and for ET are considered equally important in the objective function.

Table 4.1: Selected parameter for sensitivity analysis and sensitivity ranking

Parameter Initial range Description Ranking

Surface runoff and channel processes

1) CN2 [-0.25, 0.25] SCS runoff curve number 1

2) SURLAG [0.05, 10] Surface runoff lag time (days) 15

3) SOL K [-0.2, 0.2] Soil hydraulic conductivity (mm/h) 18

4) SOL AWC [-0.2, 0.2] Soil available water capacity 6

5) CH K2(sub4−6,19,21,26) [1, 15]
Riverbed hydraulic conductivity (mm/h)

3

6) CH K2(sub9,11,13) [10, 40] 2

Evapotranspiration and plant water uptake

7) ESCO [0, 1] Soil evaporation compensation factor 7

8) EPCO [0, 1] Plant uptake compensation factor 13

9) REVAPMN [0, 500] Threshold for groundwater revap to occur 5

Snow fall and snow melt

10) SFTMP [-1.5, 1] Snowfall temperature (T ◦C) 9

11) SMTMP [0, 3] Snowmelt base temperature (T ◦C) 8

12) TIMP [0, 1] Snowpack temperature lag factor 4

Groundwater and karst processes

13) GW DELAY [1, 9] Groundwater delay (days) 21

14) GWQMN [0, 1000] Threshold for return flow to occur 12

15) ALPHA BF [0, 1] Baseflow recession constant 10

16) RCHRG DP(sub15) [0, 1]

Deep aquifer percolation factor

15

17) RCHRG DP(sub24) [0, 1] 17

18) RCHRG DP(sub10,12,14) [0, 1] 11

19) β [0.7, 0.9]

Karst parameters

19

20) αconduit [0.05, 0.015] 16

21) αmatrix [0.002, 0.003] 20

CN2, SOL K, and SOL AWC are changed by relative change, all other parameters are changed by

replacing.

All parameters are changed at the basin scale except otherwise mentioned (e.g., sub9,11,13 means

changes are only applied to subbasins 9, 11, and 13.
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Table 4.2: List of calibration scenarios and the corresponding weights in the objective

function

Scenario Calibrated variable Weight values in the objective function

S1 Only QRhumespring w1 = 0, w2 = 0, w3 = 5, w4 = 0

S2 All Q w1 = 1, w2 = 5, w3 = 5, w4 = 0

S3 All Q and ETa w1 = 1, w2 = 5, w3 = 5, w4 = 5

Three calibrations scenarios were carried out with an increase in the number of cal-

ibrated variables from calibration scenarios S1 to S3 (Tab. 4.2). If a variable is not

calibrated, its corresponding weight in the objective function is set to zero (Tab. 4.2).

The objective of these calibration scenarios is to examine the effects of using multi-site

streamflow and MOD16 ETa for model calibration on the model performance. For model

calibration, 1000 parameter sets were generated using Latin hypercube sampling. These

parameter sets were used for all three calibration scenarios.

Although only the NSE was considered in the objective function, the Kling-Gupta

efficiency (KGE, Gupta et al., 2009) and percent bias (PBIAS) was also calculated for

the best simulation as follows:

NSE = 1 −
∑n
i=1(xobsi − xsimi )2∑n
i=1(xobsi − x̄obs)2

(4.8)

KGE = 1 −
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (4.9)

PBIAS(%) = 100 ·
∑n
i=1(xobsi − xsimi )∑n

i=1 x
obs
i

(4.10)

where xobsi and xsimi are the observed and simulated values, respectively, at time step i,

x̄obs is the mean of observed values, n is the number of simulated values, r is the linear

regression coefficient between observed and simulated values, α (β) is the ratio of standard

deviation (mean) of observed over standard deviation (mean) of simulated values.

In SUFI-2, parameter uncertainty, which is represented as a uniform distribution,

integrates all types of uncertainties (e.g., uncertainty in input data, model concept, model

parameter, and measured variables). All of these uncertainties ultimately propagate into

the model output uncertainty, which is expressed by the 95% prediction uncertainty band

(95PPU). The p-factor (the percentage of measured data bracketed by the 95PPU band)
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and r-factor (the average thickness of the 95PPU band divided by the standard deviation

of the measured data) are used to characterize the 95PPU band (Abbaspour et al, 2018).

4.5 Results and discussion

4.5.1 Sensitivity analysis and best calibrated parameter set

Tab. 4.1 shows the results of global sensitivity analysis for 21 model parameters. Pa-

rameter sensitivity ranking was based on the values of t-stat and p-value. It is seen that

CN2 is the most sensitive parameter. This indicates that streamflow, karst groundwater

recharge, and evapotranspiration are strongly affected by the surface runoff generation

process. The parameter CH K2 (riverbed hydraulic conductivity) is listed among the

most sensitive parameters. This is because river transmission losses in the karst area

could infiltrate into the conduit network and formulate interbasin groundwater flow, ul-

timately affect the catchment water balance. The high sensitivity ranking of ESCO is

because this parameter controls the amount of evaporation from the soil.

Table 4.3: Selected parameters for calibration and the best parameter values

Parameter Scenario S1 Scenarios S2 and S3

CN2 0.06 -0.03

CH K2(sub9,11,13) 26.06 25.65

CH K2(sub4−6,19,21,26) 14.35 14.01

TIMP 0.48 0.89

REVAPMN 247.25 140.75

SOL AWC -0.11 0.05

ESCO 0.87 0.27

β 0.81 0.77

αconduit 0.0136 0.0084

αmatrix 0.0021 0.0023

It is seen that the parameter which controls the amount of deep groundwater recharge

(RCHRG DP) was found insignificant. This is because this parameter only exists in

the conceptual model for the non-karst area. The non-karst area in this case is the

Harz Mountains with a high topographic gradient. In this area, the runoff coefficient is

expected to be high, therefore, the amount of deep groundwater recharge is expected to
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be minor compared to surface runoff. The newly introduced parameters for the karst area

(β, αconduit, αmatrix) are not identified as sensitive parameters. This could be due to the

fact that these parameters only affect the Rhume spring discharge, which plays a minor

role in the objective function (Eq. 4.7 and Tab. 4.2). However, one-at-time sensitivity

analysis shows that these parameters significantly affect the dynamic of the simulated

Rhume spring hydrograph and they should be taken into account for successful model

calibration.

Based on the result of sensitivity analyses and the process-based evaluation as afore-

mentioned, the seven most sensitive parameters and the three parameters of the karst

model were selected for model calibration. The best parameter values obtained from

automatic calibration were shown in Tab. 4.3.

4.5.2 The role of using MOD16 ETa and multi-site streamflow

data and for model calibration

Calibration results show that the calibration scenarios S2 and S3 have the same best pa-

rameter values (Tab. 4.3) and the same number of behavioral simulations (71 behavioral

simulations with a behavioral threshold of 0.5). As a result, the model performance statis-

tics between the calibration scenarios S2 and S3 are identical (Tab. 4.4). This indicates

that using MOD16 ETa for model calibration does not affect the model performance in

this case study. A detailed examination of the results shows that simulated ETa from

the calibration scenario S2 fits well with MOD16 ETa despite MOD16 ETa was not used

for model calibration (Fig. 4.5 and Tab. 4.4). In addition, the model performance for

ETa tends to be improved with improvement of the model performance for streamflow at

the Lindau, Scharzfeld, and Kupferhütte gauging stations. This was shown by a strong

positive correlation (r ≥ 0.78) between NSEETa and NSEQ at these gauging stations in the

calibration scenario S2 (Fig. 4.6). As a result, the best model performance for streamflow

in these gauging stations is likely to be among the “best” model performances for ETa

and the use of MOD16 ETa for model calibration might not have any effect (or only minor

effects) on the model performance. The results indicate that if there is a strong positive

correlation in the model performances between two different variables in a multi-variable

calibration, one variable can be dropped out of the objective function without having

much influence on the model performance. For multi-site calibration, the selected stream

gauges should be located in different rivers unless there are some major changes in the

river segment.
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Figure 4.5: Time series plot of MOD16 ETa and simulated ETa from the calibration

scenario S2.
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Figure 4.6: Scatter plots of NSEETa versus NSEQLindau
, NSEQScharzfeld

and NSEQKupferhütte

for behavioral simulations in the calibration scenario S2 (from 2000-2005). The red cross

indicates the simulation corresponding to the best parameter set.
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Table 4.4: Model performance statistics and characteristics of the 95PPU band. Num-

bers outside parentheses indicate values of the calibration period while numbers inside

parentheses indicate values of the validation period.

Variable NSE PBIAS KGE p-factor r-factor

Calibration scenario S1

QRhumespring 0.75 (0.48) -0.2 (-2.6) 0.83(0.76) 0.96 1.10

Calibration scenarios S2 and S3

QLindau 0.75 (0.74) 0.1 (-3.6) 0.75(0.76) 0.45 0.24

QHattorf 0.58 (0.70) -7.5 (1.3) 0.68(0.78) 0.29 0.21

QScharzfeld 0.91 (0.91) 3.3 (5.0) 0.90(0.82) 0.74 0.16

QHerzberg 0.61 (0.67) 2.6 (5.8) 0.76(0.78) 0.36 0.18

QKupferhütte 0.60 (0.70) 9.9 (8.4) 0.72(0.72) 0.39 0.25

QPionierbrücke 0.54 (0.60) 4.8 (5.4) 0.73(0.77) 0.32 0.19

QRhumespring 0.69 (0.62) 0.5 (-0.9) 0.79(0.80) 0.96 1.01

ETa 0.82 (0.79) -1.0 (2.12) 0.91(0.89) 0.58 0.36

The aforementioned results, however, should be considered along with the weights

used in the objective function (Tab. 4.2). It should be noted that differences between

the calibration results of scenarios S2 and S3 occur if the weight for NSEETa accounts for

more than 70% of all weights in the objective function, w4 ≥ 0.7 · (5 ·w1 +w2 +w3 +w4).

It means that improving the model performance for ETa is the main objective, which is

not the objective in this study.

It is seen from the Tab. 4.4 that the model performance for streamflow at the Rhume

spring was reduced, from NSE = 0.75 (scenario S1) to NSE = 0.69 (scenario S2), when

streamflow data at additional stream gauges were used for model calibration. However,

the model prediction uncertainty was reduced and the model robustness was increased.

This is shown by a decrease in the r-factor (from 1.10 to 1.01) and a decrease in the

difference of NSE between the calibration and validation periods (from 0.27 to 0.07, Tab.

4.4). In the calibration scenario S2, the model performance for streamflow at all gauging

stations (except at the Rhume spring) and for ETa are improved compared to that in the

calibration scenario S1. The results indicate that in a karst-dominated region, multi-gauge

calibration should be done in order to have a better model performance. Therefore, only

results from the calibration scenario S2 were discussed in detail in the remaining sections.

92



Chapter 4. Hydrological Connectivity in Karst-dominated Aquifers

4.5.3 Simulated streamflow

Fig. 4.7A-G presents the observed and simulated streamflow hydrographs and their re-

spective flow duration curves during the calibration period with the best calibrated pa-

rameters. It is seen that the SWAT IGF tends to underestimate high flows (Fig. 4.7A-G)

and low flows (Fig. 4.7D, E and F). The underestimation of high flows and low flows is

inherited from the original SWAT (e.g., Nguyen and Dietrich, 2018; Nguyen et al., 2018;

Uniyal et al., 2017). This could be a reason for the small p-factor observed from the

model calibration outputs (Tab. 4.4). The good fit between simulated low flows at the

Lindau and Sharzfeld gauging stations with observed data (Fig. 4.7A-G) is due to the

effect of using observed outflow from the Oder dam (Odertalsperre, Fig. 4.2) as input

data to the model. At the Hattorf gauging station, low flows were overestimated by the

model (Fig. 4.7B). This is due to a non-linear relationship between discharge and trans-

mission losses of the Sieber river, which cannot be represented in the current SWAT IGF

model. In this river, transmission losses are reported to be higher (more than 70% of the

river discharge) with smaller discharges (Thürnau, 1913). At the Rhume spring gaug-

ing station, the observed flow duration curve is well reproduced by the model and the

95PPU band covers most of the observed values (p-factor = 96). Simulated results show

that runoff generated from the Rhume spring basin accounts for about 4% of the Rhume

spring discharge, whereas the remainder (96%) is from IGF. The results match well with

the ones reported by Goldmann (1986). Simulated results from the SWAT IGF also show

that annual transmission losses from the Sieber and Oder river systems contribute about

59% of the Rhume spring discharge, which is similar to the previously estimated value of

60% (LaMoreaux and Tanner, 2001).

Due to a significant contribution of IGF to the Rhume spring as aforementioned, the

original SWAT model failed to simulate flow at this gauging station (Fig. 4.7G). It should

be noted that simulated streamflows in the karst area (Lindau, Hattorf, and Scharzfeld

gauging stations) from the original SWAT could be better than the SWAT IGF. This is

because parameters of the SWAT IGF model in the karst region are further constrained to

match the simulated streamflow at the Rhume spring with observed data. Therefore, we

did not compare the simulated streamflow from the original SWAT and the SWAT IGF

at these gauging stations. In the validation period (2006-2010), similar results were also

observed (Fig. 4.8A-G).
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4.5.4 Simulated karst groundwater storage variation

Fig. 4.9A-C shows 1) the variations of simulated karst groundwater storage (the total

groundwater storage in the matrix and conduit storage reservoirs) in the recharge area of

the Rhume spring and 2) changes in the observed groundwater levels in three wells (Fig.

4.2). It is expected that changes in the groundwater levels reflect the variations in karst

groundwater storage. In three wells, it is seen that the annual variations in the simulated

karst groundwater storage agree well with the observed groundwater levels. Especially

with well 1, a high correlation coefficient (r = 0.93) between the simulated groundwater

storage and the observed groundwater levels was found (Fig. 4.9A). At wells 2 and 3 (Fig.

4.9B-C), lower correlation coefficients (r = 0.73 and r = 0.47, respectively) were found.

The simulated karst groundwater storage varies from 35 to 67 million m3 with an average

value of about 48 million m3.
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4.6 Conclusions and recommendations

Interbasin groundwater flow (IGF), especially in karst areas, could significantly alter the

water budget of a region. In this study, the original SWAT model was modified for simu-

lating IGF in karst areas, resulting in the SWAT IGF model. A two-linear-reservoir model

was proposed to represent the duality of recharge, infiltration, storage, and discharge in

the karst area. The study area is located in a karst-dominated region in the southwest

Harz Mountains, Germany. The model was successfully calibrated at the Rhume spring

and at multiple sites for streamflow, and for ETa by using MOD16 ETa.

Calibration results show that multi-site calibration is necessary to achieve a good

model performance. Simulated ETa from the SWAT IGF model matches well with

MOD16 ETa despite MOD16 ETa was not used for model calibration. The use of MOD16

ETa as an additional calibration variable does not affect the model performance. This is

because the model performance for ETa tends to be improved with an improvement of the

model performance for streamflow at some gauging stations. The conclusion regarding

the use of MOD16 ETa for model calibration, however, should not be generalized to other

satellite remote sensing products and to studies in other areas.

The SWAT IGF model was demonstrated as a robust model by further validating

the model outputs with other data. The SWAT IGF is also highly flexible. It could

be applied in both karst and non-karst areas where the surface subbasin boundaries do

not coincide with the subsurface subbasin boundaries. The model uses a parsimonious

approach for modeling IGF in karst systems while explicitly representing the duality of

recharge, discharge, and storage in karst regions.

The SWAT IGF introduced in this study, however, has not been developed for mod-

eling solute transport. Different solute transport models could be incorporated into the

SWAT IGF model due to its flexible structure. For example, future studies could apply a

well-mixed model for modeling solute transport in the conduit because flow in the conduit

storage is fast and turbulent. For solute transport in the soil matrix, the catchment scale

formulation of transport based on travel time distributions appears to be a promising tool

(Benettin et al., 2013; Botter et al., 2011). The concept of travel time-based formulation

of transport could be used to simulate (1) the delay between input and output solute

concentration signals and (2) different selection schemes for outflow from the rock matrix.

In addition, the recharge separation factor (β) was assumed to be constant regardless of

the rainfall event characteristics. Future studies could use different recharge separation

factors depending on different rainfall event characteristics (Hartmann et al., 2015b).
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Conclusion and Future Outlooks

5.1 Conclusions

Understanding hydrological connectivity plays a crucial role in understanding the trans-

port water and its associated components between different landscape units. Therefore,

it could help to have an appropriate water resource management strategy. Hydrologi-

cal models have been proved to be an efficient tool for understanding hydrological con-

nectivity. Conceptual distributed models have shown certain advantages compared to

physically-based distributed models in terms of data requirement and computational time.

However, the hydrological connectivity (lateral surface and subsurface flows) in conceptual

distributed models is often not well represented.

In many conceptual (semi-)distributed models, the hydrological connectivity is often

restricted within a basin. In these models, the hydrological connection between basins is

only represented via hydrological routing in a river network. However, interbasin ground-

water flow or regional groundwater flow could exist between these basins. Especially in

karst-dominated areas, interbasin groundwater flow is likely to be occur. For example,

recharge into the karst aquifer could enter the underground conduit system and emerge

at other subbasins. This type of hydrological connectivity could be significant, there-

fore, it should be accounted for. In this study, the SWAT model was modified to have

a better representation and simulation of hydrological connectivity at the regional scale.

Although SWAT was specifically selected for this study, the methods presented here could

be applied for other conceptual (semi-)distributed models.

SWAT is a distributed hydrological model used to simulate the effects of land use

management practices on water, sediments, and chemical yields at a basin scale. SWAT
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has been widely used and applied worldwide. The HRU concept used in SWAT has been

identified as one of the main disadvantages for simulating hydrological connectivity. For

example, the lack of subsurface connectivity between HRUs results in its inability to sim-

ulate regional groundwater flow in porous and karst-dominated aquifers. In addition, the

hydrologic routing subroutine of SWAT was inappropriate in representing the hydrological

connectivity in the river network. This study proposed different approaches for improving

the representation and simulation of hydrological connectivity within SWAT. The main

results of this research are summarized in the following sections.

5.1.1 Hydrological connectivity in the river network

The current Muskingum flood routing method used in SWAT results in a disconnectiv-

ity (no flow) or reduction in the magnitude of hydrological connectivity (flow rate) be-

tween subbasins. This is due to the overestimation of channel evapotranspiration in the

Muskingum routing subroutine of SWAT. During a low-flow period, the overestimated

evapotranspiration amount could be significant that it could result in no-flow between

subbasins. In terms of interbasin water resources management, this could lead to an

inappropriate measure to maintain the environmental flow (especially during low flow

period). In addition, the channel transmission losses are underestimated when the Musk-

ingum routing method is activated. The modified Muskingum routing subroutine was

proposed for flood routing because of its robustness in simulating different flood waves.

The second flood routing method used in SWAT, the variable storage method, could

cause unphysical oscillations in the simulated flow during the wetting to drying phase (or

during the drying to wetting phase) of the flood plain. This is due to the assumption

of the flood plain geometry and the use of Manning’s equation in the variable storage

method. This is because the step-wise increase (or decrease) in the wetting perimeter

during the wetting to drying phase (or during the drying to wetting phase). Thus, it

results in a step-wise decrease (or increase) in the flow velocity. In addition, the current

variable storage routing technique used in SWAT does not transform the flood wave as it

moves to a downstream section.

5.1.2 Subsurface hydrological connectivity in porous aquifer

Due to the HRU concept, SWAT is not able to simulate groundwater flow between HRUs or

subbasins. Therefore, the simulated groundwater level in SWAT does not have a physical
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meaning. Furthermore, the disconnected subsurface hydrological connectivity could not

explain the return flow originated from the regional groundwater flow. The multicell

aquifer model was incorporated into SWAT, resulting in the SWAT-MCA model. In the

SWAT-MCA model, the delineation of the subsurface aquifer does not follow the HRU

or subbasin delineation. Instead, it is delineated by the Thiessen polygon method based

on the observed groundwater well network. Flow between cells (Thiessen polgons) was

simulated based on the Darcy’s law with the cell’s hydrogeological properties.

The SWAT-MCA was proved to be a compromise solution between physically-based

distributed groundwater model and conceptual lumped groundwater model. Results show

that the simulated groundwater levels from the SWAT-MCA model match well with the

observed groundwater levels, except at some cells which are strongly affected by anthro-

pogenic activities (e.g., groundwater pumping). In addition, the simulated low flows from

the SWAT-MCA model are also better than the original SWAT model.

5.1.3 Subsurface hydrological connectivity in karst-dominated

aquifer

Interbasin groundwater flow often occurs in karst-dominated aquifers. The original SWAT

model is not able to simulate interbasin groundwater flow. This study proposed a new ap-

proach for incorporating interbasin groundwater flow into the SWAT model. The modified

SWAT model, so-called the SWAT-IGF, uses two conceptual models. The original con-

ceptual model of SWAT was applied to the non-karst areas to simulate allogenic recharge

to karst aquifer while the modified conceptual model was applied to simulate autogenic

recharge to karst aquifer. The modified conceptual model can explicitly represent differ-

ent types of hydrological connectivity fast and slow recharge with fast and slow discharge.

The SWAT-IGF was verified in a karst-dominated catchment located in Niedersachsen,

Germany. Results show that the SWAT-IGF could be applied in both karst and non-karst

areas. The recharge and discharge dynamics in karst areas could be well represented by

the SWAT-IGF model.
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5.2 Future Outlooks

5.2.1 General

The results from this study show that understanding hydrological connectivity, especially

the subsurface hydrological connectivity, at a catchment scale are challenging tasks. This

is mainly due to the lack of observed data. Data from experimental studies (e.g., tracer

tests) and geological studies (aquifer properties) could provide useful information about

the hydrological connection between different landscape units.

In most of the conceptual models, there is a lack of a general framework to repre-

sent subsurface hydrological connectivity. There have been different approaches for rep-

resenting subsurface hydrological connectivity proposed, however, these approaches are

restricted to certain cases. For example, there are two models were proposed to represent

subsurface hydrological connectivity in the porous and karst areas in this study. This is

due to the compromise between model complexity and model applicability. The model

should be (1) complex enough to represent the targeted processes, and (2) simple enough

to be applicable and verifiable with the existing available data.

The results from this study show that different types of subsurface hydrological con-

nectivity could be represented in a the SWAT model. This was done by using another

approaches for delineating the subsurface catchment while the surface catchment is delin-

eated using the DEM model. This study, however, has not improved the representation

of hydrological connectivity within a soil zone (surface run-on and run-off between dif-

ferent HRUs). This would require another approach to replace the HRU approach for

delineating the surface into different landscape units.

The SWAT model and its modified version presented in this study is still a simplified

representation of a real hydrological system. Therefore, they will be further modified to

have a better representation of the real hydrological system. With the original SWAT

and modified SWAT models presented in this study, the specific future outlooks for these

models was presented in the following sections.

5.2.2 Original SWAT model

SWAT is an open source software and the SWAT source code has been undergoing var-

ious modifications. The study shows that SWAT source code is not error-free despite it

has been widely used and tested. This study only reviewed and verified the hydrologic
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routing subroutines of SWAT. Future studies are suggested to review and verify the other

subroutines of SWAT separately. In order to do that, each subroutine of SWAT should

be separated and tested independent of other subroutines.

The study have revealed that there are some errors related to the flood routing subrou-

tines in several SWAT revisions. The magnitude of these errors could vary case to case.

With large river and high evapotranspiration rate, the error could be significant when the

uncorrected Muskingum subroutine is used. For flood forecast in long river with large

retention, the error in the variable storage subroutine could be significant because it does

not transform the flood wave. Therefore, revision is suggested with studies which used

the affected flood routing subroutines.

The future version of SWAT, so-called SWAT+, is the total revision of the original

SWAT code to facilitate object-oriented programming, code maintenance. However, the

SWAT+ code reused many parts of the original SWAT code. Therefore, error in the

original SWAT code could still exist in the SWAT+. The SWAT+ allows greater flexibility

compared to the original SWAT in terms of defining the hydrological connectivity. Each

HRU, aquifer, stream, etc., in SWAT+ was identified as a separate spatial object and

users are allowed to define the hydrological connection between these objects. However,

in large subbasins, there could be many spatial objects and high flexibility in defining the

connection between these spatial objects. This could result in an overparameterization

and an infinite loop (e.g., water could circulate between these objects without entering

the discharge point). In addition, the hydrologic connection in SWAT+ is a one-way

connection while in nature there could be a two-way connection (e.g., the flow direction

between aquifers could be changed due to changes in the total hydraulic heads).

5.2.3 SWAT-MCA model

For improving the simulation of hydrological connectivity in porous aquifers, the SWAT-

MCA was proposed. The SWAT-MCA model, however, is only applicable in regions

where the groundwater aquifer is a single unconfined aquifer. In natural groundwater

system, a multi-layer aquifer with both confined and unconfined aquifers could exist.

Therefore, future study could extend the SWAT-MCA model for a multi-layer aquifer

system. The hydraulic connection between stream and aquifer is simulated using a linear

storage-discharge relationship. In this approach, return flow from the aquifer to stream

is assumed to be linear with groundwater storage. The validity of this assumption should

be checked with observed data or with physically-based distributed model.
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The SWAT-MCA model uses the Thiessen polygon method for aquifer delineation.

However, this delineation technique does not account for the hydrogeological character-

istics of the aquifer (e.g., hydraulic conductivity and aquifer thickness). Future studies

could use other delineation techniques to overcome this problem. In the SWAT-MCA

model, flow occurs between cells which share the same border using the Darcy’s law.

However, there could be no flow between these cells, e.g., due to a layer of impermeable

layer between them. Therefore, it is suggested that tracer tests should be done to check

the groundwater flow path before aquifer delineation.

5.2.4 SWAT-IGF model

For improving the simulation of hydrological connectivity in karst-dominated regions, the

SWAT-IGF model was demonstrated to be better than the original SWAT model. In

this model, flow from the rock matrix to the conduit system and flow out of the conduit

system were simulated by a linear-storage discharge relationship. Flow out of the conduit

system, however, could be highly non-linear. Therefore, the non-linear storage discharge

relationship could be used to represent this characteristic. The current version of the

SWAT-IGF is only applicable for the case where the discharge of karst aquifer is located

in a single subbasin. In reality, discharge from the karst system could be via several springs

located at different subbasins. Therefore, further modification of the SWAT-MCA model

is suggested. In addition, the SWAT-IGF only simulates flow quantity. Future studies

could incorporate a solute transport subroutine into SWAT-IGF. Furthermore, the SWAT-

IGF was only applied for a single area located in Germany. Testing of the model at other

karst regions is necessary.
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