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“HERE THE IMPORTANCE OF EVERY SINGLE DROP OF RAIN FALLING ON A CITY IS POINTED OUT. 

WHEREVER IT FALLS IS RIGHT. THAT IS A SUPREME LAW WHICH CANNOT BE EMULATED BY MAN. 

THE CITY IN THE BACKGROUND IS SEEN FROM ABOVE. HERE, TOO, THERE IS AN ABSOLUTE 

HARMONY BETWEEN RAINDROPS AND THE CITY WHICH HAS GROWN ORGANICALLY AND CONSISTS 

OF INDIVIDUAL CELLS.” (HUNDERTWASSER, 1996) 
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ABSTRACT  

Long and continuous series of rainfall data in a high temporal resolution (sub-hourly) are 

relevant for several purposes, namely for quantifying erosivity, hydrological applications 

involving urban or small, steep rural catchments, engineering design of flash flood control 

structures, etc. Unfortunately, available observations with such resolutions are usually short 

in time and restricted to some locations. Precipitation models can be used to overcome these 

limitations by generating long time series which are not constrained by the length of the 

observed data and for locations without observations. Here, a stochastic model is developed 

for this purpose. This model involves an alternating renewal process that describes a system 

consisting of rainfall events which are differentiated by two system states, wet or dry. Events 

are further characterized by variables describing amounts, durations and peak intensities 

which are simulated stochastically.  

The model developed in this Thesis is based on an existing one and includes the introduction 

of major improvements, namely i) the incorporation of multivariate distribution functions 

called copulas, ii) seasonality, iii) modeling of small events, and iv) multi-site synthesis. A 

special focus is given to properly reproduce the extreme values. The generation of rainfall 

time series using this type of models is straightforward for single sites and the potential of 

using copulas to model the joint behavior of some of the involved variables is analyzed. An 

extension of the model for simulating rainfall in several sites simultaneously is presented; the 

proposed extension involves Vine copulas. Finally, a copula-based approach is developed 

for regionalization of the model, i.e. for estimating different model parameters in locations 

without observations based on site descriptors. 

Rainfall series registered in 104 stations located in different regions in Germany are used to 

develop and test the proposed methodologies. The available data consists of registers with 

high temporal resolution records, i.e. rainfall data with a temporal resolution of 5 minutes, 

and a temporal coverage of 6 to 21 years. The descriptors include non-climatic and climatic 

information available for entire Germany. 

The evaluation of the model is performed based on ensembles of numerous long synthetic 

time series which are compared to observed ones. The different applications of the proposed 

methodologies are evaluated in terms of their capability to reproduce long term rainfall 

properties along with extreme value statistics. Results from the single site application show 

that properly modeling the joint behavior of amount and duration of rainfall events is essential 

for reproducing the observed properties, especially for the extreme events. Copulas are 
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found to be an advantageous tool in terms of properly reproducing this joint behavior; 

however selecting the proper copula is a crucial aspect. The proposed development of the 

model to multi-site applications involves additional information that accounts for the spatial 

extension of the rainfall events. Vine copulas enable modeling multiple variables via pair-

copulas which results in a high flexibility to reproduce different dependence structures. 

Therefore this type of copulas is found to be an appropriate tool for simulating events in 

several stations due to their capability of representing the joint behavior of rainfall 

characteristics for the different cases. Furthermore, spatial consistency criteria resulting from 

long synthetic time series are compared with observations indicating that the proposed 

method represents a valuable extension of the model for multi-site simulations. 

Regionalization of the model is evaluated by cross-validation. Results indicate that modeling 

the continuous time series in locations without observations is challenging, whereas extreme 

events are reproduced with good agreement. The copula-based regionalization technique 

proved to be remarkably robust to the inclusion of new stations. The proposed techniques 

are compared with commonly used methods applied by the hydrological community for 

similar purposes, namely multi-linear regression (for single site model and regionalization), 

regional frequency analysis (for regionalization) and simulated annealing (for multi-site 

model). A comparison with the current design practice is as well included. Finally, the 

application of the models to simulate time series for urban hydrological purposes is provided. 

Overall, this Thesis contributes to provide more reliable rainfall time series for applications 

which require rainfall data in a high temporal resolution, in particular urban hydrological 

applications. The copula-based methods have shown to perform very satisfactory in the 

simulation of long time series of rainfall events and have the advantage that their complexity 

is not affected by the temporal resolution. The developed models outperform the available 

design practices for particular events; furthermore the proposed methods exhibit a robust 

behavior both for extreme value estimations and for flood simulations. 

 

 

 

 

 

Keywords: stochastic modeling of precipitation, copulas, regionalization, multi-site 

synthesis, continuous simulation, high temporal resolution. 



 

 

 
VII 

 

KURZFASSUNG 

Lange, kontinuierliche Niederschlagszeitreihen in hoher zeitlicher Auflösung (d.h. weniger als 

eine Stunde) werden für verschiedenste Anwendungen benötigt, z.B. für die Quantifizierung 

der Erosivität, für die Untersuchung urbanhydrologischer Fragestellungen, der Modellierung 

kleiner Einzugsgebiete mit großen Höhenunterschieden oder der Dimensionierung von 

baulichen Strukturen zur Kontrolle von Sturzfluten. Häufig existieren solch hochaufgelöste 

Zeitreihen jedoch nur an wenigen Standorten und für kurze Zeiträume. 

Niederschlagsmodelle (oder -generatoren) werden angewandt, um diese Limitationen zu 

beheben. So bieten diese Modelle die Möglichkeit, lange Niederschlagszeitreihen, die nicht 

von der Länge der verfügbaren Beobachtungsdaten abhängig sind, zu generieren. Darüber 

hinaus können hochaufgelöste Daten auch für unbeobachtete Standorte erzeugt werden.  

In dieser Doktorarbeit wird ein stochastischer Ansatz vorgestellt, um kontinuierliche, zeitlich 

hochaufgelöste Niederschlagsdaten zu generieren. Das entwickelte Modell nutzt einen 

‘Alternating Renewal Process’, der ein System als eine Aneinanderreihung von 

Niederschlagsereignissen beschreibt, die durch zwei verschiedene Zustände – trocken oder 

nass – charakterisiert sind. Darüber hinaus werden die Ereignisse durch stochastisch 

simulierte Variablen wie Niederschlagsmenge, Niederschlagsdauer und maximale 

Niederschlagsintensität beschrieben.      

Das in dieser Arbeit entwickelte Modell basiert auf einem bereits existierenden 

Niederschlagsgenerator, beinhaltet aber zahlreiche Erweiterungen und Verbesserungen, 

namentlich i) die Einbeziehung multivariater Verteilungsfunktionen (Copulas); ii) die 

Betrachtung von Saisonalität; iii) der Möglichkeit kleinere Niederschlagsereignisse zu 

modellieren und iv) einer räumlichen Synthese (‚Multi-site‘). Ein Hauptschwerpunkt wurde auf 

der korrekten Reproduktion von Extremereignissen gesetzt. Weiterhin wurde das Potential 

von Copulas zur simultanen Berücksichtigung mehrerer Variablen detailliert untersucht. Die 

Arbeit beinhaltet darüber hinaus eine Erweiterung des bestehenden Modells durch Vine 

Copulas für die simultane Simulation von Niederschlag an mehreren Standorten. 

Abschließend wird ein Copula-basierter Ansatz für Regionalisierung des Modells via 

geeigneter Deskriptoren entwickelt, d.h. es wird eine Ableitung verschiedener 

Modellparameter für unbeobachtete Standorte ermöglicht.  

Niederschlagszeitreihen von 104 Stationen aus ganz Deutschland werden verwendet, um die 

vorgeschlagenen Methoden zu entwickeln und testen. Dabei werden lediglich Daten 

verwendet, die hochaufgelöst, d.h. in einer zeitlichen Auflösung von 5 Minuten und einer 
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Länge von 6 bis 21 Jahren, vorliegen.  Die Deskriptoren beinhalten sowohl klimatische als 

auch nicht-klimatische Informationen, die für ganz Deutschland verfügbar sind. Die 

Evaluierung des Modells basiert auf Ensembles zahlreicher langer, synthetischer Zeitreihen, 

die mit beobachteten verglichen werden. Verschiedene Anwendungen der entwickelten 

Methoden werden auf Grundlage der Fähigkeit bestimmte Niederschlagscharakteristiken zu 

reproduzieren und Extremwertstatistiken beurteilt. 

Die Ergebnisse dieser Untersuchung zeigen, dass für einzelne Standorte das simultane 

Betrachten von Niederschlagsmenge und Niederschlagsdauer essentiell ist, um das 

beobachtete Verhalten korrekt zu reproduzieren. Dies ist insbesondere für Extremereignisse 

der Fall. Es zeigt sich, dass Copulas eine wertvolle Methode darstellen, die dieses simultane 

Betrachten ermöglicht; der wichtigste Aspekt dabei ist die Wahl einer geeigneten Copula. 

Vine Copulas erlauben die Modellierung mehrerer Variablen gleichzeitig mittels Paar-

Copulas (pair copulas); dadurch bieten diese eine hohe Flexibilität in Bezug auf 

verschiedene Abhängigkeitsstrukturen. Dieser Typ Copulas ist daher basierend auf den 

Ergebnissen dieser Arbeit ein geeignetes Werkzeug für die Niederschlagssimulation an 

mehreren Standorten, da für verschiedene Fälle mehrere Niederschlagscharakteristiken 

simultan betrachtet werden können. Weiterhin zeigt die Auswertung der Kriterien in Bezug 

auf räumliche Konsistenz, dass das entwickelte Modell eine wertvolle Erweiterung für die 

Einbeziehung vieler Standorte darstellt (‚Multi-site’). Anschließend wurden die Ergebnisse 

regionalisiert und mittels Kreuzvalidierung evaluiert. Hier zeigt sich, dass die Generierung 

kontinuierlicher Zeitreihen an Standorten ohne Beobachtungen schwierig realisierbar ist. 

Extremereignisse können allerdings gut reproduziert werden. In Bezug auf eine 

Einbeziehung neuer Stationen ist die Copula-basierte Methode außerordentlich robust. Um 

dies zu zeigen, wurde ein Vergleich zwischen routinemäßig verwendeten hydrologischen 

Evaluierungsmethoden (z.B. multilineare Regression, regionale Häufigkeitsanalyse und 

simulated annealing) durchgeführt. Abschließend wird die Anwendung des Modells für die 

Simulation von Zeitreihen für urbanhydrologische Fragestellungen untersucht.  

Diese Doktorarbeit trägt dazu bei, um verlässlichere Niederschlagszeitreihen für alle 

Fragestellungen, in denen eine hohe zeitliche Auflösung benötigt wird, bereitzustellen. Dies 

ist besonders hilfreich bei der Untersuchung von urbanhydrologischen Aspekten. Copula-

basierte Methoden sind enorm vorteilhaft für die Generierung von Niederschlagsereignissen; 

die Komplexität ist dabei nicht beeinflusst von der zeitlichen Auflösung, was einen weiteren 

Vorteil darstellt. Die in dieser Arbeit erstellten Modelle zeigen eine bessere Performance im 

Vergleich zu den derzeit verfügbaren Methoden zur Abschätzung von 

Niederschlagsereignissen bestimmter Wiederkehrintervalle (z.B. KOSTRA). Außerdem sind 
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die vorgeschlagenen Ansätze äußerst robust für sowohl die Abschätzung von Extremwerten 

als auch die Simulation von Überflutungen.    
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Rainfall is characterized by high temporal and spatial variability. Since ancient times, human 

settlement has been largely influenced by the dramatic consequences of variable rainfall in 

the form of floods and droughts. As reported by CRED (2017) natural disasters related to 

meteorological and hydrological extreme conditions show an increasing number of 

occurrences per year causing millions of people to leave their homes, diseases and large 

economic losses. Consequences of drastic droughts and floods due to extreme rainfall 

events around the world indicate a deficiency in understanding the natural process governing 

them. These events are specified by several characteristics and their inter-dependencies are 

fundamental descriptors for both practical and scientific purposes (Gaál et al., 2014). Even in 

different places around Europe (like Germany), in which the spatial and temporal coverage of 

rainfall measurements is considerably adequate compared to other remote regions of the 

world, fatalities resulting from excessive rainfall events are frequent, causing severe impacts 

for the society. Barredo (2007) provides a catalogue of major European flood disasters in the 

last half century and states that an increase of these events is very likely; in particular cities 

are becoming increasingly exposed to the occurrence and impacts of pluvial flooding. 

According to WMO (2012) accurate precipitation data is required for various aspects of water 

management, namely hydrological characterization, flood management and control, irrigation 

and drainage, groundwater, navigation, power generation, water supply, water quality, 

fisheries and conservation, and amenity. The required temporal resolution differs according 

to the case. In particular sub-daily rainfall data is essential for the design of protection and 

retention measures, like dams, different types of diversions, river bank and infrastructure 

protection structures and for floodplain zoning. The required accuracy is particularly high due 

to the critical nature of design of these structures. Ochoa-Rodriguez et al. (2015) have shown 

the need of rainfall in high temporal resolutions (sub-hourly) to properly capture the variability 

of events for urban hydrological applications. Moreover, Mosthaf & Bárdossy (2017) state 

that the available precipitation records in high temporal resolution are usually short and 

contain erroneous measurements. It is therefore propitious to use stochastic precipitation 

models to generate synthetic time series and replace the observations. 

The design of hydraulic structures and delineation of flood-risk maps involve the definition of 

synthetic hydrographs associated to different return periods. As stated by Grimaldi et al. 
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(2012), such hydrographs can be estimated based on events or continuous modeling. 

Intensity Duration Frequency curves (IDFs) are widely available and used for event-based 

estimations. However, limitations regarding the shape of the hyetograph (temporal pattern of 

rainfall intensity), the definition of the critical duration of the rainfall event, initial soil moisture 

condition and relationship between rainfall and discharge return periods result in 

inaccuracies that are difficult to quantify. On the other hand, continuous modeling relies on 

long synthetic rainfall time series which are used as input for continuous rainfall-runoff 

models, avoiding the above-mentioned limitations.  

Furthermore, during its service life a hydraulic structure is exposed to many different loads 

and environmental conditions. Therefore it is propitious to include several possible loads 

during the design and planning of such structures.  Different hydrological scenarios can be 

established and evaluated by combining a precipitation model providing continuous rainfall, 

and a rainfall-runoff model. By continuous simulation a broad range of hydrological loads 

differing in duration, intensity, amount, etc. is available and can be used when structures, for 

instance for flood protection, are designed. Moreover controlling flood characteristics differ 

according to the structure: gross flood volume is the main driver for dimensioning flood 

storages whereas for flood control structures the peak flood plays a fundamental role. 

The accuracy of the input data plays a fundamental role in all of the before mentioned 

applications.  In order to establish a robust precipitation model, it should reproduce the 

observed characteristics of rainfall sufficiently. Therefore, this PhD Thesis aims to contribute 

by developing a precipitation model that is able to jointly capture the main characteristics of 

rainfall events, i.e. amounts, intensities, peaks and durations, for a high temporal resolution. 

The model is to be used for generating long time series of rainfall in a short time increment of 

5 minutes, which are required for several purposes, namely, for quantifying rainfall erosivity, 

hydrological applications involving urban or small, steep rural catchments, engineering 

design of flash flood control structures, etc. The developed model should be able to be 

applied  

i) at individual sites, i.e. temporal simulation of long continuous time series at 

particular location is possible; 

ii) at multiple sites, i.e. the simultaneous temporal and spatial simulation of long 

continuous time series for several sites is possible; and  

iii) at sites without observations, i.e. the temporal simulation of long continuous time 

series for any location is possible.  

Another important challenge is related to one of the major inadequacies of present day 

hydrology which is the insufficient transfer of knowledge from research to practice. It is 
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therefore a sub-goal of this Thesis to directly transmit and provide the findings to engineers 

and planners involved in the design and management of hydraulic structures. Consequently 

a comparison between current design practice regarding rainfall analysis, IDFs and the 

developed rainfall models is included along with the application of these models for urban 

hydrological purposes. 

1.2 OBJECTIVES  

The precipitation model presented in this Thesis is based on an existing one developed by 

Haberlandt (1996) for a different region. It is important to remark that the purpose of the 

original one was to model load-pollution, i.e. average overflow properties was of interest; 

therefore extreme event statistics were not of major concern in the development. The focal 

research areas and the specific objectives of the studies presented in this Thesis are: 

- To develop a model able to mimic rainfall time series for one location and in a high 

temporal resolution. The aim of the model is to generate long time series for the 

particular location and to use these time series for planning and design purposes. 

- To extend the model to mimic rainfall time series in several locations simultaneously 

and in a high temporal resolution. The aim of the model is to generate long time 

series in several locations simultaneously and provide with time series which are 

longer than the available ones. 

- To develop a methodology to mimic rainfall time series for single locations without 

observations. The aim of this part of the work is to be able to generate reliable long 

time series of rainfall in a high temporal resolution for locations without any available 

measurement of rainfall.  

- To evaluate the proposed methodologies both in terms of reproducing the average 

events properties of rainfall along with the extreme event statistics. 

- To compare the presented methods with current design practice commonly adopted 

by the engineering community for designing hydraulic structures.  

- To evaluate some of the proposed methods in terms of urban response with 

hydrological modeling and to compare event based with continuous modeling. 
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1.3 STRUCTURE 

This Thesis is organized as follows. After an introduction to the topic presented in Chapter 1, 

Chapter 2 gives a brief description of many of the existing works dealing with sub-daily and in 

particular sub-hourly precipitation modeling. The challenges of modeling this type of data 

along with limitations of the existing models are discussed.  

Chapter 3 describes the main assumptions and concepts related to the precipitation model 

used here. A sub-Chapter (3.2) describing the general concept of Copulas is as well 

included, since this mathematical tool has been used for most of the developments 

presented in the Thesis. Different following sub-Chapters describe the proposed 

methodologies to model precipitation for single sites, multi-sites and regionalization. The 

alternative standard approaches used for assessing the capability of the proposed methods 

are as well briefly described. Finally the different tests used for validating the proposed 

methodologies are explained, along with the uncertainty analysis for evaluating some of the 

methods. 

In Chapter 4, a brief description of the study area is provided along with the available data 

set that is used for developing and validating the different methodologies. Furthermore, sub-

Chapter 4.6 describes the current design practice in the study region and sub-Chapter 4.7 

provides details of a fictitious urban model used for the application of the model to urban 

hydrology. 

Following, Chapter 5 includes the overall results describing the final models and validations 

of the different proposed techniques. These validations are performed in comparison with 

existing standard techniques. The chapter is divided into different sub-Chapters to show the 

efficiency of the models in terms of average and extreme event statistics for a single site, 

multi-sites and sites without observations. The advantages and limitations of using copulas 

for the different applications are discussed. Additionally uncertainties associated to the 

variability of the stochastic process and the model parameter estimation are presented.  

The application of precipitation time series to urban hydrological modeling is presented in 

Chapter 6, in which the ability of the single site model and regionalization of this model are 

evaluated in terms of overflow and flood events resulting from an artificial urban network. 

Finally, Chapter 7 includes a broad discussion of the main findings of this Thesis. The 

advantages and limitations of the different developed methodologies are discussed taking 

into consideration different applications. Some ideas regarding further studies are presented 

in the sub-Chapter 7.2. All the details regarding the references mentioned in the work can be 

found in the “References” section. The last section of this work includes the Appendixes. 
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2 STATE OF ART 

2.1 PRECIPITATION MODELS 

Stochastic modeling of precipitation consists of conceptually representing the natural 

phenomenon through some mathematical relationships. The model is used to generate long 

synthetic time series that should adequately reproduce the historical statistics of the 

phenomenon. These synthetic series are applied for different purposes, e.g. design and 

planning, deriving long extended time series or regionalization of rainfall to areas without 

measurements. Of particular interest is the use of these models for urban applications. Urban 

catchments are usually characterized by small sized contribution areas with high 

imperviousness and therefore low concentration times. Furthermore, the proportion of rainfall 

producing surface runoff is high compared to rural catchments. Due to such fast response, 

rainfall in high temporal resolution is a crucial input for urban modeling.  

Among the existing precipitation models, the following can be mentioned: data driven 

generators (e.g. resampling and disaggregation), time series models (e.g. Markov chains), 

and event based methods such as point and cluster process-based (e.g. Neyman-Scott, 

Barlett-Lewis) or alternating renewal models. The spatio-temporal scale of such models is 

determined by the hydrological application and becomes more challenging for high temporal 

resolutions. For sub-daily resolution the complexity of some models increases, as is the case 

of time series models which result in more parameters (see Verhoest et al., 1997), and their 

performance declines as a result of the difficulty to reproduce historical properties. Thus, 

many investigations focus on the generation of daily precipitation time series, whereas 

models for hourly or sub-hourly time series are less frequent. Nevertheless clear progress 

has been made and therefore a review of some of the existing models applied to high 

temporal resolution data is presented in the following paragraphs. A discussion focusing on 

their performance regarding extreme events is included. 

Data driven approaches 

Licznar et al. (2011) applied a disaggregation model based on microcanonical cascade to 4 

rain gauges in Germany. The disaggregation was performed from daily data up to 5 minutes 

and the outcome was overestimation of precipitation amounts, especially for high intensities. 

Another disaggregation model based on daily data combined with posterior resampling for 

multi-sites application was proposed by Müller & Haberlandt (2016). The microcanonical 

cascade model was as well used for rainfall observed in Germany; results indicated an 
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overestimation of extreme values for 5 minutes durations and most of the cases, whereas the 

extremes were better reproduced for 1 hour. Beck (2013) suggested some improvements to 

an existing synthetic rainfall generator called NiedSim (see Bárdossy, 1998), which follows a 

resampling approach. The modifications were tested based on stations in Germany and 

indicated underestimation of most extreme events on a daily aggregation and a slight 

underestimation of moderate extremes at hourly time scales.  

For urban applications even hourly simulated time series need to be disaggregated to higher 

temporal resolutions, thus an extra disaggregation model is necessary. Cowpertwait et al. 

(2004) presented a stochastic model to disaggregate spatio-temporal data from hourly into 5 

minutes. The model involved a moderate number of parameters and was validated with data 

registered in New Zealand. Overflow volume simulations indicated good agreement between 

historical and disaggregated data.  

Most of the data driven approaches are restricted to the length of the observation period and 

therefore limited for high return periods. Furthermore, most of these models have the 

drawback that they rely on observed historical data for generating realizations and cannot 

generate unrecorded rainfall patterns, which is possible by other stochastic rainfall 

generators. 

Time series models 

As was mentioned, the application of time series models is not recommended for high 

temporal resolution requirements. Nevertheless, Katz & Parlange (1995) proposed an 

extension of chain-dependent process commonly applied to daily data for hourly simulations. 

The model assumes dependency between successive intensities and involves diurnal cycles 

and higher-order Markov chains for the occurrence process, thus a high number of 

parameters is involved. Unfortunately the evaluation of the model is based on 12 and 24 

hours aggregation levels. The number of parameters required for high temporal resolutions 

discourage the application of these models. 

Event based methods 

Two types of cluster process-based rectangular pulses models are Barlett-Lewis (BL) and 

Neyman–Scott. Several works explore the capability of modified versions of BL model to 

reproduce high resolution precipitation for single sites. Rodriguez-Iturbe et al. (1988) 

modeled hourly data from two cities in the United States which delivered a good agreement 

between observations and simulated values; however the number of historical extreme 

values was larger than derived by the model, especially for hourly time resolution. 

Cowpertwait et al. (2007) used 60 years of 5 minutes rainfall data registered at a site in New 
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Zealand and compared annual maxima of historical and simulated data which resulted in a 

good fit at both 1 and 24 hour levels of aggregation, but some underestimation at the 5 

minutes level. Based on a similar model Kaczmarska et al. (2014) used 5 minutes data 

registered at a site in Germany and introduced an improvement by including the dependence 

between event intensity and duration. They pointed out that the performance was improved, 

particularly for short temporal resolutions; however the model underestimated the extremes. 

Based on a long 10 minutes rainfall time series observed in one station in Belgium, Verhoest 

et al. (1997) compared three versions of BL; unfortunately none of them was able to 

reproduce the extreme values at short durations. Vandenberghe et al. (2011) used the same 

data set and pointed out that the BL model generated more and shorter storms and severe 

clustering. Consequently simulated extreme events did not reproduce observed ones. A 

similar analysis focusing on drought characteristics was performed by Pham et al. (2013), for 

which the over-clustering of rainfall events failed to preserve the extreme characteristics. 

Vernieuwe et al. (2015) used multivariate functions called Vine copulas to model continuous 

time series of rainfall for the same station resulting in a well reproduction of aggregated 

yearly rainfall statistics, however extreme values were overestimated at short durations, 

whereas long durations showed an underestimation. 

Bernadara et al. (2007) coupled an alternating renewal process (ARP) to mimic the 

sequence of wet and dry weather states with a fractional noise to model the intensity. The 

results from 2 Italian stations revealed an overestimation of mean and mean maximum 

annual volumes as well as extreme values when short durations were evaluated. Based on 

ARP, Haberlandt et al. (2008) and Haberlandt & Radke (2014) modeled hourly rainfall for 

some stations in Germany. Results showed a slight overestimation of extreme rainfall 

amounts for high return periods and long durations. Furthermore, annual maximum flows 

derived from runoff modeling using the synthetic rainfall as input were overestimated. 

Nevertheless, the authors included a comparison of this model with an alternative random 

cascade disaggregation model and showed that the ARP outperformed the alternative one. 

Other event based models for single sites are proposed by Gyasi-Agyei & Melching (2012) 

and Zhang & Switzer (2007). Gyasi-Agyei & Melching (2012) analyzed hourly data observed 

in some stations in the United States to model the joint behaviour of 3 major properties of 

storm events: duration, total and maximum amount. The model was set up on a monthly 

basis with harmonic Fourier functions to reduce the number of parameters. In this case 

Intensity-Duration-Frequency curves showed a well reproduction of observed values which 

were in most of the cases within the 95% of the prediction limits, except for short and long 

durations, for which the extreme values are over- and underestimated. Zhang & Switzer 
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(2007) used hourly data registered in 8 stations in United States to simultaneously model 

pairs of variables describing storm characteristics (velocities and sizes, radius and average 

intensity). The results showed a reasonable agreement between simulated and observed 

maximum rainfall intensity. However this model needs to be further combined with a 

frequency model in order to simulate continuous rainfall series.  

Single site models are useful when spatial variability of rain is low and/or cases in which a 

uniform representation of the rainfall field is sufficient. However, for some applications the 

spatial attributes of rainfall can have an important impact in the outputs. Therefore, multi-site 

models are used to generate time series at different sites, while preserving temporal and 

spatial cross-correlation of the process. Many examples of these models can be found in the 

literature; however most of them are based on monthly, weekly and up to daily time scales. 

For high temporal resolution applications some of them become very complex and the 

number of parameters increase drastically.  

Cowpertwait et al. (2002) proposed a model based on Neyman-Scott process combined with 

a generator of spatial circular rain cells, to simulate hourly rainfall in several stations in Italy. 

This model was implemented by Burton et al. (2008) in a generator called RainSim, which 

consists of seven parameters that are calibrated on a monthly basis based on single and 

dual-site statistics. The model was able to simulated rainfall up to 1 hour time resolution. 

However, as the model is monthly based, a high number of parameters is involved. 

Tarpanelli et al. (2012) described a simpler approach as well based on Neyman-Scott but 

combined with a rearrangement algorithm. The results from many stations in Italy with hourly 

data indicated a good performance of the model in reproducing the frequency of annual 

maximum rainfall for 1 and 24 hours. The method is simple to interpret and apply, however 

the rearranging is based on the hourly time series and it is not clear whether the structure of 

the storms is conserved within this process, which is crucial for events causing urban 

flooding.  

Paschalis et al. (2013) presented a model called SPREAP and explored the capability of the 

model to mimic high resolution space-time rainfall. The model was compared with a Neyman-

Scott based one by using gauges and radar data from a region located in the Mediterranean 

side of the Alps. The proposed model consisted of 3 stages: storm arrival, within-storm 

temporal evolution and two-dimensional temporal evolution of storm structure. Both models 

underestimated the precipitation depths in single stations for sub-hourly durations, especially 

for warm seasons with convective intense events; nevertheless SPREAD outperformed the 

Neyman-Scott method. 
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Willems (2001) proposed a spatial rainfall generator consisting of rain cells and rain storms. 

Rain cells are described by the shape and movement in space and time of events, whereas 

rain storms are the clustering of cells. The model was set up on a dense network of stations 

in Belgium with high temporal resolution data. The validation based on intensity-duration-

frequency curves revealed an acceptable general performance for different temporal scales. 

However the proposed model is complex, as it requires many stepwise analysis and 

information, thus an adaptation to new cases studies and interpretation is not easy. 

Haberlandt et al. (2008) presented a method to simulate hourly rainfall in multiple stations. 

The methodology was based on alternating renewal process (ARP) and applied to single 

sites independently, and was thereafter combined with a multi-site resampling procedure to 

reproduce the spatial dependence structure of rainfall by reordering the events. Extreme 

values showed to be well reproduced for short durations, whereas a systematic 

overestimation was obtained for long durations. 

The performance of event based models depends on the proper modeling of the event 

characteristics. Several studies state the fact that as these characteristics are generated by 

the same physical phenomenon, their statistical dependence structure should be included in 

the modeling. Gaál et al. (2014) state that, along with the statistical properties of event 

characteristics, their inter-dependencies are fundamental descriptors of the phenomenon. 

Joint probability distributions are able to model these structures, in particular copula 

functions. Copulas have the advantage of modeling the dependencies of random variables; 

independently of their marginal distributions (see e.g. Nelsen, 2006; Genest & Favre, 2007; 

Salvadori et al., 2007). Application of copulas to model joint behavior of variables describing 

storm characteristics can be found in Grimaldi & Serinaldi (2006), Salvadori & De Michele 

(2006), Zhang & Singh (2007), Kao & Govindaraju (2008), Vandenberghe et al. (2010), 

Balistrocchi & Bacchi (2011), Gyasi-Agyei & Melching (2012), Ariff et al. (2012), Serinaldi & 

Kilsby (2013), Xiong et al. (2014) and Vernieuwe et al. (2015). Many of these applications 

focus on the modeling of single storm events, i.e. the occurrence of rainfall is neglected and 

thus a continuous modeling is not considered. 

2.2 REGIONALIZATION OF PRECIPITATION 

The existing precipitation models involve parameters that are estimated based on long 

historical records. In order to apply these models in sites with short or no available data, a 

regionalization procedure must be developed. Estimation of rainfall in regions without 

observations is widely studied by several authors resulting in several methods that can mimic 
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the main features of precipitation acceptably. However many of the existing works focus 

mainly on regionalization of either total amounts (monthly, yearly) or extreme values 

associated to different durations.  

Generally the existing regionalization methods involve two different steps: first regions with 

homogeneous rainfall regimes are identified, and subsequently an analysis of the rainfall 

within each identified region is performed. Different criteria exist for grouping or clustering 

stations with homogeneous statistical properties, see e.g. K-means partitioning (MacQueen, 

1967), Partitioning around medoids (Kaufman & Rousseeuw, 1990), Self-organizing Maps 

(Kohonen, 1990), Ward’s Hierarchical Classification (Ward, 1963), Hierarchichal 

Bootstrapped Classification (Suzuki & Shimodaira, 2006), Model-Based Classification (Fraley 

& Raftery, 2007), Fuzzy C-Means (Asong et al. 2015), Cluster Probability Model 

(Cowpertwait, 2011) and Random Forest (Breiman, 2001). For the subsequent analysis 

several methods commonly applied are regional frequency analysis (Hosking & Wallis, 1997; 

Alila, 1999; Modarres, 2010; Sveinsson et al. 2010; Asong et al. 2015), regional vector 

method (Rau et al, 2016), sample algorithm to generate data series for the ungauged 

locations (Mehrotra et al., 2012).  

The estimation of rainfall characteristics required for generating long time series in regions 

without observations is more limited. Nevertheless some attempts of regionalizing point-

process stochastic models (for single sites) exist and are briefly described in the following 

paragraphs. 

Some of the works dealing with regionalization focus on the estimation of amounts of rainfall 

for every single time step in regions without observations. These works rely on the 

distributions of precipitation amounts that need to be regionalized. The regionalization 

approach can either involve the interpolation of the rainfall time series from surrounding 

stations followed by the estimation of the distribution based on this interpolated data set or 

the interpolation of the distribution functions from the surrounding stations to the target point 

(see e.g. Wilks, 2008; Kleiber et al. 2012; Mosthaf & Bárdossy, 2017; both for parametric and 

nonparametric cases). Most of the studies focus on the daily time series except for Mosthaf & 

Bárdossy (2017) which applied the proposed regionalization method to an hourly temporal 

resolution. 

Regionalization of the cluster process-based Neyman-Scott model was proposed by 

Cowpertwait et al. (1996) in which the model parameters were related to site variables 

(altitude, distance to coast, etc.) by regression equations. Over 100 stations in the United 

Kingdom were used. Regionalization errors were lower than sampling error expected from a 

20 year long historical record, suggesting the use of the regionalized rainfall with reasonable 
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confidence. Mohud Daut et al. (2016) proposed an alternative methodology for regionalizing 

the same model, which consisted of merging all stations (previously scaled on individual 

mean values) and estimating model parameters for the merged time series treated as a 

single station. The model was applied on hourly basis to some stations located in Malaysia 

and showed a tendency to underestimate autocorrelation and auto covariance although the 

main statistical profiles were preserved. 

The Barlett-Lewis Rectangular model was regionalized by Kim et al. (2013) by interpolating 

the model parameters using Ordinary Kriging based on over 3000 stations registering hourly 

rainfall in United States. Interpolated parameters showed to be smoothed over the space. 

Cross-validation results indicated that the mean and variance of rainfall were well 

reproduced, whereas the regionalized model failed to reproduce the autocorrelation along 

with the probability of no rainfall for some cases.  

Another method to model rainfall events in regions without observations was presented by 

Haberlandt (1998). It was applied in the south of Germany and involved the estimation of the 

parameters of probability distributions describing rainfall characteristic by Kriging methods. 

The proposed method was validated by comparing the model results without and with 

regionalization. A systematic underestimation of precipitation characteristics was obtained 

that, as stated in the work, most likely results from the nonlinearity between regionalized 

parameters and target variables. Another work dealing with rainfall events was presented by 

Hernaéz & Martin-Vide (2011). The north of Spain was used for regionalizing empirical 

probability distributions of wet spells along with rainfall persistence using geostatistical 

interpolators. Despite the complex interaction between topographic, geographic and climatic 

factors, the resulting maps reflected the general expected trends of precipitation behavior. 

2.3 OPEN QUESTIONS 

The overview of the existing literature reveals some limitations of the available models. Some 

of these methods need to be further combined with other models to provide long time series 

of precipitation, especially if the following aspects are pursuit: i) continuous simulations, ii) 

high temporal resolution and/or iii) several sites simultaneously. Most of the data driven 

methods are limited to observed attributes, like patterns of rainfall and length of observed 

period. Multi-site models are usually complex, hard to interpret and involve several stages of 

simulation which result in many parameters, especially for applications which require high 

temporal resolutions. Copulas have shown to efficiently mimic joint behavior of event 

characteristics; however their application for continuous modeling has been limited. Methods 
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for regionalizing event based characteristics are uncommon. This general outlook leaves 

some open questions:  

- Is it possible to reproduce average event properties and extreme event statistics of 

observed rainfall with one single model in a high temporal resolution? 

- Are copulas efficient tools for modeling continuous precipitation in a high temporal 

resolution? 

- Is it possible to generate reliable long time series of rainfall with a high temporal 

resolution in areas without observations? 

The objective is to contribute to the possibility of obtaining long rainfall series that can 

properly reproduce different characteristics of the observed ones, whilst keeping the model 

as simple as possible. For this reason a model based on Alternating Renewal process is 

tested, due to the fact that it is considered easy to interpret and transfer to new regions of 

interest. Furthermore, as it is event based, the number of parameters is not affected by the 

temporal resolution and thus benefits the regionalization procedure. This leads to an 

additional question: 

- Is an extension of the Alternating Renewal based process model to a multi-site 

application feasible? 

It is the aim of this Thesis to address these questions by developing a stochastic continuous 

precipitation model for simulating long time series of rainfall in a high temporal resolution. 

The application of the model for single, multi-sites and sites without observations is to be 

assessed. 
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3 METHODS 

This chapter includes the explanation of the different methodologies involved in the Thesis. 

First in sub-Chapter 3.1 the general concept of the basis process for the precipitation model 

is described in order to present the main principles, which are important for understanding 

the proposed methods. Following, in sub-Chapter 3.2, a general definition of copulas is 

included to clarify the main concepts, limitations and characteristics of these models used for 

the multivariate analysis within different steps of calculation. A description of the existing 

model for simulating rainfall in single locations is included in sub-Chapter 3.3, which was 

developed previous to this Thesis and was used as a basis for developing the methods that 

are detailed afterwards. The following sub-Chapter 3.4 describes the proposed methodology 

for simulating rainfall in several stations simultaneously by using the vine copulas. The 

existing approach based on Simulated Annealing and used for comparison purposes is as 

well concisely described. Afterwards the concept of regionalizing the model with the aid of 

copulas and site descriptors is described in sub-Chapter 3.5. The alternative approaches 

used for comparison are as well briefly explained. In sub-Chapter 3.6 the different criteria 

used for evaluating the proposed methods are presented and explained, followed by the 

procedure applied to assess the uncertainty of the different proposed models along with the 

measures adopted for comparing the models based on urban hydrological applications. 

Finally in sub-Chapter 3.7 a summary comparing the existing and new proposed model is 

presented. 

3.1 ALTERNATING RENEWAL PROCESS 

The precipitation model presented in this Thesis is based on the theory of alternating renewal 

process (ARP). A renewal process is, as defined by Serfozo (2009), a stochastic model in 

which an event occurs repeatedly over time and times between occurrences are independent 

and identically distributed (IID). Suppose 0 ≤ T1 ≤ T2 ≤ ... are finite random times at which a 

certain event occurs with at most one occurrence at any instant. A process is defined as 

renewal if the inter-occurrence times ξn = Tn−Tn−1, for n ≥ 1, are independent and have a 

common distribution F, where F(0) = 0 and T0 = 0. The Tn are called renewal times, referring 

to the independent or renewed stochastic information at these times. The ξn are the inter-

renewal times, and N(t) is the number of renewals in (0, t]. A renewal process is therefore 

defined by specifying a distribution F with F(0) = 0 for the inter-renewal times. This type of 

process can for instance define the random times at which a stochastic process enters a 
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special state of interest. An alternating renewal process is a continuous-time stochastic 

process X(t) that cycles through two possible states, say 0 and 1 or on and off, again and 

again. A complete cycle of the process X(t) goes from state 0 back to 0. With a clever 

definition of on and off states, many stochastic processes can be turned into alternating 

renewal processes.  

In the case analyzed in this Thesis, the two states are described by rainfall and no-rainfall, 

which are described by wet spell durations (WSD) and dry spell durations (DSD) 

respectively. Figure 3.1 shows the application of ARP to mimic observed rainfall. 

 
Figure 3.1: Conceptual illustration of the alternat ing renewal process applied for rainfall 

modeling. 

The figure indicates some additional variables characterizing rainfall events: total volume of 

rainfall falling during the event or wet spell amount (WSA) and wet spell intensity (WSI). All 

these variables constitute the external structure of the precipitation model which is 

complemented by an internal structure and is explained later. The ARP is used to model the 

behavior of this external structure, i.e. the succession of independent rain events. 

3.2 COPULAS – GENERAL CONCEPT 

A copula is a function that enables modeling the dependency structure of random variables, 

independently of their marginal distributions. These functions are special multivariate 

distributions which model the joint behavior of variables which follow uniform distributions. 

They can therefore model the dependency of uniformly transformed observations (e.g. in 

form of empirical cumulative distributions) denoted as pseudo-observations. Copulas are 

used for simulating samples of pseudo-values, which are then transformed to values by the 

inverse marginal distributions describing the different involved variables. The joint distribution 

is therefore decomposed into the marginal ones and the copula which connects them. For 

further details the reader may refer to Nelsen (2006), Genest & Favre (2007) or Salvadori et 

al. (2007). 
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For a multivariate case with n variables, the link between a copula, denoted as C(u1,u2,…,un), 

and the multivariate distribution is provided by Sklar’s Theorem (see Nelsen, 2006) with the 

following equation: 

 ����, ��, … , ��	 = �������	, �����	,… , �����	, (Eq. 1) 

where F(x1,x2,…, xn) is the joint cumulative distribution function with the continuous marginal 

distribution functions of the random variables: F1(x1), F2(x2),…,Fn(xn). The model representing 

the joint behaviour of the random variables is defined by the selection of the copula to 

describe the relationship between the random variables and the marginal distributions 

representing each of them. The main advantage of this approach is that the selection of the 

appropriate copula to represent the dependence structure can be done independently from 

the choice of the marginal distributions. The bivariate case involves a total of n=2 variables, 

and the following marginal distributions u=F1(x1) and v=F2(x2). A conceptual illustration of this 

case is presented in Figure 3.2. In a bivariate context, a copula function is defined as 

mapping C:[0,1]2 to [0,1], with the properties that if either one of the marginal distributions is 

zero then the joint distribution will be zero, and if either one of the marginal is equal to one 

then the joint distribution will behave as a univariate distribution of the opposite variable.  

Figure 3.2: Conceptual illustration of a copula in a bivariate context (under N(0,1) margins for 
visualization purposes). 

The best sampled-based representation of the copula is the so called empirical copula which 

in the bivariate domain is defined by: 

 ����, �	 = �
�∑ 1� ��

��� ≤ �, ����� ≤ ���
��� , (Eq. 2) 

u v

Probability Density Function

0

1

0
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u v
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where n is the number of pairs, 1(A) is an indicator function of set A, u and v are the marginal 

distributions and Ri and Si stand for the ranks of each observation among the complete time 

series.  

A well known nonparametric measure of dependency structure is the Kendall’s Tau, which is 

rank based and has the following empirical version: 

 �� = ������	�� − 1, (Eq. 3) 

where n is the number of pairs and Pn is the number of concordant pairs. Two pairs 

(Xi,Yi),(Xj,Yj) are concordant if (Xi - Xj)·(Yi - Yj)>0. And since two pairs are concordant if and 

only if the ranks are concordant, i.e. (Ri - Rj)·(Si - Sj)>0, then the measure is rank based and 

can be expressed as function of the empirical copula Cn as reported by Genest & Favre 

(2007) by: 

 �� = 4!! − 1" ����, �	#����, �	�$,�% − ! + 3! − 1 
(Eq. 4) 

and more general for n → ∞ and Cn → C, 

 � = 4( ���, �	#���, �	�$,�% − 1. 
(Eq. 5) 

Thereafter relationships between Kendall’s Tau and parameters describing different copulas 

can be derived, either analytically or numerically, some analytical solutions are listed in 

Chowdhary et al. (2011). As this coefficient is nonparametric and rank based Genest & Favre 

(2007) refer to this method of parameter estimation as nonparametric adaptation of the 

method of moments or moment-like. Another estimation method is the so called pseudo-

likelihood method, which again relies completely on the relative ranks of joint variates. 

The literature review reveals a list with several copula functions which are commonly applied 

to analyze multivariate hydrological data. Different copulas are able to model different ranges 

of dependence structures, so the suitability of a particular copula depends on the type of 

dependence structure between variables. In order to evaluate the performance of a particular 

copula, the empirical and parametric probabilities are compared with a Cramér-von Mises 

type of test (Genest and Favre 2007, Chowdhary et al. 2011). Large values of this statistic 

can lead to the rejection of the model under consideration. The objective of a copula model is 

to adequately represent the dependence of the observed data. A special aspect that these 

models must meet for some applications, e.g. extreme value analysis, is to ensure suitability 

in terms of tail dependence characteristics. Upper and lower tails are the pairs of variables 

corresponding to either very high or very low probabilities. Certain copulas may exhibit 
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similar overall dependence features while showing different lower and upper tail dependence 

characteristics. Tail dependencies may be visually compared with the observed data to 

decide which model is more suitable. Some coefficients to quantify these dependencies are 

as well provided by e.g. Dupuis (2007) and Vandenberghe et al. (2011). 

Several symmetric copulas commonly used in hydrological applications are considered in 

this Thesis. The symmetry refers to the exchangeability of pairs along the main diagonal (see 

red line in Figure 3.3). In a bivariate context these models are usually characterized by one 

parameter and as can be seen in the figure some examples are: Normal, Hüsler-Reiss and 

Joe, for which any pair of values has a corresponding one when swapping them with respect 

to the red line axis. If random variables are exchangeable then C(u,v)=C(v,u). The Tawn 

copula is as well included in the figure to illustrate an asymmetric model, these copulas are 

discussed later. 

 
Figure 3.3: Ability of different copulas to model t ail dependencies, symmetric and asymmetric 

relationship between variables. Red line represents  the axis of symmetry. 

The pairs of values shown in Figure 3.3 are visualized using hexagon binning, which is a 

form of bivariate histogram which shows the join-structure of big samples. The number of 

points falling within each hexagon is counted and a color ramp is used to show the proportion 

of points, light-colored hexagons indicate less points, whereas dark indicates a higher 

concentration of pairs. These plots are done using the hexbin R package (see Carr et al., 

2015). 

From these symmetric examples, the bivariate Normal copula is defined as: 

 �)��, �	 = ( ( ��*√��)%,-.�/	�0,-.�1	�0 exp �− 5%��)56�6%����)%	 � #� ∙ #8, (Eq. 6) 

where θ is the dependence parameter, u and v are the marginal distributions and Φ-1 is the 

inverse of the Standard Normal distribution. The univariate Standard Normal cumulative 

distribution function is: 

Normal Copula                Hüsler-Reiss Copula                Joe Copula                       Tawn Copula
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 Φ�:	 = �√�*( exp	�− <%� 	#=>�0 . (Eq. 7) 

Regarding the tail dependency, the Normal copula shows to mimic a similar behavior for the 

upper and lower tails as the distribution of pairs looks similar for the upper-right and lower-left 

corners (see Figure 3.3). This is not the case for the Hüsler-Reiss, which shows a different 

behavior for the two tails, the upper tail pairs show to be very concentrated around the main 

diagonal, whereas the lower ones are as well concentrated but in a lower degree compared 

to the upper tail. The Joe copula shows an even stronger difference between degrees of 

dependence for the two tails; with very spread pairs for the lower tail. The Hüsler-Reiss 

copula is described by one parameter. The equation for the bivariate case is defined as: 

 �)��, �	 = exp ?ln��	Φ B�) + ��C ∙ ln �DE�1	DE�/	�F + ln��	Φ B�) + ��C ∙ ln �DE�/	DE�1	�FG, 
(Eq. 8) 

where θ is the dependence parameter, u and v are the marginal distributions describing each 

of the variables and Φ stands for the univariate Standard Normal distribution. 

Additional asymmetric models described by more than one parameter (Tawn, Skew-t and 

Khoudraji transformation of Archimedean copulas) are as well included in the analysis to 

mimic the dependency of non-exchangeable variables. Such variables present some 

asymmetry with respect to the main diagonal, so that one variable cannot be exchanged by 

the second one, i.e. C(u,v)≠C(v,u); therefore some of the pairs of points cannot be captured 

by a symmetric copula. This is the case of the Tawn copula, shown in Figure 3.3 (right plot), 

which indicates the presence of pairs in the lower right corner, whereas in the upper left 

corner no pairs are present. Non-exchangeable dependence structures have been reported 

for some hydrological variables; see e.g. Vandenberghe et al. (2010) and Genest & 

Nešlehová (2013). The Tawn copula (see Tawn, 1988) is an asymmetric extension of the 

Gumbel copula, with two additional parameters that add flexibility to the model and has the 

following bivariate form: 

 �)��, �	 = ���	H� IJKIJ	�KL	�, (Eq. 9) 

where A(t) is the so called Pickands dependence function, defined for the Tawn copula as: 

A(t) = (ψ2-ψ1)t+(1-ψ2)+[(ψ2(1-t))θ +(ψ1t)
θ]1/θ and θ, ψ1 and  ψ2 and are the dependence and two 

additional asymmetry parameters. For the Gumbel copula ψ1=ψ2=1 (for further details see 

Bernard & Czado, 2015). 

Multivariate copulas have not been used for hydrological applications as often as bivariate 

ones, for which a well investigated rich variety of families is available. The increase of 

dimensionality makes the application and interpretation of results more complicated. 
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Modeling the dependence structure of several variables involved in a multivariate 

phenomenon is more challenging for high-dimensional cases. Recent research introduces 

pair-copula constructions to build flexible multivariate distributions (see Czado, 2010). The 

resulting model is called Vine copula and consists of decomposition of multivariate probability 

density into bivariate copulas. Bivariate models are combined as a cascade or nested set of 

trees to model multiple variables simultaneously.  Each pair-copula is selected independent 

from the others allowing for a very high flexibility in modelling different dependence 

structures (Brechmann & Schepsmeier, 2013).  

The use of Vine copulas for a n-dimensional application requires the decomposition of the 

problem into products of pairs, i.e. bivariate, copula densities and marginal densities. The 

pair-copula construction is defined by Joe (1996), Bedford and Cooke (2001), Aas et al. 

(2009) and Czado (2010) and the density is represented as: 

 M���, … , ��	 = ∏ ∏ O�,P���Q	|����	,…,���Q��	��Q��� ×∏ MT��T	�T�����Q�� , (Eq. 10) 

where the first double product of the equation corresponds to pair copula densities 

(conditional and unconditional pairs) whereas the third product, i.e. the fk, are the marginal 

densities of the n variables. If three variables are involved in the analysis, the density is 

presented as: 

 M���, ��, �U	 = O�U|�P × O�� × O�U × M����	 × M����	 × MU��U	, (Eq.11) 

where c13|2 is the conditional pair, c12 and c23 are the unconditional pairs and f1, f2  and f3 are 

the marginal densities of each of the variables. A graphical representation of this structure is 

shown in Figure 3.4, which includes a nested set of trees used to depict the decomposition. 

The Vine tree structure (Bedford and Cooke, 2001) indicates the order of dependency of the 

variables for a regular vine structure. 
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Figure 3.4: Example of components of a Vine copula in a trivariate context. Left: Marginal 

densities, unconditional and conditional pair copul a densities (under N(0,1) 
margins for visualization purposes). Right: Vine tr ee structure. 

Brechmann & Schepsmeier (2013) resume the following sequential steps to set up a Vine 

copula model: 

− Determination of adequate tree structure by estimation of empirical dependence 

measure for each pair and selection of the structure that maximizes the sum of 

absolute dependence structure (see Dißmann et al., 2013). 

− Selection of appropriate pair-copula families (for both unconditional and conditional 

pairs) by information criteria such as Akaike Information Criterion (see Brechmann et 

al., 2012; Dißmann et al., 2013). 

− Estimation of the corresponding parameter for each family by statistical inference 

(maximum likelihood, Bayesian approach, etc.). 
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3.3 SINGLE SITE PRECIPITATION MODEL 

The single site model involves the temporal simulation of rainfall time series for single 

locations. 

3.3.1 EXISTING MODEL (OLD MODEL) 

The existing model was developed by Haberlandt (1996). The aim of the model is to 

generate long synthetic 5-min time series based on the simulation of variables describing 

rainfall events. It is based on the theory of renewal processes and rainfall is described as two 

structures: external and internal. 

The external structure is the succession of independent rain events, each one described by i) 

time between two events or dry spell duration (DSD), ii) time of event in which rain occurs or 

wet spell duration (WSD), iii) total volume of rainfall falling during the event or wet spell 

amount (WSA) and iv) wet spell intensity (WSI) which is the ratio of WSA divided by WSD. 

The internal structure describes the distribution of the total rainfall within the wet spell and is 

defined by v) intensity of the peak (WSPeak) and vi) the time of occurrence of the peak 

(WSTpeak). The different variables can be visualized in Figure 3.5. 

  
Figure 3.5: External (left) and internal (right) st ructures of rainfall events for Old model. 

Defining rainfall events from the continuous series requires the setting of the following 

minimum values: wet spell intensity (WSImin=0.01mm/5min), wet spell amount 

(WSAmin=1mm) and dry spell duration (DSDmin=5min). These criteria provide events 

without dry time steps within the WSD and result in the exclusion of small events.  

Two of the variables involved in the external structure are directly modeled by probability 

distributions which are fitted to the observed time series of DSD and WSD. The WSA is 

derived from the WSD by simple linear regressions relating the WSD with different moments 

of WSA. The moments are then used for fitting a probability distribution from which a 

particular WSA is modeled. The WSI is estimated from pairs of WSA and WSD. 
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As the WSI is defined in the external structure of the model, this variable is used to estimate 

the following variable involved in the internal structure: WSPeak. For this purpose a simple 

linear regression between these two variables is used to derive the WSPeak from the WSI. 

The regression model is based on all observed events from all stations. To estimate a 

WSTpeak for each event, a simple model is applied which involves the use of a uniform 

distribution to randomly generate a value between 0 and 1, which is then multiplied by the 

WSD to derive the value of the time to peak. 

The internal structure of the rainfall event is modeled by a mixture of two exponential 

functions, both described by one parameter λ. The intensity is calculated for every time step 

with the following equation: 

 V�W	 = WSPeak ∙ exp	�O]�W −WSTpeak		 _O = +1, W < WSTpeak,O = −1, W ≥ WSTpeak.P (Eq. 12) 

 

The parameter λ is estimated on-line, i.e. for each event, by integrating the Eq. 12 over WSD 

which leads to the following equation: 

M�]	 = 1]WSPeak ∙ �2 − exp	�−]�WSTpeak		 − exp	�]�WSTpeak −WSD		 = WSA. (Eq. 13) 

 
The λ is therefore estimated based on the parameters describing the external (WSA, WSD) 

and internal (WSPeak, WSTpeak) structures of the event. 

For further details the readers can refer to Haberlandt (1996), only available in German, and 

a more compact explanation can be found in Haberlandt (1998), available in English. 

3.3.2 PROPOSED MODEL 

As was mentioned, the aim of the precipitation model is to generate long synthetic 5-min time 

series based on the simulation of variables describing rainfall events. Therefore most of the 

concepts described in this sub-Chapter are valid as well for the multi-site and regionalization 

of the model. The proposed model is derived from the “Old Model” and some important 

improvements are implemented which are described in the following paragraphs. The same 

variables are used to describe events and the external and internal structures are presented 

in Figure 3.6. The definition of rainfall events from the continuous series is done following the 

same criteria, thus events consist of continuous rainfall within the WSD and result in the 

exclusion of small events that are later added back to the model.  
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Figure 3.6: External (left) and internal (right) st ructures of rainfall events for proposed model. 

The proposed external structure is modeled by probability distributions which are fitted to the 

following variables: DSD, WSD and WSA. The WSI is estimated from pairs of WSA and 

WSD. Seasonality is included by modeling the marginal behaviour of the different variables 

separately for summer and winter, i.e. dividing the year into two seasons according to the 

nature of the physical processes causing the events. Several probability distributions are 

included in the frequency analysis of the different variables. These distributions are 

described by different number of parameters and several methods of estimating the 

parameters are applied, i.e. method of moments, maximum pseudo-likelihood and L-

moments. L-moments are equivalent to moments but estimated by a linear combination of 

order statistics (see Hosking, 1990). The considered distribution functions include: 

Exponential (1 and 2 parameters), Normal (2 and 3 parameters), Lognormal (2 and 3 

parameters), Weibull (2 and 3 parameters), Gamma, Gumbel, Generalized Extreme Value, 

Generalized Pareto, Pearson  type 3, Rayleigh, Reverse Gumbel, Generalized Logistic, 

Generalized Lambda, Wakeby, Generalized Normal and Kappa. In the case of WSA a 

mixture model is also considered in the analysis which is a combination of a Weibull 

distribution (for the bulk model) and a Generalized Pareto (for the tail) with a transition 

function described by a Cauchy distribution.  

The aim of the internal structure is to distribute the total amount of rainfall within the wet 

spell, by modeling a peak-type structure of the event and guaranteeing the conservation of 

volume. Different popular models exist for estimating the shape of hyetographs for design 

purposes, see Nguyen et al. (2002) or Alfieri et al. (2014) for a review and comparison of 

some of them. Some approaches suggest simplifying the shape, e.g. Garcia-Guzman & 

Aranda-Oliver (1993) propose the use of beta distribution functions, whereas an Euler type 2 

distribution is applied according to German design standards (DWA, 2006). In this work a 

mixture of two exponential functions similar to the one involved in the “Old Model” is used. An 

advantage of applying this type of shape is that the event duration, volume and peak 

intensity are exactly reproduced. The adoption of this shape implies a simplification of the 

real internal behavior, but was shown to be acceptable by Haberlandt (1996). Experiments 
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carried out within this Thesis have shown that profiles with rainfall concentrated around the 

peak lead to flood events which occur in shorted periods of time and therefore to 

overestimation of their volume. For this reason the shape parameter of the exponential 

functions is estimated considering a fraction of the peak intensity, i.e. one third of peak 

intensity minus the event intensity (see right image of Figure 3.6). This leads to events with 

rainfall volume spread along their durations which are more consistent with observations. 

Several works state the fact that the variables describing a rainfall event, like total amount, 

intensity and peak, are generated by the same physical phenomenon, and therefore the 

dependence structure between these variables should not be neglected (Grimaldi & 

Serinaldi, 2006; Serinaldi & Kilsby, 2013). Significant dependence structures linking WSD 

and WSI or WSA have been reported by several authors (see e.g. Salvadori & De Michele, 

2006; Balistrocchi & Bacchi, 2011; Vandenberghe et al. 2011; Kaczmarska et al. 2014). To 

include the dependence structure between some of the variables describing rainfall events, 

bivariate frequency analysis is performed with the aid of the copula models. Copulas are 

used here for modeling the joint behavior of WSA-WSD and WSI-WSPeak (see right images 

in Figures 3.7 and 3.8). As was mentioned earlier copulas are used for simulating pairs of 

pseudo-observations, which are then transformed to observations by the inverse marginal 

distributions describing the different involved variables (for further details see Genest & 

Favre, 2007). The following symmetric copulas commonly used in hydrological applications 

are considered in this work: Clayton, Frank, Galambos, Gumbel, Hüsler-Reiss and Normal. 

They are described by 1 parameter which is estimated using the moment-like and pseudo-

likelihood methods. Additional asymmetric models described by more than 1 parameter 

(Tawn, Skew-t and Khoudraji transformation of Archimedean copulas) are as well included in 

the analysis to mimic the dependency of non-exchangeable variables. The DSD is modeled 

directly and not related or conditioned to other variables (see left image in Figure 3.7) with 

the assumption that the dependency between wet and dry spell durations is not significant. 

 
 

Figure 3.7: Stochastic modeling of DSD (left) and WSD-WSA (right). 

DSD

Probability Density Function
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As in the “old” model WSTpeak is estimated for each event with a uniform distribution that 

provides values between 0 and 1 for the ratio WSTpeak/WSD (see left image Figure 3.8). 

This model results in time series that are irreversible in time, as only events with a ratio of 0.5 

would have the same shape for the original and reversed direction. Temporal irreversibility is 

a natural property in precipitation time series and as shown by Müller et al. (2017) can have 

significant implications on flow simulations. 

  
Figure 3.8: Stochastic modeling of WSTpeak (left) and WSI-WSPeak (right). 

The small events with WSA lower than 1 mm can have an important impact in urban 

hydrological simulations, especially for simulations performed in a continuous way. To 

include them, their total seasonal contribution is calculated as a volume for each station and 

a set of small events from all stations is created (see right image in Figure 3.9). They are 

incorporated in the times series by randomly selecting DSDs and assigning small events 

from the observed set until the total contribution is reached. Most of the small events occur 

directly before or after larger events (WSA≥1mm) as can be seen in Figure 3.9 (left image). 

Therefore the histogram is used for allocating each small event within a DSD by attributing 

higher probabilities to time steps close to large events. 

WSTpeak/WSD

Probability Density Function
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Figure 3.9: Temporal location of small events with respect to events (left) and pairs of WSA 

and WSD describing small events (right). 

All the estimations for univariate and copula analysis and synthesis presented in this work 

are performed using R (R Core Team, 2016) a free software environment for statistical 

computing.  The parameters of the marginal distributions are estimated by the L-moments 

Method using the Lmomco package (see Asquith, 2016), and Method of Moments and 

Maximum Likelihood with the Fitdistrplus package (see Delignette-Muller et al., 2010). The 

mixture model is applied with the aid of the Evmix package (see Scarrott & MacDonald, 

2012; and Hu, 2013). The Copula (see Yan, 2007; Kojadinovic & Yan, 2010; Hofert & 

Maechler, 2011; Hofert et al., 2015), CVine (see Brechmann & Schepsmeier, 2013), 

VineCopula (Schepsmeier et al., 2016), sn (see Azzalini, 2015) and GenSA (see Xiang et al., 

2013) packages are used for the parameter estimation of the copula models and the 

synthesis of random pairs of dependent variables.  

A summary and graphical explanation of different steps involved in the synthesis of rainfall 

time series for single sites with the developed method is included in Appendix A. 
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3.4 MULTI-SITE PRECIPITATION MODEL 

The multi-site model involves the temporal and spatial simulation of rainfall time series for 

several locations simultaneously. 

3.4.1 PROPOSED MODEL 

In this Thesis a multivariate approach using copulas is presented to extend the single site 

precipitation model to a multi-site synthesis. To generate several spatially correlated time 

series a methodology is proposed which involves firstly a hybrid model that defines the 

locations in which rainfall events are occurring simultaneously and a subsequently 

multivariate copula models used to generate synthetic events for the different locations. Vine 

copulas are used for this purpose which, as was mentioned previously, consists of 

decomposition of multivariate probability density into bivariate copulas. Thus the method 

presents the advantage of using 2-dimensional models for which a well-investigated variety 

of families is available and results in high flexibility to reproduce different dependence 

structures (Brechmann & Schepsmeier, 2013). The Vine copulas are used to simulate 

pseudo-values of WSA and WSD for the different locations.  

Consequently pseudo-values are bias corrected and transformed to real values using 

probability distributions fitted to all events observed in each of the stations. In order to obtain 

continuous time series dry spells must be introduced between rainfall events. Under the 

hypothesis that wet and dry spell durations are not correlated, the DSD are introduced into 

the model randomly for one of the stations, and then adjusted for the rest of the stations 

according to the wet spell durations in order to ensure that events occurring in several 

stations simultaneously are consistent in the temporal occurrence. Different subsamples of 

this variable are considered for the random sampling. The general procedure for 

incorporating DSD is explained in more detail in the Results Chapter (Sub-Chapter 5.3). In 

the last step the continuous series of events are converted to time series of 5 minutes in a 

similar way as for the single site model. 

Bacchi & Kottegoda (1995) discuss about spatio-temporal correlation structures of rainfall 

events, and point out that these patterns are affected by topography, orography, coastal 

influences and the type of storm according to the season. Intense storms have an elliptical 

shaped field influence, whereas long lasting duration storms show a multi-cellular shape. In 

this Thesis, the identification of events occurring simultaneously is performed with a moving 

window of ± 1.5 times the WSD which is applied at the starting of each event in order to 
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decide whether events registered in different stations occur simultaneously or not. As in the 

single site model, summer and winter events are handled separately. 

The hybrid model is set up to simulate long time series of events occurring in 1, 2, … , k 

stations. Percentages of events occurring in 1, 2, … , k stations along with percentage of 

events occurring at each of the stations estimated from observations are included within the 

model. The model results in a long time series of event occurrences in 1, 2, … , k stations 

along with the assignation of the event to particular station/s. Therefore a time series of event 

occurrences consisting of 0s and 1s is assigned to each of the k involved stations, with 0 

meaning no event and 1 meaning event occurring at a particular station. 

The next step is to assign event characteristics to the cases designated as with occurrences. 

For this step different Vine copula models are set up and used according to the number of 

stations in which events occur simultaneously. Figure 3.10 shows a pairs plot of the joint 

distribution of pseudo-values of hypothetical events occurring in two stations simultaneously, 

with scatter plots above and contour plots (under N(0,1) margins) below the diagonal. This 

information is used for setting up the Vine copula to model events occurring in two stations. 

Events are characterized by WSA and WSD for each station which are transformed to 

pseudo-values using the corresponding empirical distribution function. Pairs of pseudo-

values of WSA-WSD corresponding to each of the two stations are marked with red boxes 

(with continuous lines) and indicate non-exchangeable behaviour.  

 
Figure 3.10: Pairs plot of pseudo-values of events registered in two stations simultaneously. 

Diagonal: histogram of marginals. Upper triangular matrix: bivariate scatter plots 
with Kendall’s Tau between pairs in red. Lower tria ngular matrix: contour plots 
with standard normal margins. 
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The structure of the vine trees are set up to guarantee that the first one contains the copulas 

modeling the pairs of WSA and WSD for each of the stations. Additionally highly correlated 

pairs of variables (high Kendall’s Tau correlations) are as well included in the first tree. This 

type of tree structure results in bivariate copulas that are unconditionally modeling the pairs 

of variables WSA-WSD for each of the stations along with the highly correlated pairs, i.e. the 

pairs involved in the first level. The selection of the type of copula and estimation of 

parameters for each of the pair of variables is done in a sequential way and the algorithm is 

provided in the VineCopula R package (see Brechmann et al., 2012; Dißmann et al. 2013). In 

order to guarantee a suitable modeling of WSA-WSD, the selected copula is supervised to 

see whether it is capable of modeling non-symmetric pairs, as is the case of the Tawn copula 

(see sub-Chapter 3.2), in case of presence of non-exchangeable variables. The general 

structure of the vine-copula model set up for the hypothetical case involving 2 stations 

previously presented is shown in Figure 3.11. All pairs of variables marked with red boxes 

are involved in the first tree of the structure. From these the pairs of WSA-WSD for each of 

the stations are pursuit to be modeled by a Tawn copula. The pairs of WSD for both stations 

shows to have the highest correlation (see Kendall’s Tau in Figure 3.10). The subsequent 

trees (2 and 3) involve the conditional pairs. 

 
Figure 3.11: Components of a Vine copula to model e vents occurring simultaneously in two 

stations. Left: Marginal densities, unconditional a nd conditional pair copula 
densities (under N(0,1) margins for visualization). Right: vine tree structure. 
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Tree structures are pre-defined for different cases. Events occurring in only one station 

comprise two variables WSA and WSD and are therefore modeled by a Vine copula 

consisting of one tree with one bivariate model. As shown in the preceding figures events 

occurring in 2 stations simultaneously, involve four variables, i.e. the WSA and WSD 

corresponding to each of the stations, and 3 tree levels. Cases involving occurrence in 3 

stations, the dependence structure between 6 variables is to be modeled, resulting in 5 levels 

of trees and 15 different bivariate models. For cases including more than 2 stations, the 

conceptual illustration gets complex, and therefore lower triangular arrays established by 

Morales-Nápoles (2008) are advantageous for tree structure definition. The pre-defined tree 

structures for two cases are presented in Figure 3.12, in which WSA_i and WSD_i are the 

amounts and durations of events registered in the i station, with i being one of three stations 

x, y or z. These lower triangular arrays are read as follows: the boxes in gray color indicate 

the variables that are modeled by a bivariate copula with the different variables in the 

corresponding column and different tree levels. So for the 2 stations case (left plot) and first 

tree structure, the following pairs are modeled by bivariate copulas: (WSA_x,WSD_x), 

(WSA_y,WSD_y) and (WSD_x,WSD_y). In the second tree the bivariate copulas are 

conditioned to variables used in the first tree and the following pairs are modeled: 

(WSA_x,WSD_y) conditioned to WSD_x and (WSA_y,WSD_x) conditioned to WSD_y. In the 

third tree a bivariate model relating (WSA_x,WSA_y) is used conditioned to WSD_x and 

WSD_y. The same logic is followed to interpret the structure predefined to model events 

occurring in three stations (right plot). So in the first tree the following variables are modeled 

by a pair-copula: (WSA_x,WSD_x), (WSA_y,WSD_y) , (WSA_z,WSD_z), (WSD_x,WSD_y)  

and (WSD_x,WSD_z). It is the aim to directly model the variables of WSA and WSD for each 

of the stations in the first step of simulation. 

 

 
Figure 3.12: Predefined tree structure for the vine -copulas simulating rainfall events occurring 

simultaneously in two stations (left plot) and thre e stations (right plot). 
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The probability distribution describing the different event characteristics, i.e. WSA, WSD or 

DSD, are estimated based on all events registered in each of the stations (see black dots in 

Figure 3.13). Therefore in order to transform the pseudo-values resulting from the different 

Vine copula models to values of events occurring in one isolated site, or in several sites 

simultaneously a Bias correction needs to be introduced. Isolated events are usually 

characterized by short durations, whereas events registered in several stations are usually 

longer and characterized with a bigger amount of rainfall. This behavior can be seen in the 

following figures (see Fig 3.13) for a case in which 3 stations are involved and therefore 

events are assigned to occur in either 1, 2 or 3 stations.  

  
Figure 3.13: Characteristics of rainfall events occ urring in 1, 2 or 3 stations simultaneously. 

 
To summarize the proposed method involves different steps which are sequential for setting 

up the model, i.e. data based analysis and then application of the model to generate long 

time series. The analysis of data is described by the following steps: 

1. Rainfall events are identified for each of the stations.  

2. Events are compared for the multiple sites to define events occurring simultaneously 

in several sites.  

3. Events are separated according to the season and the occurrence in 1, 2, … , k 

stations.  

4. For each group of events a multivariate frequency analysis, ranging from 2-variate for 

events occurring in 1 station (WSA-WSD) up to 2·k-variate for events occurring in d 

stations (WSA-WSD for each station), is performed with the aid of Vine copulas.  
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5. A Bias Correction is performed for each station by comparing the complete time 

series of events with the events belonging to the different groups, i.e. events 

occurring at 1, 2, … , k stations.  

The simulation of time series for multi-sites involves several steps: 

1. A hybrid model is used to generate the occurrence of rainfall events in simultaneous 

stations.  

2. Pseudo-values of WSA and WSD are generated either for one or several stations 

simultaneously using bivariate or Vine copulas.  

3. Pseudo-values are bias corrected and transformed to real values by using probability 

distributions fitted to events registered in each station.  

4. Dry spells are introduced into the time series for one of the stations and adjusted for 

the surrounding ones.  

5. Finally the continuous series of events are converted to time series.  

A summary and graphical explanation of different steps involved in the synthesis of rainfall 

time series for multi-sites with the developed method is included in Appendix B. 

3.4.2 ALTERNATIVE APPROACH: SIMULATED ANNEALING  

An alternative method is used to compare the proposed methodology. This method is called 

simulated annealing, explained and applied to hourly rainfall time series by Haberlandt et al. 

(2008). The method consists of two steps, first a temporal stochastic synthesis of rainfall is 

performed in different stations as single sites, i.e. neglecting the spatial consistency between 

them. In the second step the rainfall events from the different stations are resampled to 

reproduce the spatial dependency among the stations according to the distance between 

them. The resampling consists of a non-linear discrete optimization method and the aim is to 

minimize an objective function which takes into account the difference of spatial dependency 

structure between observed and simulated time series.  

Three different spatial consistency measures are taken into account, all comparing 5-minutes 

time series of continuous rainfall from two sites, i.e. bivariate criteria. Different weights are 

assigned to each measure within the objective function. The first criterion was proposed by 

Wilks (1998) and consists of a continuity measure, the second is the Pearson’s coefficient of 

correlation and the third one accounts for the probability of rainfall occurrence at both 

stations (p11). These measures have the following equations:  
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 �f!WV!�VW8�− = g�>�|>� Ph$,>i�$	g�>�|>� Ph$,>ih$	, (Eq. 14) 

 �fjjklmWVf!�− = nop�>�|>� Ph$,>iq>i Ph$	rstu�>�|>� Ph$	×stu�>iq>i Ph$	 and 
(Eq. 15) 

 v11�− ≈ ���� , (Eq. 16) 

where zi and zj are the 5-minute rainfall time series at stations i and j. E(.) is the expectation, 

cov(.) is the covariance and Var(.) is the variance operator. n11 is the number of time steps 

with rainfall occurrence in both stations and n is total number of time steps. The continuity 

expresses the ratio of expected amount of rainfall at one station for time steps without rainfall 

at the neighboring station, to the expected amount at the station for time steps with rainfall at 

the neighboring one. The lower this continuity measure the higher the interrelation between 

stations, and the opposite for the correlation and p11. 

3.5 REGIONALIZATION OF PRECIPITATION 

The regionalization of the model involves the temporal simulation of rainfall time series for 

single locations without observations. 

3.5.1 GENERAL CONCEPTS 

The regionalization of the model, i.e. the synthesis of rainfall time series in areas without 

observations, consists of estimating the different functions involved within the model for any 

location by using information from the sites with observations along with additional data 

available for the whole region. 

The different groups of variables to regionalize considered in this work are divided into 4 

cases: the parameters describing the different probability distributions, the L-moments (LM) 

describing the rainfall characteristics (3 or 4 LMs according to the characteristic), the 

“orthogonal” set of parameters and the “orthogonal” set of LM. The last two cases consist of 

a transformation of the original parameters and LMs which removes the significant 

correlation between the sets to perform the regionalization into this transformed set. The 

orthogonalization method applied here is the Gram–Schmidt process, which uses projection 

to transform the original variables to the new sets (for further details see Anton, 2000). After 

the orthogonalized parameters/LMs are regionalized, the transformed variables must be 

retransformed to the original system. The projection operator is assumed to remain constant 
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for this purpose, i.e. the same proportion for the projection is applied to the regionalized 

values. 

It is important to mention that for any of the 4 cases considered it is necessary to set up a 

priority of the variables to regionalize. The inclusion of the remaining parameters/LM to be 

used as additional variables in case of significant correlation is performed in a stepwise way, 

i.e. the first variable to estimate does not use any additional information from the rest of the 

parameters/LM, whereas the second uses the first one as additional, the third uses the first 

and second and so on. On the other hand, the first step of the orthogonalization process 

involves the selection of a first vector that remains constant and is used to project and 

transform a second one, the first and second are used for transforming a third one, and so 

on. Therefore for either of the cases a first set of variables will be regionalized deprived of 

the benefit of using the information from the rest. To define which variable to estimate in the 

first, second step and so on, a sensitivity analysis is performed to study the effect of 

over/under-estimating each parameter/LM into the resulting model. The parameters and LM 

are estimated based on a long time series of observed events and then each value is altered 

(±10, 50 and 100% of the original values) to derive new model parameters. The alterations 

are performed individually for each case, i.e. the correlation between the different variables is 

neglected in this analysis. The models resulting from the different sets of parameters are 

used for generating long time series of events which are compared with the observed ones 

and the maximum distance between the two distribution functions is computed. The aim is to 

decide for each of the models the parameter/LM for which the deviation between both curves 

is the lowest for the different considered alterations (the least sensitive), and then this 

parameter/LM is set as the first one within the interpolation procedure. The parameters/LMs 

that show the highest sensitivity are interpolated in the last step of calculation, and favor from 

using the additional information of the ones interpolated previously. 

3.5.2 PROPOSED METHOD 

The proposed method for regionalizing the precipitation model consists of estimating the LMs 

of the characteristics describing rainfall events based on other information describing the 

sites (SDs) which are available for the whole space to be regionalized. Different order of LMs 

describing the components of the external structure (DSD, WSD and WSA) are estimated for 

each station and season. Then SDs which provide with different type of information 

describing the locations are used for estimating the LMs. The joint behavior between LMs 

and SDs is modeled with the aid of different copulas which result in high flexibility to 

reproduce different dependence structures. As some LMs describing each characteristic 
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show to be significantly correlated, they are also included in the regionalization in a 

sequential way, i.e. only in cases in which they have been previously estimated. 

The dependence between the target LMs and each SD is measured by means of Kendall’s 

Tau coefficient using the information from all stations. For each target LM bivariate models 

are fitted to each SD. As the bivariate models are copulas the different variables are related 

as pseudo-values. Each fitted copula is used to generate a sample of the target LM for a 

particular station based on the SD corresponding to that station. The amount of values to be 

generated by each copula is proportional to the Kendall’s Tau correlation between the target 

variable and the descriptor. The descriptors used for simulating possible values are limited to 

the ones with absolute Kendall‘s Tau higher than 0.4, this way only variables with some 

degree of correlation are included. For some of the target LMs previously estimated LMs are 

as well included in the analysis in a similar way as SDs.  

Figure 3.14 provides an example of the proposed method for one particular LM to be 

estimated based on three SDs. The first column shows the joint behavior and Kendall’s Tau 

of target LM and each SD based on all stations. Each pair of variables is used to fit a copula 

model. The purple horizontal lines indicate the value of pseudo-SDs for a particular location. 

In the second column possible values of the target variable are shown as density functions, 

which are generated from each of the copula models conditioned to the pseudo-SD 

corresponding to the location of interest. In the third column the final result of all possible 

target LM is presented by mixing values generated using the different descriptors. The 

vertical red line indicates the targeted value of the LM, i.e. the one estimated from 

observations in the particular location. From all possible values any random value could be 

taken, in this Thesis the median is taken as estimated pseudo-LM. As mentioned a limiting 

value of ±0.4 for Kendall’s Tau is set up, so the SD shown in the third line would be excluded 

from the analysis. From the other two SDs the one shown in the first line shows the highest 

correlation and will therefore provide with more possible values of target LM, i.e. 56.4% of 

values resulting from the proportion of correlations 0.53/(0.53+041), whereas 43.6% will be 

provided by the second SD (0.41/(0.53+0.41)). 
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Figure 3.14: Graphical explanation of the procedure  for a case with 3 Site Descriptors. 

Note that the copula based model provides regionalized pseudo-LMs which need to be back 

transformed to the original LM space by probability distributions. The univariate fitting of 

these models is based on all stations and following a procedure similar to the one presented 

in section 3.3.2. The regionalized LMs are then used to estimate the parameters of the 

functions describing the characteristics of the rainfall events. Some LMs need to be modified 

to fulfill minimum possible values (5 min for DSD and 1 mm for WSA).  

The regionalization of the model explained here includes the probability functions of the 

variables describing the external structure of the precipitation model. The rest of the 

elements involved in the model are taken as regional elements based on all stations and 

therefore do not need to be regionalized. That is the case of the elements involved in the 

internal structures, the set of small events and the Copula model relating the WSA-WSD 

which are defined for each season and the whole region. The total volume and seasonal 
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proportion of small events are regionalized for each station by Nearest Neighbor (NN), i.e. by 

taking the value of the corresponding closest station.  

A summary and graphical explanation of different steps involved in the synthesis of rainfall 

time series for sites without observations with the developed regionalization method is 

included in Appendix C. 

3.5.3 ALTERNATIVE APPROACHES: MLR AND RFA 

In order to evaluate the copula based proposed approach other existing methods commonly 

used for regionalization of hydrological variables are applied. The final objective of the 

regionalization methods is to estimate long time series of rainfall events that properly 

reproduce the properties of the observed ones. Two alternative methods are applied for this 

purpose which involve either the estimation of LMs by multi-linear regression (MLR) or the 

estimation of the whole probability distribution by regional frequency analysis (RFA). All 

approaches are based on the same set of site descriptors used for the copula approach. 

The LMs are regionalized using multi-linear regression (MLR). The site descriptors are used 

as explanatory variables along with significantly correlated LMs, which are included in the 

MLR in a sequential way, i.e. only in cases in which they have been estimated previously. To 

avoid colinearity between SDs partial correlations are analyzed (see Cox & Wermuth, 1996) 

and only SDs with values lower than 0.7 are included in the models estimation. A stepwise 

method is applied to define which variables should be included in the MLR model (stepwise 

model selection by Akaike Information Criterion, for more details see Venables & Ripley, 

2002). 

A method that has become very popular for several hydrological applications is the Regional 

Frequency Analysis (RFA). Therefore the variables describing the external structure of the 

model have been analyzed to test this popular method for generating time series in locations 

without observations. A brief description of the main steps involved within the method are 

resumed here and further details can be found in Leimbach (2017) where the method is 

applied to the same data sets used in this Thesis. The steps involved in the RFA follow the 

approach proposed by Hosking & Wallis (1997) and are performed with the following 

particular methods: 

1. Selection of the Site Descriptors (SDs) to be included in the analysis which is 

performed with a non-linear approach called Random Forest 
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2. Grouping/clustering of the stations performed based on the selected SDs and 

applying the Partitioning Around Medoids method. 

3. Normalization of time series by dividing each value with the flood Index, which in this 

case is the LM1 of the corresponding rainfall characteristic and station. 

4. Normalized time series from stations belonging to one cluster are grouped together 

and Regional Frequency distributions are fitted for each of the clusters and rainfall 

characteristics. 

5. Regionalization of LM1 for each station and rainfall characteristics using MLR 

method. 

Three different regionalization methods are compared in this Thesis: copula-based, MLR and 

RFA. The first two methods aim to regionalize LMs, whereas RFA relies on the LMs for the 

grouping of the stations and results in a regional probability distribution for each of the 

groups. Despite of the methodological difference between these methods, they are all set up 

based on the same available information; hence a comparison among them is appropriate. 

3.6 APPROACH FOR VALIDATING THE MODELS 

Given that the precipitation model is stochastic the performance is assessed on the basis of 

ensembles of many long synthetic time series which are compared with observed rainfall for 

a set of rainfall stations. Direct validations are performed by comparing different rainfall 

characteristics. Some of the tests are evaluating the external structure of the model, i.e. 

event based validation, whereas the final time series in 5 minutes temporal resolution, i.e. 

including the external and internal structures, are as well validated. Extreme values are of 

main interest in urban hydrology and are therefore evaluated separately for both cases. 

Event based validations have the advantage that they can be applied much faster compared 

to the ones based on the final 5 minutes time series, and are therefore very useful for 

comparing several models. Since a high temporal resolution is to be assessed, synthetic time 

series are indirectly validated based on hydrological modeling using a fictional urban system.  

Several characteristics of the rainfall events are of interest for the present work, and thus 

should be evaluated to define whether the model is properly reproducing them. Validation is 

done based on i) event statistics, ii) total rainfall, iii) statistical properties for different temporal 

resolutions, iv) temporal correlation, v) extreme values and vi) intensity duration frequency 

curves. For the multisite modeling some additional spatial consistency properties are as well 

included. Indirect validation of the model evaluates the response of the hydrological model in 

terms of the ability to simulate the duration and volume of i) overflow and ii) flooding events. 
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Deviations between observed and simulated variables are calculated as relative percentages 

for each station (Equation 17) or as errors averaged over all stations, i.e. relative standard 

error (Equation 18). These errors are computed as: 

 xjjfj�% = z�∗�z�z� ∙ 100, (Eq. 17) 

 }~x�− = �1�����∗ − ���� ���
��� , (Eq. 18) 

where N is the total number of stations, Zi* and Zi are characteristics (e.g. moments, total 

seasonal rainfall, etc.) estimated using either the long synthetic time series or the observed 

one for a particular station i. Positive errors resulting from Equation 17 indicate 

overestimation by synthetic series. 

Values resulting from several stations (e.g. errors) are presented as violin plots, which are a 

combination of box plots (black boxes showing the 0.25 and 0.75 quantiles) and density 

traces (see e.g. Figure 3.15). The combination of summary statistics and density shape into 

one diagram allows for quick and clear comparison of several model results (for further 

information the reader can refer to Hintze & Nelson, 1998). The density trace can be plotted 

symmetrically to the left and right of the box plot, or when the data is split into two groups 

(e.g. summer and winter) the violins can be split in half for an easy comparison between the 

distributions belonging to the groups. All violin plots are done using the vioplot R package 

(see Adler, 2015). 

3.6.1 DIRECT VALIDATION (RAINFALL BASED) 

3.6.1.1 All Events – External Structure 

Statistics of different variables describing the external structure of rainfall events (DSD, WSD, 

WSA and WSI) are compared. The Mann-Whitney (MW) test is used for this purpose, which 

according to Fagerland & Sandvik (2009), asses to decide whether 2 populations are 

identical, or whether they differ in some way, i.e. in the mean, variance, skewness or a 

combination of them. For each station 100 synthetic realizations with length equal to 

observed time series are used. Cases in which the p-value of the statistic is lower than 5% 

indicate that the two compared series are not identical (a model with p-value higher than this 

critical value is acceptable). Examples of p-values resulting from different deviations between 

distributions are shown in Figure 3.15 (left plot). 
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Figure 3.15: Example of p-values resulting from the  Mann-Whitney test (left) and Cramér-von 

Misses test (right). 

The same procedure is followed to apply the Gini test and assess the performance of the 

model in terms of reproducing the variance. The test is applied to the cases for which the 

MW test shows acceptable results (for further details see Sordo et al., 2016). Different 

moments (mean, standard deviation, skewness and kurtosis) describing time series of event 

characteristics are as well evaluated and presented as RSE for all stations (see Equation 

18).   

3.6.1.2 All Events – External and Internal Structure 

Total seasonal rainfall is evaluated and compared with observed values and errors are 

computed using Equation 17. The performance of the model for increased temporal 

resolutions is as well evaluated based on long time series (observed and synthetic) which 

are aggregated to different temporal resolutions (original 5 minutes, 1 hour, 6 hours and 1 

day). Thereafter wet time steps are identified for each time series, using the following 

thresholds for defining a time step as wet: 0.01 mm (5 minutes), 0.1 mm (1 and 6 hours) and 

1 mm (1 day). Mean values of wet time steps along with the fraction of these steps are 
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estimated and deviations between synthetic and observed values are estimated using 

Equation 17. Temporal persistence of the original 5 minutes time series is another 

characteristic that is of interest when modeling rainfall. It is important to stress that the 

internal structure of the model proposed here does not aim to mimic the observed 

autocorrelations and thus overestimation is expected due to this fixed geometric structure 

(double exponential function). Nevertheless this characteristic is evaluated.  

The multi-site precipitation model is evaluated in terms of reproducing the spatial 

dependence structure of the rainfall process. Different measures are used to compare 

observed and synthetic rainfall series based on single stations and areal precipitation. Three 

spatial consistency measures are used in this Thesis, all comparing 5-minutes time series of 

continuous rainfall from two sites, i.e. bivariate criteria. The first criterion is the continuity 

measure (see Eq. 14), the second is the Pearson’s coefficient of correlation (see Eq. 15) and 

the third one was proposed by Mehrotra et al. (2006) and is denominated the Log-odds ratio. 

This last measure has the following equation:  

 Log-Odds�− = log �$$�,i×����,i��$�,i×�$��,i, (Eq. 19) 

where p11i,j, p00i,j, p10i,j and p01i,j are the joint probabilities of rain (1) or no-rain (0) at 

stations i and j, i.e. p11i,j indicates the probability of rain at both stations. These probabilities 

are calculated by the number of time steps for each of the cases over the total number of 

time steps (see e.g. Eq. 16). The Log-odds ratio takes into account the probabilities of either 

rain or no-rain in two stations simultaneously. High values of this ratio indicate high spatial 

interrelation between two stations, as was the case for the correlation coefficient, whereas 

the opposite is valid for the continuity measure. 

An additional measure of spatial dependence is the comparison of the spatially averaged 

rainfall amount over the region. For this purpose each of the stations involved in the multi-site 

modeling is assigned an area of influence within the region by simple Thiessen polygon 

method. Time series resulting from this areal rainfall estimation are used for evaluating the 

model in terms of reproducing event characteristics, proportion of time steps with rainfall and 

total seasonal amounts. 

3.6.1.3 Extreme Events – External Structure 

Extreme values are evaluated applying the Cramér-von Mises (CvM) goodness of fit test. For 

this purpose a Gumbel distribution (see Equation 20) is fitted to the maximum annual values 

resulting from 1000 years of synthetic series, and then the maximum annual observed values 
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are tested to decide whether they belong to the fitted model. The cumulative distribution 

function of the Gumbel distribution is defined as follows: 

 ���	 = exp �−exp�−� − �� ��, (Eq. 20) 

where ξ and α are the location and scale parameters, respectively. P-values of this statistic 

which are lower than a critical limit (5% of confidence level) indicate that the extreme 

observed events do not belong to the theoretical model describing the long synthetic series. 

It is important to mention that the extreme values are associated to different durations of 

events, ranging from 5 minutes to 3 hours. For each case, the analysis is performed 

including all events with WSD equal or longer than the particular duration to find the 

maximum values and events are treated as blocks, i.e. only the external structure is involved. 

A model that performs satisfactorily would indicate p-values higher than the critical limit. 

Examples of p-values resulting from different deviations between empirical and theoretical 

distributions are shown in Figure 3.15 (right plot). 

For the regionalization an additional analysis is included that involves the estimation of 

rainfall intensities associated to different durations and return periods and estimated from the 

fitted Gumbel distributions. The selected durations are 5, 15, 30, 60 and 180 minutes and the 

return periods 2, 5, 10 and 20 years. The procedure is done based on observed and 

synthetic time series. Errors are then calculated by comparing resulting extreme intensities 

from both time series. 

3.6.1.4 Extreme Events – External and Internal Structure 

A comparison based on intensity duration frequency curves (IDF), which are commonly used 

for urban hydrological design (see Koutsoyiannis et al. 1998; Ariff et al., 2012), is as well 

included. The curves are constructed by univariate rainfall frequency analysis from observed 

and synthetic time series based on moving windows of different durations (from 5 minutes up 

to 1 day) and for the return periods of 1, 2, 3, 5, 10 and 20 years. Stations with long 

observations are selected for this comparison. The analysis is performed according to design 

standards available for the study region (DWA, 2012). i.e. Gumbel distributions (see Eq. 20) 

are fitted to time series for the different durations. The synthetic time series comprise here 

ten realizations with length equal to observed time series. Errors between observed and 

synthetic intensities (median from realizations) are computed for each duration and return 

period using Equation 17. Zi* and Zi are amount associated to one return period and one 

duration estimated using the Gumbel distribution fitted either to the synthetic or observed 

time series. Positive errors indicate overestimation by synthetic series. 
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For comparison, a similar analysis is performed based on IDFs available for design 

purposes. Available IDF are used to extract design rainfall events corresponding to the 

selected durations and return periods which are compared with IDFs constructed based on 

observations. These values are as well included since it is a common worldwide practice to 

use this data for dimensioning sewer networks, rainwater retention basins, infiltration 

systems, etc.  

For the multi-site model the spatially averaged rainfall time series are used for constructing 

the IDFs. For the IDFs available for design practice an average is as well calculated based 

on the area where the multiple sites are located and a Reduction Factor is applied (more 

details are presented in the Sub-chapter 4.6).  

3.6.2 CROSS-VALIDATION  

The leave-one out cross-validation (LOOCV) is performed in order to evaluate the 

regionalization of the model. The principle is very simple and consists of estimating the value 

of a variable for a particular location based on information from all other locations, i.e. 

excluding the sample value at that location. Thereafter the value is replaced by its original 

value and used for estimating variables for other locations. So for each station, the 

parameters of the models (regional frequency distributions, flood indexes or copula models 

along with the marginal distributions) are re-estimated using all the remaining stations. 

As was explained different regionalization methods are included within this Thesis, i.e. the 

copula-based proposed method and the two alternative methods RFA and MLR. As the 

methods involve different models within the regionalization procedure, the cross-validation 

varies as well. For the MLR method the selection of explanatory variables is not redefined 

within each cross validation step, but the parameters involved in the regressions are 

recalculated. For the RFA the grouping of the stations is not redefined in each step of 

calculation, and the type of functions used for fitting the parameters either. What changes in 

each step are the parameters describing the regional functions as they are re-estimated for 

each cross validation step. Lastly for the copula based method the type of functions 

describing the marginal behavior of the different LMs are not changed, but the parameters 

are re-estimated within each step of cross validation. The type of copulas along with their 

parameters and variables used for the estimation (which is determined by the Kendall’s Tau 

values) are re-estimated in each step of cross validation. 



 

 

44 

A robustness analysis of cross-validation is to be performed by applying the different 

regionalization methods and estimating RSE errors based on different events characteristics, 

i.e. 4 moments (mean, standard deviation, skewness and kurtosis) of DSD, WSD, WSA and 

WSI corresponding to summer and winter, and extreme events associated to different 

durations and return periods (5, 15, 30, 60 and 180 minutes and 2, 5, 10 and 20 years). The 

RSE are estimated based on cross validation (LOOCV) and as well based on an additional 

analysis (ALL) in which all the stations are considered in the regionalization, i.e. excluding 

the dropping of one station in each step. The robustness is evaluated based on the ratio 

between the two RSE: 

 }����_}~x�− = }~x����−}~x������−, (Eq. 21) 

values of this ratio close to one indicate that the method is robust to new stations. 

3.6.3 UNCERTAINTY ANALYSIS  

As exposed by Muller et al. (2009) results of models are uncertain as they can only provide a 

partial representation of reality. According to the authors, these uncertainties depend on the 

quality and quantity of available data, i.e. measurement and sampling errors, model errors 

due to imperfect structure and uncertainties in model parameters. In this Thesis, two different 

sources of uncertainty are considered namely the natural variability of the stochastic process 

and the uncertainty in the parameter estimation. Given that the precipitation model is 

stochastic and the performance is assessed based on many realizations, the aim is to 

provide some assessment in terms of model uncertainty for a range of rainfall attributes 

extracted from many realizations and considering all stations. Model results are always 

compared with information obtained from observed time series to assess the uncertainty.  

The uncertainty analysis is performed based on 100 simulations each with a total length of 

100 years. From each simulation different attributes characterizing the generated rainfall are 

studied, i.e. the mean, standard deviation, skewness and kurtosis of DSD, WSD, WSA and 

WSI corresponding to both summer and winter events. These attributes are estimated based 

on the same number of events as the observations. Extreme values are as well analyzed and 

the intensities associated to different return periods (2, 5, 10 and 20 years) and durations (5, 

15, 30, 60 and 180 minutes) are included. All the analyses are based on time series that 

involve the external structure of the rainfall model. 

For each station the attributes resulting from the 100 simulations are compared with the ones 

estimated based on the complete observed time series, i.e. with the aimed values. Five 

different quantiles (0.05, 0.25, 0.5, 0.75 and 0.95) characterizing the attributes resulting from 
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the simulations are used for calculating the deviation between synthetic and target values 

(estimated from all observations). Figure 3.16 (top row, left graph) shows an example of 

model results for one station, in which the horizontal red line is the value of the attribute 

calculated from observations; the violin indicates the distribution of the attribute 

corresponding to 100 simulations and the gray lines indicate the different quantiles for which 

the deviations from the red line are calculated. The procedure is done for all stations and 

RSE (see Equation 18) is calculated for each quantile considering all stations. This is done 

for the different attributes separately. Figure 3.16 (top row, right graph) shows an example of 

resulting RSE by considering several stations for the different quantiles. The red lines 

indicate two models that result in minimum RSE for the median value and increasing values 

in a symmetric way as the quantile is deviated from the median. These results indicate non-

biased models when all stations are considered. A non-biased result indicates that overall for 

all stations results are not biased to either over or underestimation. Information regarding the 

deviation from target values can be inferred by comparing the continuous and non-

continuous lines. Both results indicate non-biased models; however the dashed line indicates 

higher RSE values and therefore a model that produces larger deviations from the target 

values, even though these deviations can be positive for some of the stations and negative 

for others. Other possible cases are shown in the lower row of Figure 3.16 in which the 

observed value could be either the orange or the purple line. If this is the case for most of the 

stations (orange or purple) then the resulting RSE would be like the ones shown in the right 

plot. The orange line shows an increase in the RSE as the quantile increases, indicating a 

model that overestimates the attributes for most of the stations. The purple line indicates the 

opposite behavior, as lower quantiles indicate higher RSE (and therefore larger deviations) 

for most of the stations; this model is often resulting in underestimations. 
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Figure 3.16: Example of models unbiased (red), over estimating (orange) and underestimating 

(purple) a particular attribute assessed on one sta tion (left plots) and on many 
stations (right plots). 

As was mentioned, two different sources of uncertainty are considered here, i.e. the natural 

variability of the stochastic process and the uncertainty in the parameter estimation. The first 

uncertainty is analyzed using fixed parameters which are estimated based on all available 

observations and are assumed to be correct. The uncertainty of model parameter estimation 

is analyzed based on sample size, i.e. parameters are estimated based on different 

scenarios of available data.  

First the uncertainty of the Alternating Renewal (AR) process is analyzed by using the fixed 

parameters to generate synthetic time series for single sites and evaluating the behavior of 

resulting RSE based on all stations. The aim is to say whether the model is unbiased or 

whether there is a tendency of under/overestimating a particular attribute. Thereafter the 

uncertainty of the parameter estimation due to input data is analyzed. This is done by 

considering different percentages of available data, namely 100, 75 and 50%, which are 

randomly sampled with replacement from all observed events. For each scenario of data 

availability, the random sampling is performed 100 times and used for estimating model 

parameters and thereafter generating long time series of events. The resulting RSE based 

on all stations and for different quantiles are compared with the ones from the AR model 

(with fixed parameters). The aim is to assess the robustness of the model to input data, to 

see whether the results have a similar or different behaviour as the original one and how are 

the RSE values differing when the different input data sets are considered. 
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3.6.4 APPLICATION TO URBAN HYDROLOGY 

Application of the different rainfall time series is assessed by urban hydrological modeling 

using a fictional drainage system. Fictional catchments have been used in the past for 

evaluating rainfall input influence (see e.g. Arnaud et al. 2002) and omit the calibration 

procedure. Simulations are conducted in a continuous way for uninterrupted 5 minutes 

precipitation data. Continuous hydraulic modeling is only possible for low complexity urban 

systems, which could represent a portion of the sewage system of a city. The advantage of 

continuous simulations is that they allow for an overall assessment since the whole time 

series of rainfall and flood events are included in the analysis, whereas a more complex 

urban system would only allow for event based hydraulic simulations, thus limiting the 

assessment to selected events. Furthermore, no pre-definition of antecedent soil moisture 

conditions or duration of rainfall events is required as it would be for event based analysis. 

Some limitations of using a simple fictional catchment are that it represents a portion of a 

whole system and is only considering one possible representation. 

Del Giudice et al. (2013) state that the input uncertainty and its propagation deliver urban 

hydrological simulations which are biased. To assess the possible uncertainty introduced by 

observed time series, an analysis is performed by randomly sampling events and creating 

new time series with length equal to original observed time series. This procedure is 

performed 10 times. The observed and new time series are used as input to the hydrological 

model and simulation results are compared. Two different assessments are carried out one 

in which the random sampling is performed without replacement of events and an additional 

one in which all events are involved within each sampling step (sampling with replacement). 

The former analysis is meant to evaluate the source of error due to a possible existence of 

serial autocorrelation in the time series; whereas the latter is meant to assess the natural 

variability of the stochastic process in terms of hydrological response. 

The role of the shape of events in the reproduction of flood events is additionally evaluated. 

As was mentioned the internal structure is modeled by a mixture of two exponential functions 

described by one single parameter. A drawback of this model is that it consists of a single 

peak and thus the synthetic events are always distributed around it. To minimize this 

shortcoming, different alternatives of shapes are tested. All alternatives are based on the 

exponential shape, but the peak used for estimating the parameter of the internal structure 

differs. The peak intensity (WSPeak) is in all cases the same, only the concentration of the 

volume around it changes. To estimate the shape parameter three different alternatives are 
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considered which are shown in Figure 3.17. The “D. Expo. 1 Peak*” case corresponds to the 

internal distribution used for the “Old Model”. The other two alternatives result in rainfall 

events with volume that is distributed along the whole duration of the events, and less 

concentrated around the peak. For the three alternatives the total WSA, WSD, WSPeak and 

WSTpeak describing the events are exactly reproduced, the only thing that changes is the 

parameter describing the shape.  

 

 
Figure 3.17: Evaluation of internal structure in te rms of hydrological modeling. 

Observed time series are used for modeling flood events and the resulting values are used 

as a basis for comparing the different alternatives. Rainfall events causing flooding are 

identified from the observed time series. Characteristics describing these events are 

extracted and used for fitting the different theoretical shape for each of the events. Observed 

events are then replaced by the new ones with the theoretical internal distributions. The new 

time series are used for modeling flood events which are thereafter compared with the ones 

resulting from the original observed time series. The internal structure that provides the 

lowest overall errors is preferable. 

The performance of the precipitation models is assessed by urban hydrological modeling. 

Results from the simulations using observed data and ten synthetic realizations with length 

equal to observed time series are compared for each station both for single site and 

regionalization models. Annual runoff statistics are compared with observed values and an 

error is computed (see Equation 17). This comparison includes errors of extreme statistics, 

i.e. volume and duration of flood events within the urban system, as well as long-term mean 

annual overflow properties, i.e. volume and duration of spilling to a receptor water body 

within a combined sewage system. The errors resulting from the assessment of the natural 

variability of the process are as well included. 

Finally for the single site model a comparison between observed, synthetic time series and 

events provided by IDFs available for design purposes is performed based on urban 

modeling. Stations with long observations are used for simulating and extracting flood 

events, which are ranked based on the volume and associated to different return periods (1, 

0.0

0.5

1.0

1.5

2.0

2.5

1 21 41 61 81

P
re

ci
pi

ta
tio

n 
[m

m
/5

m
in

]

Number of Time Step [5 min]

WSI WSPeak D.Expo. 1 Peak* D.Expo. 1/2 Peak* D.Expo. 1/3 Peak*

Diff.=Peak*1 Peak*

1/2
Peak* 1/3

Peak*



 

 

 
49 

 

2, 3, 5, 10 and 20 years). A similar analysis is performed based on 10 realizations of 

synthetic time series and median values are compared to observations. Available design 

events associated to different return periods and with duration equal to the time of 

concentration of the system are used for estimating flood volumes. Design events resulting 

from IDF curves can only be modeled on an event based mode and therefore require the set 

up of initial soil moisture conditions. Uncertainty of antecedent soil moisture conditions and 

precipitation are considered following the procedure proposed by Haberlandt & Radke 

(2014), i.e. taking 3 different initial soil moisture conditions (dry, average and wet) and 

accounting for an error of precipitation up to ± 15% adopted as design tolerance ranges. All 

together 9 cases are run for each return period. The return period of the precipitation is 

assumed to be equal to the flooding event, which is commonly done in practice. Errors are 

calculated based on both data sets, i.e. synthetic and design events, using Equation 17. Note 

that the evaluation of long-term overflow properties is only possible for continuous 

simulations and therefore available design events cannot be used for assessing this 

property. 

All results related with urban hydrological modeling are presented in the Chapter 6 in which 

application to urban hydrology is discussed. 

3.7 SUMMARY COMPARING EXISTING AND PROPOSED PRECIPITATION 

MODEL 

As mentioned the model presented here is based on an existing one which is further 

developed by introducing several modifications like multivariate analysis, seasonality, 

simulation of small events and multisite synthesis. A special focus is given to properly 

reproduce the extreme values. Seasonality is included by modeling the marginal behaviour of 

the different variables separately for summer and winter events. To include the dependence 

structure that relates some of the variables, like WSA and WSD or WSI and WSPeak, 

bivariate frequency analyses are performed with the aid of the copula models. To summarize 

all the changes introduced to the model the main differences between the existing and new 

proposed one are listed in the following Table (see Table 3.1), features that have been 

explained in more detail in the previous sub-chapters. 
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Table 3.1: Main differences between existing and im proved model.   
 Old Model  Updated Model  

Seasonality Neglected Considered 

External 
structure 

WSD is directly simulated by a 
probability distribution 
WSA moments are derived from 
linear regressions based on WSD 
WSA moments are used for 
estimating a specific probability 
distribution from which the WSA is 
simulated 

Bivariate copula is used for simulating 
pairs of pseudo WSA-WSD, which are 
then transformed to real values by their 
probability distributions 

Internal 
structure 

WSPeak is derived from a simple 
linear regression based on WSI 

Bivariate copula is used for estimating 
WSPeak conditioned to WSI 

Estimation of the λ parameter is 
based on the total peak intensity 

Estimation of the λ parameter is based 
on a portion of the peak intensity 

Small Events Neglected Considered 

Regionalization  

Multi-linear regression or External 
Drift Kriging to estimate the 
parameters of marginal distribution 
and linear regressions 

Estimation of LMs describing the rainfall 
characteristics. Copulas are used for the 
estimation conditioned to site descriptors  
and previously estimated LMs 

Multisite 
Synthesis 

Neglected  
(Simulated Annealing only applied for 
a temporal resolution of 1 hour) 

Vine-copulas are used to model events 
characteristics in several stations 
simultaneously 

All events 
evaluation 

Considered Considered 

Extreme Value 
Analysis 

Neglected Considered 

Overflow in 
urban areas 

Considered Considered 

Flood events in 
urban areas 

Neglected Considered 
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4 DATA             

The data used for developing and evaluating the different methods presented in this Thesis 

are described in this Chapter. In the first sub-Chapter (4.1) a description of the study area 

along with a general presentation of all stations is included. The following sub-Chapters (4.2 

to 4.4) include a more detailed analysis of the stations used for the development of the single 

site, multi-site and regionalization of the model. Site descriptors, which are involved in the 

regionalization, are as well presented (sub-Chapter 4.5). Thereafter (sub-Chapter 4.6) a 

description of KOSTRA, i.e. IDFs available as design practice for the study area, is 

presented. Finally (sub-Chapter 4.7) the fictional urban system used for validating the 

precipitation models is described. 

4.1 STUDY REGION 

The state of Lower Saxony (NS) and surrounding areas, located in the northwest of Germany 

is used to develop the single site precipitation model and the regionalization. The stations 

belonging to the state of Baden Württemberg (BAWU), located in the southwest of the 

country, are used for evaluating the transferability of some of the methods proposed in this 

Thesis (see Figure 4.1). As can be seen from the figure 24 stations are used for developing 

and 22 for transferring the single site model, whilst 81 stations are used for its 

regionalization. The multisite model is based on some of these stations (11 in the North and 

10 in the South). Further details describing all stations can be found in Appendix D. 

The elevation of the NS study area ranges from sea level for the stations located in the 

northwest region bordered by the North Sea, to up to 600 mNN (meters above German 

Standard Zero), for Harz Mountains in southeast, with most of the stations in a height of 50 

mNN. As described by Liu et al. (2013) BAWU consists of two mountain ranges: in the east 

the Swabian Alps with lower elevation and the Black Forest with medium elevation in the 

west which resembles a high plateau, rising abruptly in the northwest to a flat or gently hilled 

upland. For this study area the stations are located around the two mountain ranges and 

their elevation ranges from 200 mNN up to around 800 mNN, with a median value of 500 

mNN. The total annual rainfall registered during the period from 1980-2010 in the regions 

where the stations are located ranges from 400 mm/year in the northeast to up to 1500 

mm/year in the southwest (see left map in Figure 4.2). Rainfall occurs all year round and 

summer precipitation events are dominated by convective type, whereas the occurrence of 

stratiform events is more frequent during the winter (see Eggert et al., 2015). 
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After Köppen–Geiger climate classification, see Peel et al. 2007, Germany presents the 

following climates: Temperate without dry season and summers hot and warm (Cfa and Cfb), 

cold without dry season and summers warm and cold (Dfb and Dfc), and Polar-Tundra with 

elevations lower and higher than 1500 meters above sea level (ET and ETH). As can be 

seen in Figure 4.2 (right map), the Polar-Tundra climates are only present in the Alps region 

(south of the country) not covering the areas of study. Most of the stations in the flatlands of 

NS are belonging to the Cfb climate caused by warm westerly winds from the North Sea, 

whilst some stations towards the southeast around the Harz Mountains are belonging to the 

Dfb or Dfc climates, caused by the continental effect combined with the higher altitudes. 

BAWU stations are characterized mostly by Temperate climate (Cfa and Cfb) and a few 

stations as Dfb, the topography and valley effect have a strong influence on the structure of 

the local climate. The two regions (NS and BAWU) show to be very different in terms of 

topography, total rainfall and climate. Therefore BAWU is considered to be a challenging 

region to test the transferability of the precipitation model.   

 
Figure 4.1: Digital elevation map of Germany with l ocation of rain gauge stations used for 

developing (24 circles) and transferring (22 triang les) the single site model, and 
for regionalization (81 crosses). 
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Figure 4.2: Left: Mean Annual Precipitation (1981-2 010) and Right: Köppen-Geiger climate 
classification in Germany with location of all rain  gauge stations.  

The available data for the Northern part of Germany is provided by the German National 

Weather Service (Deutscher Wetterdienst DWD) and corresponds to stations belonging to 

the new network (automated weather stations) that is operating since the mid 1990s. The 

measuring devices are either gravimetric/drop counters (Pluvio-Ott) with depth resolution of 

0.01 mm or tipping buckets with resolutions of 0.1 mm. The different resolutions have some 

impact when rainfall events are identified; nevertheless to achieve a data set with long 

records in several stations this shortcoming has to be accepted. Around 84% of the total 

registers correspond to the drop counter and the rest to tipping bucket as shown in Figure 

4.3. The temporal resolution is for all cases 1 minute and time series are aggregated to 5 

minutes for event identification and final model evaluations. Regarding the stations located in 

BAWU, this information was provided in a 5 minutes temporal resolution by the University of 

Stuttgart within the SYNOPSE project. No detailed information regarding the measuring 

mechanism of these stations is available for this Thesis. 

Measuring precipitation in such short time intervals is very challenging and small losses can 

result in high relative errors. Mechanic errors, such as device blocking or data transmission, 

are controlled from the original 1 minute time series (if available). Some unrealistic high 
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values (e.g. a value of 55 mm in 1 minute is present in one station in NS) and repeated 

measurements are detected for some of the stations, and thereafter discarded.  

 
Figure 4.3: Description of data available for singl e site model development and 

regionalization. 

Homogeneity of the data is checked based on monthly values. A double sum analysis is 

performed for each of the regions and for the period in which observations for all stations is 

available, i.e. January 2007 to December 2012. The cumulative sum of monthly values for 

each station is plotted against the sums corresponding to all stations together (for each 

region separately). The plots are presented in the Appendix E, indicating that data are overall 

homogeneous. For the NS case only two cases show some atypical behavior at the end of 

the registers (stations E501 and 10215), but this is due to some months with missing values 

at the end of the analyzed period. Similar results are obtained for two stations in BAWU 

(stations 71573 and 90307) which have missing values at the beginning of the analyzed 

period. 

As was mentioned the precipitation model is based on the alternating renewal process 

(ARP), i.e. the modeling of succession of independent rainfall events. Therefore some 

analyses based on rainfall events are presented here. These events are derived from each of 

the time series based on the criteria adopted in this Thesis (DSDmin, WSAmin and WSImin) 

and are separated into Summer (April to September) and Winter (October to March), same 

seasonal selection was adopted by Eggert et al. (2015). The main hypothesis behind 

frequency analysis and the ARP is that the variables are independently identically distributed 

(IID). A sample of data is IID if each random variable belongs to the same probability 

distribution and all are mutually independent. Statistics derived from random samples, such 

as mean, standard deviation, etc. are assumed to be representative of the whole population 

of possible values. Therefore the autocorrelation of the different variables describing the 
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rainfall events is analyzed. Results are shown in Figure 4.4 in which the gray bands indicate 

the 95% confidence levels approximated by ±1.96/√N (N is the total number of observations 

and varies for each station and season). As can be seen for some of the cases the 

autocorrelations are significantly different from zero, especially for the WSD, for which 85% 

of the cases indicate an autocorrelation different from zero, whereas for DSD and WSA 

cases these percentages are only 24 and 15 respectively.  

 
Figure 4.4:  Autocorrelation of variables describin g rainfall events observed in NS and BAWU. 

Left semi-plots correspond to summer and right ones  to winter events. 

An increase in the DSDmin is expected to lead to events that are independent and hence to 

decrease the autocorrelations. Therefore an analysis is performed in order to decide how this 

value affects the autocorrelation of the duration variables, i.e. WSD and DSD. The results 

show that this variable indeed has an effect on the autocorrelation results (see Figures 4.5 

and 4.6). Note that as DSDmin increases the number of identified events decreases and 

consequently the confidence intervals (gray bands) change. As the DSDmin increases the 

autocorrelation of WSD variables decreases and the opposite is observed for the DSD (only 

up to 6 hours). If both variables are considered together, then a DSDmin of 360~720 minutes 

(6~12 hours) would deliver non-significant autocorrelations for most of the analyzed cases. 

These would mean that maximum 2 or 4 events per day would be identified. The aim of the 

Thesis is the development of a precipitation model for urban applications, and as urban 

catchments are characterized by very fast responses, the values of 6 or 12 hours between 

events do not seem to be consistent with the desired application. It is therefore adopted a 

DSDmin of 5 minutes with the drawback that some significant autocorrelation is present for 

some of the variables and stations. Gaál et al. (2014) discourage selecting long DSDmin as it 

results in negative effects on event properties by introducing extensive intra-event gaps and 
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leading to strong biases in WSD and WSI. Regarding this issue a further analysis is 

performed and presented in Sub-chapter 6.1 where a discussion about the effect of 

significant autocorrelation in urban applications is included.   

 
Figure 4.5: Autocorrelation of WSD resulting from e vents observed in NS associated to 

different values of DSDmin. Left semi-plots corresp ond to summer and right ones 
to winter events. 

 
Figure 4.6: Autocorrelation of DSD resulting from e vents observed in NS associated to 

different values of DSDmin. Left semi-plots corresp ond to summer and right ones 
to winter events. 

Correlation between different variables describing the rainfall events is as well analyzed. The 

Kendall’s Tau correlation coefficient (see Eq. 3) is used for this purpose, since it is rank 

based and therefore useful information for the copula models. The analysis is performed 

based on pairs of variables, i.e. DSD-WSD, WSD-WSA and WSA-DSD. Results show that 

the WSD-WSA correlations are for all cases positive and as well significantly different from 
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zero. As can be seen in Figure 4.7 Winter events show to have higher correlations compared 

to summer ones (median values of 0.45 and 0.31, respectively). For the other compared 

pairs only a percentage of 32% (DSD-WSD) and 26% (DSD-WSA) from all stations show to 

be significantly different from zero, so for these pairs of variables no correlation is considered 

within the further analysis. Regarding the WSD-WSA correlations, differences between two 

correlations are evaluated with a test proposed by Cohen et al. (2003), resulting in more than 

95% of the stations with significantly different correlations for summer and winter events. 

Furthermore it was mentioned that convective events are more frequent in summer and 

stratiform in winter (see Eggert et al., 2015) so it is reasonable to model the pairs 

corresponding to the two seasons separately.  

 
Figure 4.7: Correlation coefficients between differ ent characteristics describing rainfall 

events observed in NS and BAWU. Left semi-plots cor respond to summer and 
right ones to winter events. 

Small events with WSA<WSAmin are as well studied. These events account for between 

19% and up to 37% (median 27%) of the total volume of annual rainfall and should therefore 

not be neglected. Small events registered during winter account for more volume for all 

stations, with a ratio of winter over summer that ranges from 1.1 up to 1.9 with median value 

of 1.6. The following plots (see Figure 4.8) show the distribution of occurrence (temporal 

location) of small events with respect to the occurrence of events, i.e. events with an amount 

equal or bigger than WSAmin which are modeled by the ARP. Half of these events occur 

within a window of 7~8 hours around the modeled ones and the most frequent temporal 

locations are of only 10 minutes for small events observed before and of 70~100 minutes for 

events observed after. This information is relevant for the inclusion of small events into the 

model, especially as it is the aim to use it for continuous simulation of an urban system. 
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Figure 4.8: Temporal location of small events with respect to events for NS (left plot) and 

BAWU (right plot). 

4.2 STATIONS FOR SINGLE SITE MODEL 

A total of 24 stations located in NS and surroundings are used to set up and evaluate the 

single site model and some basic information can be found in the Table 4.1. The final data 

set includes stations with at least 9 years of record lengths for a period finalizing in years 

2012-13. In this case around 65% of the total registers correspond to the gravimetric/drop 

counter and the rest to tipping bucket. The mean annual precipitation ranges from 440 

mm/year to 1380 mm/year, with highest values corresponding to high elevations, but lowest 

ones not directly related with the height of the station. Stations with lowest values are located 

in the mid-east region of the study area. For most stations, except for Braunlage (N° 1), 

summer events attribute to more than half of the total amount of rainfall, as shown in the pies 

for each station included in Figure 4.9. The stations are numbered after alphabetical order 

and the numbering of the table corresponds to the one in Figures 4.9 and 4.10. 

Consistency of the data is checked based on daily values to identify possible discrepancies. 

Violinplots showing the distribution of daily rainfall for each of the stations are presented in 

Figure 4.10. From the violinplots some days with extremely high rainfall compared with the 

rest of the days are identified and labeled as Indentified Days Summer/Winter. The identified 

days are compared with daily data provided by DWD for the corresponding station. For 

station N° 18 (Osnabrück) an outlier is detected fo r the summer days, this value is as well 

present in the DWD daily data base. Station N° 12 ( Leinefelde) indicates two outliers one for 

summer and one for winter sample. The daily data base does not show a register of the 
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summer extreme, whereas the winter case is registered but indicates a total volume of half of 

the magnitude. For station N° 22 (Ummendorf) one wi nter day is found to have very high 

amount of rainfall, value which is marked as missing in the DWD daily data base. All these 

cases are checked using the original 1 minute data base and as no indicators of strange 

issues are detected they are not eliminated.  

Table 4.1: Attributes of rainfall stations used for  developing the single site model. 

N° ID NAME 

POSITION DATA Mean 
Annual 
Precip.  
[mm/y] 

Latitude 
[°] 

Longitude 
[°] 

Elevation 
[mNN] 

Length 
[y] 

1 3984 BRAUNLAGE 51.73 10.6 607 21 1382 

2 54251_10348 BRAUNSCHWEIG 52.3 10.45 81 15 633 

3 31121_10131 CUXHAVEN (WEWA) 53.87 8.7 5 13 864 

4 56329_10321 DIEPHOLZ(WEWA) 52.58 8.35 39 16 686 

5 60820_10200 EMDEN (WEWA) 53.38 7.23 0 15 824 

6 E082 FREIBURG/ELBE 53.83 9.25 2 10 888 

7 3169 GARDELEGEN 52.51 11.4 47 21 581 

8 10444 GÖTTINGEN 51.5 9.95 167 20 631 

9 1538 HANNOVER 52.47 9.68 55 21 640 

10 3193 HARZGERODE 51.65 11.14 404 21 726 

11 E188 JORK-MOORENDE 53.52 9.73 1 10 721 

12 3400 LEINEFELDE 51.39 10.3 356 21 941 

13 1132 LINGEN 52.52 7.31 22 21 788 

14 10253 LÜCHOW 52.97 11.14 17 20 569 

15 3177 MAGDEBURG 52.1 11.58 76 21 496 

16 32126_10113 NORDERNEY 53.72 7.15 11 19 767 

17 10215 OLDENBURG 53.18 8.18 11 15 808 

18 1516 OSNABRÜCK 52.26 8.05 95 21 869 

19 1525 SALZUFLEN, BAD 52.11 8.75 135 21 824 

20 10235 SOLTAU 52.96 9.79 76 21 803 

21 E475 UELZEN 52.95 10.53 50 9 643 

22 3173 UMMENDORF 52.16 11.18 162 21 440 

23 E298 WENDISCH EVERN 53.22 10.47 62 10 686 

24 3180 WERNIGERODE 51.85 10.77 234 21 616 
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Figure 4.9: Location of rain gauge stations used fo r developing the single site model (see 

numbering in Table 4.1). Size of circles is proport ional to mean annual 
precipitation. 

 
Figure 4.10: Distribution of daily rainfall for sta tions used for developing the single site model 

(see numbering in Table 4.1). 

 
The transferability of the point model is performed based on 22 station located in the south-

west of Germany, and some details are presented in Table 4.2. The stations are selected 

according to the length and period with data availability, to be consistent with the NS 

stations. These stations are located in higher altitudes and therefore have higher annual 

precipitation amounts compared with the previous set of stations. 
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Table 4.2: Attributes of rainfall stations used for  transfering the single site model. 

N° ID NAME 

POSITION DATA Mean 
Annual 
Precip.  
[mm/y] 

Latitude 
[°] 

Longitude 
[°] 

Elevation 
[mNN] 

Length 
[y] 

1 71525 ABTSGMUEND-U. 48.92 9.92 432 10 810 

2 71155 BALTMANNSWEILE 48.77 9.45 457 16 917 

3 90284 BERKHEIM 48.05 10.08 570 16 947 

4 70323 BUCHENBACH 47.97 8 445 11 1114 

5 70153 DEGGENHAUSERTA 47.8 9.42 708 16 1022 

6 71605 ELLWANGEN-R. 48.98 10.13 460 11 824 

7 70304 ELZACH-F. 48.2 8.12 440 10 1316 

8 70314 EMMENDINGEN-M. 48.13 7.83 201 12 819 

9 70354 FREIBURG 48.04 7.82  236 19 916 

10 71058 HECHINGEN 48.38 8.98 522 16 860 

11 90164 HOHENSTEIN-B. 48.35 9.33 740 16 933 

12 71615 KIRCHBERG/JAGST- 49.18 9.98 426 16 800 

13 71005 KOENIGSFELD/S. 48.15 8.43 730 10 1005 

14 90156 LANGENENSLINGE 48.2 9.33 777 16 831 

15 73942 LAUDA-K.-H. 49.55 9.63 324 16 745 

16 73930 MERGENTHEIM,BAD 49.48 9.77 250 16 707 

17 90163 MUENSINGEN-A. 48.38 9.48 750 16 965 

18 71064 ROTTENBURG-K. 48.47 8.97 360 10 696 

19 70173 STOCKACH 47.87 9.02 532 10 823 

20 90307 ULM 48.38 9.95 567 20 723 

21 70145 WEINGARTEN 47.8 9.62 440 16 912 

22 71573 WUESTENROT-O. 49.13 9.5 392 16 853 
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4.3 STATIONS FOR MULTI-SITE MODEL 

A total of 8 groups of stations located in the north (NS_A, NS_B, NS_C and NS_D) and in 

the south (BAWU _A, BAWU _B, BAWU _C and BAWU_D) are selected to develop and test 

the proposed model. The stations are selected based on the length of data available for a 

common period within each group. The groups of stations consist of either 2 or 3 stations 

located at distances ranging from 11 up to 59 km. Some basic information from the stations 

as well as their location can be found in Figure 4.11 and Table 4.3. 

  
Figure 4.11: Location of rain gauge stations and gr oups used for developing the multi-site 

model. 

As can be seen in Table 4.3, the available time series with rainfall registered in all stations for 

each case study range from 8 up to 19 years. The case studies corresponding to NS indicate 

stations with longer distances between each other, and therefore bigger areas involved for 

the evaluation based on areal precipitation.  
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Table 4.3: Attributes of rainfall stations used for  multisite synthesis. 

Stat.  ID Name Latitude 
[°] 

Longitude 
[°] 

Elevation 
[mNN] 

Data 
Availability 

[y] 

Distance [km] 

A B 

BAWU_A 

A 70354 FREIBURG 48.04 7.82 236 10 - - 

B 70314 
EMMENDINGEN-

MUNDINGEN 
48.13 7.83 201 10 13 - 

C 70323 BUCHENBACH 47.97 8 445 10 13.6 22.3 

BAWU_B 

A 90164 
HOHENSTEIN-

BERNLOCH 
48.35 9.33 740 11 - - 

B 90163 
MUENSINGEN-

APFELSTETTEN 
48.38 9.48 750 11 11.7 - 

C 90156 
LANGENENSLINGEN-

ITTENHAUSEN 
48.2 9.33 777 11 16.7 23.2 

BAWU_C 

A 70145 WEINGARTEN 47.8 9.62 708 13 - - 

B 70153 
DEGGENHAUSERTAL-

AZENWEILER 
47.8 9.42 440 13 15 - 

BAWU_D 

A 73930 
MERGENTHEIM,BAD-

NEUNKIRCHEN 
49.48 9.77 250 14 - - 

B 73942 
LAUDA-

KOENIGSHOFEN-
HECKFELD 

49.55 9.63 324 14 12.2 - 

NS_A 

A 2925 LEINEFELDE 51.39 10.3 356 19 - - 

B 1691 GOETTINGEN 51.5 9.95 167 19 27.2 - 

NS_B 

A 4745 SOLTAU 52.96 9.79 75.6 8 - - 

B 1336 FALLINGBOSTEL,_BAD 52.85 9.68 70 8 15.5 - 

C 5146 UELZEN 52.95 10.53 50 8 49.1 58.1 

NS_C 

A 3815 OSNABRÜCK 52.26 8.05 95.4 14 - - 

B 4371 SALZUFLEN, BAD 52.11 8.75 134.6 14 50.7 - 

C 963 DIEPHOLZ(WEWA) 52.58 8.35 39 14 41 59 

NS_D 

A 656 BRAUNLAGE 51.73 10.6 607 8 - - 

B 3650 
NORTHEIM-

IMBSHAUSEN 
51.77 10.05 212 8 38.2 - 

C 4651 SEESEN 51.9 10.18 186 8 34.4 17.5 
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4.4 STATIONS FOR REGIONALIZATION  

The regionalization method is set up and validated based on 81 rainfall stations. As 

mentioned the available data is provided by the DWD and corresponds to stations belonging 

to the new network (automated weather stations). The location of the stations is shown in the 

following figure (see Figure 4.12) and the ones with registers longer than 9 and 19 years are 

marked with green squares. The latter 23 and 14 stations respectively, are used for 

evaluation of the regionalization methodology in terms of extreme events (based on the 

external structure) and for assessment regarding the IDFs. 

  
Figure 4.12: Location of rain gauge stations used f or regionalization of the model. 

In the following plots (see Figure 4.13) some characteristics of the time series observed in 

the 81 locations are presented. The first plot shows the length of the available time series. It 

can be seen that most of the stations have a total observed period of 8 years, some have 

only 6 years and the maximum is 20 years. The elevation plot, along with the map, shows 

that most of the data was collected in the flat region, with topographic heights lower than 100 

mNN. The distance to shore line shows a quite uniform distribution that goes from 0 up to 

250 km. Finally the mean annual precipitation values indicate that most of the stations have a 

total rainfall of around 730 mm/year, and the range goes from 450 (stations located on the 

east) up to 1100 (one station located on the south west of the highest peaks of Harz 

mountains) mm/year. 
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Figure 4.13: Main characteristics of time series us ed for regionalization of the model. 

4.5 SITE DESCRIPTORS (SDS)  

Site descriptors include different types of information available for all stations used in the 

regionalization procedure. This information is not only available for the location with stations 

but also for any other location, therefore it is possible to apply the regionalization for any 

point. SDs include general descriptors like location (latitude, longitude), distance to the shore 

and elevation. Several climatological and hydrological parameters, provided by the German 

Weather Service (DWD, 2015) on a raster basis for whole Germany and freely accessible 

online are as well included in the set of descriptors. Among the information the following 

statistical description of the climate system are included, which are based on the period of 

time 1981 - 2010 unless a different period is indicated:  

− mean rainfall: yearly, summer and winter   

− min/mean/maximum temperature: yearly, summer and winter  

− mean number of days per year with a precipitation amount exceeding 10/20/30 mm 

− mean sunshine duration: yearly, summer and winter  

− mean solar radiation  

− water balance: mean difference between precipitation and potential 

evapotranspiration (1971 - 2000) 

− mean start day of the vegetation period (1992 - 2015)  

− mean number of days classified as: Summer, hot, snow, frost, ice 
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Additionally, rainfall information available in a raster basis for whole Germany and on a daily 

temporal resolution (REGNIE) for 1981-2010 which is provided by the German Weather 

Service is used. From this data base the mean number of rainy days (defined by four 

different thresholds: 0, 1, 2 and 3 mm) is extracted for the summer, winter and year.  

The raster data bases provided by the German Weather Service consist of maps with grids 

for the whole country (for some examples see Figure 4.14). These maps were developed by 

the provider based on different regionalization techniques. Simple and multiple linear 

regressions were used for regionalizing the temperature based on elevation (Müller-

Westermeier, 1995) and the start of the vegetation period based on elevation along with 

latitude and longitude (DWD, 2016). Solar radiation was regionalized with the aid of satellite 

data (Möser & Raschke, 1984) which was corrected with measurements at the earth surface. 

The REGNIE data was regionalized in two steps procedure. First a multiple linear regression 

was applied based on elevation, latitude, longitude, direction and absolute value of 

exposition (effect of inflow of air masses) to estimate background fields. Precipitation was 

scaled by the values of background field and these dimensionless variables were 

interpolated to all raster locations and later rescaled by estimated fields. For further details 

the reader can refer to Rauthe et al. (2013).  

   
Figure 4.14: Example of grid maps with site descrip tors used for regionalization of the model. 

A total of 26 and 27 SDs are available for summer and winter, respectively. Most of the SDs 

are included in the regionalization of events registered both in summer and winter, however 

some are only included for the summer cases (average number of days per year classified 

as summer and hot, i.e. with more than 25°C and 30° C) whereas others only for the winter 

(mean number of days per year classified as snow, frost and ice, i.e. with more than 50% of 

area covered with snow, and minimum/maximum daily temperature below 0°C). The 

temperature values correspond to a height of 2 meters above ground. The summer and 

winter variables provided by DWD describe the calendar period, i.e. June-July-August and 
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December-January-February, and differs from the summer and winter definition used in this 

Thesis. Only for the data derived from the REGINE data set, the same period is used. The 

distribution for some of the SDs are presented in Figure 4.15, it can be seen that some of 

them are symmetrically distributed whereas others present a skewed behavior. All SD used 

in this Thesis are listed in Appendix F. 

 
Figure 4.15: Distribution of some site descriptors for all stations used for regionalization of the 

model. 

4.6 DESIGN PRACTICE: IDFS KOSTRA 

KOSTRA DWD-2000 consists of an atlas which provides IDF curves on a raster for all 

Germany with cell sizes of 8.45 km×8.45 km (Bartels et al., 2005). These curves consist of 

regionalized values of extreme rainfall amounts associated to different durations and return 

periods. The curves are constructed based on statistical frequency analysis of annual 

maxima series registered by recording (digitized pluviograph records) and non-recording 

stations with long registers from the old German network, and thereafter regionalized for 

points without registers. The automated weather stations belonging to the new network that 

are used for developing and evaluating the different methods presented in this Thesis were 

not involved in the construction of the KOSTRA curves. These IDFs are included in the 

analysis since they are commonly used by engineers for dimensioning sewer networks, 

rainwater retention basins, infiltration systems, etc. in the study region and are therefore 
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used as a comparison criterion for the assessing the performance of the different models. As 

an example of information provided by KOSTRA, the gridded maps of Germany for two 

different durations and one return period are presented in Figure 4.16. For each grid a value 

of total rainfall is provided as extreme value for the selected duration and return period. 

Similar maps are available for return periods ranging from 0.5 up to 100 years and for 

durations starting from 5 minutes and up to 3 days. 

Figure 4.16: Extreme values provided by KOSTRA for a return period of 10 years and a 
duration of 5 minutes (left) and 24 hours (right). 

As shown in the example KOSTRA provides extreme values of rainfall amounts for different 

durations and return periods. The total amounts are then distributed within the durations, i.e. 

disaggregated into 5 minutes intervals, using an Euler type 2 model in which the peak 

intensity is located at one third of the total duration of the event (for details see DWA, 2006). 

KOSTRA provides tolerance ranges for different return periods which are used for 

accounting uncertainty of precipitation. The uncertainties are of ±10, 15 and 20% for return 

periods of up to 5, 50 and 100 years. 

For the evaluation of extreme events by multi-site modeling based on areal precipitation, the 

average over rasters included in the area of interest must be calculated. As KOSTRA was 

developed on a point basis, the application of these values on an areal basis requires some 

reduction factors. Verworn (2008) provides reduction factors of KOSTRA values based on 

the area and duration which are used for reducing the averages. In this Thesis the final 

values are denominated as KOSTRA-Reduced. The areas included in the mentioned 

publication reach a maximum of 1000 km2; therefore reduction factors must be extrapolated 

for larger areas. This extrapolation is performed by simple linear regressions for each of the 

durations which are shown as gray dashed lines in Figure 4.17. For events with durations of 
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5 minutes the Reduction Factor* values corresponding to 15 minutes are taken, since this is 

the minimum available duration. 

 
Figure 4.17: KOSTRA reduction factors for different  sizes of areas and durations of events. 

4.7 ARTIFICIAL URBAN SYSTEM 

To evaluate the rainfall model in terms of runoff statistics a fictional urban system is set up. 

EPA Storm Water Management Model (SWMM) is applied for the modeling (see Rossman, 

2010), which is a dynamic hydrology-hydraulic simulation model used primarily for urban 

applications. Several authors have used this model for urban studies (see e.g. Wu et al. 

2013, Meierdiercks et al. 2010 and Hsu et al. 2000). The processes included in this work are 

rainfall-runoff (runoff generation and concentration) and flow routing (for details see Table 

4.4). Precipitation, evaporation and infiltration are modeled at a sub-basin scale which results 

in a runoff load that is transported within the system through pipes, channels, 

storage/regulator devices and pumps. The infiltration is modeled following the Soil 

Conservation Service one-parameter curve number method (SCS method), for details refer 

to Maidment (1993). A curve number of 65 is used which describes residential areas. For 

event based modeling curve numbers of 45 and 82 are as well included to account for 

antecedent dry and wet conditions (see U.S. Soil Conservation Service, 1985). Monthly 

averages of evaporation for the region are given as input to the SWMM.  

The total surface of the fictional system is of 168 Ha with the geometrical configuration 

shown in Figure 4.18 which consists of a combined sewer system, i.e. storm and waste water 

are carried together by one pipe system to a Waste Water Treatment Plant (WWTP). There 

is a storm-water tank (SWT) connected to an overflow structure ahead the WWTP, to 

account for big volume storm events which would not be treated but rather spilled directly to 

a receptor water body. As the sewer system is combined a dry weather flow (DWF) must be 

specified which is estimated for each sub-catchment according to the population and is 
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constantly been discharged to the system and pumped to the WWTP. Two different sizes of 

SWT are considered according to German standard practices (Imhoff & Imhoff, 2007), T20 

and T40 which have specific volumes of 20 m3/ha and 40 m3/ha of impervious area 

respectively. 

Table 4.4: Basic information describing the model a nd fictional urban system. 
 Rainfall -runoff  Flow routing  

Model: 
Methods 

Infiltration:  SCS (Curve Number: 65) 
Subarea Routing: Runoff from impervious 
area flows to pervious area  
Interflow with groundwater, snow 
accumulation/melting effects, water 
quality analysis: Neglected 
 

Routing:  Dynamic Wave Flow Routine 
Friction loss: 
Normal conditions: Manning’s  
Under pressure conditions: Hazen-Williams’ 
Surface Ponding: allowed 
Definition of Supercritical flow:  Slope and 
Froude Number 
Energy loss entrance/exit: Neglected 

 Sub-catchments  Pipes  

Urban 
System: 

Parameters 

Total areas : 1.1 to 16 ha 
Impervious sub-areas (65%) 
Manning’s coefficient: 0.014 
Depression storage depth: 2 mm 
Pervious sub-areas  (35%) 
Manning’s coefficient: 0.035  
Depression storage depth: 3.5 mm 
Surface slope: 0.25% 
Potential evapo-transpiration:  mean 
monthly values for the region 
DWF: Discharge: 0.13 m3/day per inhabitant 
Population density: 45 inhabitants/ha  

Manning coefficient:  0.014 
Shape:  circular  
Diameters: 0.7 to 1.1 meters 
Length:  100 to 500 meters 
Average slope:  5 °/°° 

 

 
 

Figure 4.18: Schematic representation fictional urb an system. 
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5 RESULTS 

In this chapter the results of the different precipitation models proposed within this Thesis are 

presented. A description of selected methods and probability distributions for the particular 

region of study is included along with a more detailed explanation of some of the 

methodologies involved based on real case studies. Different results are presented which 

involve various criteria for evaluating precipitation time series. The proposed models are in 

all cases compared with alternative ones and/or with the design practice for the study region. 

First in sub-Chapter 5.1, some general results which are valid for all precipitation models, i.e. 

for single site, multiple sites and regionalization, are described. Thereafter (sub-Chapter 5.2), 

the comparison of the precipitation models for single sites is presented and discussed. 

Different parameters involved in the multi-site model are included in the following sub-

chapter 5.3 along with results comparing the different methods involved for this purpose. A 

description of the final regionalization model is then presented (sub-Chapter 5.4), along with 

validation of the proposed method and comparison with alternative approaches. Finally in 

sub-Chapter 5.5 the results of the uncertainty analysis are included with a discussion 

involving all event characteristics along with extreme values for the different methods used 

for single site synthesis and regionalization. 

5.1 GENERAL RESULTS  

Rainfall events are estimated for the 24 stations with more than 9 years of data located in the 

state of Lower Saxony (NS) and surroundings. As was mentioned in the Methods Chapter, 

several distribution functions are tested for modeling the different variables describing rainfall 

events. The final selected distributions of the model are listed in Table 5.1. Figure 5.1 shows 

the pairs of pseudo-values of WSA-WSD from events registered in all stations (events are 

first normalized and then assembled, pseudo-values are calculated for the entire region). The 

figure indicates a positive correlation between these two variables and different tail 

dependencies with more concentrated pairs in the upper tail. The annual extreme events 

associated to different durations are as well indicated. It can be seen that the location of 

these extreme events is concentrated to the right side of the graph, corresponding to high 

values of WSA, along the whole data set of WSD, as different durations are considered. 

Important to note are the extreme values corresponding to short durations, which are located 

in the lower-right corner of the graph. This plot suggests that pseudo-pairs of WSA-WSD are 

non-exchangeable, since many of the extreme events are located in specific regions which 
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present the asymmetric feature. The role of the modeling pairs of values WSA-WSD is of 

special interest, due to the implication regarding the extreme events. More details regarding 

this particular component of the models are presented and discussed in the following sub-

chapters for the single and multi-site precipitation models.  

 
Figure 5.1: Pairs of pseudo-values of WSA and WSD f or all events (gray) and annual extreme 

events (colors according to durations) recorded in all stations. 

The analysis of variables involved within the internal structure indicates that pairs of pseudo-

values WSI-WSPeak have a strong positive correlation and similar tail dependency for the 

upper and lower tails and are therefore well reproduced by a Normal copula (see left image 

in Figure 5.2). This copula is used to estimate WSPeak conditioned on WSI (which results 

from the external structure). The uniform distribution used for modeling the ratio 

WSTpeak/WSD is presented in the following figure (see right image in Figure 5.2) along with 

the histogram of ratios from observed events. It can be seen that the uniform model is a 

simplification of reality, as the observed events are more concentrated for values lower than 

0.5, nevertheless this simple model is applied for the rest of the work. 
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Figure 5.2: Left: Pairs of pseudo WSI and WSPeak fo r all events observed in all stations (grey 

circles) and simulated with the copula (dark grey s quares), Kendall’s Tau 
correlation coefficient is shown. Right: Histogram of WSTpeak/WSD extracted 
from observed events  with the Uniform model used f or their simulation 

In the Data Chapter (see last section of Sub-chapter  4.1) it was mentioned that small events 

account for 19% to 37% of total annual rainfall for all stations. All small events are grouped 

into a regional data set, which is then used for their synthesis, as a random sampling of 

these events until the total seasonal contribution is fulfilled. Small events are allocated within 

dry spells, considering the location from events with WSA ≥ 1 mm using histograms based on 

observations (see Figure 4.8).  

The different criteria and components of the final model are listed and described in Table 5.1. 
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Table 5.1: Description of selected criteria and com ponents involved in the single site, multi-
site and regionalization of the model. 

 Variable Model Distribution Equation Parameters Estimation 
Method 

E
xt

er
na

l S
tr

uc
tu

re
 DSD Univariate Kappa ���	 = �1 − ℎ �1 − ��� − �	� ��/���/� 

ξ: location 
α: scale 
κ: shape 1 
h: shape 2 

L-moments 

WSA Joint  
distribution �)(����, ����) 

Copula   
(see sub-

Chapters 5.2 and 
5.3) 

Kappa (See DSD) 

WSD Log  
Normal 3 

�(�) = Φ �log(� − �) − μ¡ � 

ξ: lower bounds  
(RS) 
µ: mean (NLS) 
σ: standard 
deviation (NLS) 

L-moments 

In
te

rn
al

 S
tr

uc
tu

re
 

WSI* Joint 
conditional 
distribution �)(���¢£¤T|���¥) 

Normal 
Copula   

(see Eq. 6)  

Kappa (See DSD) 

WSPeak 
Generalized 

Normal 
�(�) = Φ �−���log �1 − �(� − �)� �� 

ξ: location 
α: scale 
κ: shape 

L-moments 

WSTpeak Univariate Uniform �(�) = ¦ 0,                 � < m� − m§ − m , m ≤ � ≤ §1,                  � > §P a: 0 
b: 1 - 

Profile 
model 

Univariate Exponential 
V(W) = WSPeak ∙ exp (O](W − WSTpeak)) _O = +1, W < WSTpeakO = −1, W ≥ WSTpeakP λ: exponent  on-line for each 

events 

S
m

al
l 

ev
en

ts
 Variable Description   

WSA and WSD Regional set of pairs   

Total Amount Estimated for each station and season   

Position within DSD Probabilities according to regional observations   

E
ve

nt
 

D
ef

in
iti

on
 Variable Values     Unit     

WSAmin 1.0 mm/event    

WSImin 0.01 mm/5min   
 

DSDmin 5    min    

* WSI is estimated from the external structure (WSA/WSD).  Kappa is the marginal distribution for Copula application. 
u and v: marginal distributions describing the variables 
RS and NLS: Real and Natural Logarithmic space 
Φ: Standard Normal distribution 

5.2 SINGLE SITE PRECIPITATION MODEL 

Different characteristics are evaluated to identify the best precipitation model for generating 

long synthetic series of rainfall for single sites. The role of joint modeling of the WSA-WSD 

pairs in generating synthetic events is analyzed. For this purpose 3 different bivariate 

probability models are included in the analysis and compared with the “Old Model”. The first 

model is based on a “Symmetric copula”, often used in hydrologic applications. The 

estimation and choice of the copula is based on events observed in all stations (normalized 

and then assembled). The Hüsler-Reiss copula is chosen here (see Eq. 8) which, as was 

mentioned in the Methods chapter, is able to mimic pairs with a more concentrated upper tail. 
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Symmetric copulas fitted to each station separately are as well analyzed; results are similar 

to the ones using a regional symmetric copula and are therefore not included here. 

For the second and third cases, the asymmetric behaviour of the pairs of variables is taken 

into account. As mentioned in the Methods section, several theoretical asymmetric models 

are considered; however none of them could deliver satisfactory results. For this reason 

empirical copulas are used to model the pairs of variables (see Eq. 2). The second model is 

an “Empirical Regional Copula” based on all stations (same data set of pseudo pairs used for 

estimating the symmetric model). The “Local Empirical Copula” is the third proposed model 

which is based on the second one, but involves a local selection of pairs of pseudo 

observations according to each specific station.  The empirical copulas are considered 

because of the asymmetric structure of the pseudo-observations, especially since the non-

exchangeable region is where most of the extreme events are located (see Figure 5.1). 

Vandenberghe et al. (2010) found non-exchangeable behaviour among variables describing 

rainfall events, and they stress that extreme storm simulations are problematic even if 

asymmetric copulas are used. Schematic representations of the 4 compared cases, i.e. “Old 

Model” and 3 copula based alternatives, are shown in Figure 5.3. For the three models which 

involve a copula, the pairs of values are visualized using hexagon binning, i.e. bivariate 

histograms. As was mentioned the color ramp shows the proportion number of points falling 

within each hexagon, light-colored hexagons indicate less points, whereas dark indicates a 

higher concentration of pairs. It is important to emphasize that both the “Old Model” and the 

“Local Empirical Copula” are specific for each station, whereas the “Symmetric Copula” and 

the “Regional Empirical Copula” are general for the whole region. All copula models are 

estimated for summer and winter seasons separately. 

 
Figure 5.3: External Structure: Schematic represent ation of different bivariate models for 

WSA-WSD synthesis. Kendall’s Tau correlation coeffi cients are shown for the 3 
copula models. 

 

Old Model                 Symmetric Copula   Regional Empirical Copula    Local Empirical Copula
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In the following figures the “Old Model” is compared with the new techniques to assess their 

potentials. The different models are used for validating the basic statistics using the Mann-

Whitney (MW) test. The test is run 100 times based on every station and a median value is 

extracted for each of the variables. Results of p-values are presented for the 24 stations as 

violin plots, both for winter and summer and for the different event variables (see Figure 5.4). 

Note that values lower than 0.05 indicate that the observed distributions are statistically 

significant different from the simulated ones.  

 
Figure 5.4: P-values resulting from applying the Ma nn-Whitney test to validate the single site 

model based on summer (left plots of violins) and w inter (right plots of violins) 
events characteristics for all stations.  

The “Old Model” does not consider seasonality therefore the violin plots are symmetric. 

Furthermore, p-values are lower than 0.05 for most of the stations and variables. For the 

three new models a significant improvement of performance can be seen. In all cases WSD 

and DSD are modeled directly, WSA is derived after WSD for the “Old Model” case and is 

directly modeled for the 3 copula based new models. WSI is derived from WSD and WSA; 

therefore the simultaneous generation of WSA-WSD plays an important role. The modeling 

of DSD, WSD and WSA with different copulas shows similar results for the three new 

models; only in case of WSI p-values resulting from the Symmetric copula are lower 

compared to the other two copula cases. Nevertheless the values are acceptable for all 3 

copula cases and variables. Complementary to the MW test, the Gini test is applied to the 

cases for which the MW test shows acceptable results, i.e. the “Old Model” is excluded from 

this analysis. Results are shown in Figure 5.5 and indicate that for most of the variables the 

variance is also reproduced with a significance value of 5% and are shown in the following 

plot (only some for a few cases the WSI variance is not reproduced). 
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Figure 5.5: P-values resulting from applying the GI NI test to validate the single site model 

based on summer (left plots of violins) and winter (right plots of violins) events 
characteristics for all stations.  

Moreover the capability of the models to reproduce other moments is evaluated. Median of 

different order of moments is estimated for each station based on 100 simulations. Results 

are presented in Table 5.2 as RSE (see Eq. 18) for all stations and two of the models for 

comparison, i.e. “Old Model” and “Local Empirical Copula”.  Errors increase as the order of 

the moment evaluated increases, as is expected. The “Local Empirical Copula” model 

outperforms the old one, especially for the WSI. The RSE values indicate a good 

performance of the copula model, especially for the first and second order moments, and 

acceptable results for the higher-order ones. The “Old Model” shows lower errors only for a 

few cases (marked with italic). 

Table 5.2: Evaluation of statistics of different va riables describing the external structure of 
rainfall events resulting from two single site mode ls and for all stations. 

RSE [-] Mean Standard 
Deviation Skewness Kurtosis 

Variable  Season Old 
Model 

Local 
Emp. 

Copula 

Old 
Model 

Local 
Emp. 

Copula 

Old 
Model 

Local 
Emp. 

Copula 

Old 
Model  

Local 
Emp. 

Copula 

DSD Summer 0.09 0.01 0.17 0.02 0.33 0.13 0.89 0.36 
Winter 0.09 0.01 0.10 0.05 0.12 0.27 0.30 0.71 

WSD Summer 0.21 0.01 0.21 0.06 0.23 0.23 0.55 0.54 
Winter 0.16 >0.01 0.07 0.03 0.35 0.16 0.76 0.37 

WSA Summer 0.11 0.01 0.08 0.05 0.35 0.32 0.90 0.88 
Winter 0.17 0.01 0.45 0.08 0.45 0.27 1.26 0.71 

WSI Summer 0.08 0.04 0.61 0.10 0.89 0.21 2.52 0.53 
Winter 0.98 0.05 3.04 0.19 0.82 0.26 1.90 0.53 

 
When total seasonal rainfall values are compared (see Figure 5.6) the importance of 

including the small events in the model can be appreciated as total rainfall is underestimated 
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for the “Old Model” case. If small events are included in the “Old Model” (semi-transparent 

plots), results show an underestimation for summer and overestimation for winter, due to the 

effect of excluding seasonality. Overall results using the “Symmetric Copula” show a slight 

overestimation of summer values, and the opposite for winter. The regional and local 

Empirical Copulas deliver similar results with mean errors close to zero indicating overall 

satisfactory results.  

 
Figure 5.6: Validation of single site model based o n errors of total seasonal rainfall for all 

stations. For the “Old Model” an additional variant  is considered (semi-
transparent plots) in which small events are includ ed. 

The performance of the different models for different temporal resolutions, i.e. the scaling 

behavior, is shown in Figure 5.7 as errors of mean precipitation for wet time steps (left semi-

violins) and fraction of wet time steps (right semi-violins). Range of errors of mean values 

decreases with increase of temporal aggregation for all models. The “Old Model” shows a 

systematic overestimation of mean values for all resolutions, whereas the fractions shows to 

be underestimated for low aggregations and is improved as it increases. No significant 

differences can be seen when the three models which include copulas are compared. These 

models show lower range of errors for the mean values compared to intermittency; 

nevertheless the errors are acceptable as they are lower than ±20% for all temporal 

resolutions. 
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Figure 5.7: Validation of single site model for dif ferent temporal resolutions based on errors 

of mean precipitation for wet time steps (left plot s of violins) and fraction of wet 
time steps (right plots of violins) for all station s. 

The performance of two of the models regarding other moments is additionally evaluated and 

presented as RSE for all stations in Table 5.3 (see Eq. 18).  Errors increase as the order of 

the moment increases. The “Old Model” shows lower errors only for a few cases (marked 

with italic), otherwise the “Local Empirical Copula” model outperforms the old one. 

Table 5.3: Evaluation of performance based on wet t ime steps for different temporal 
resolutions resulting from two single site models a nd presented for all stations as 
RSE. 

RSE Fraction Mean Standard 
Deviation Skewness Kurtosis 

Temp. 
resol. 

Old 
Model 

Local 
Emp. 

Copula  

Old 
Model  

Local 
Emp. 

Copula  

Old 
Model  

Local 
Emp. 

Copula  

Old 
Model  

Local 
Emp. 

Copula  

Old 
Model  

Local 
Emp. 

Copula  

5 min. 0.12 0.05 0.16 0.05 0.08 0.14 0.35 0.23 1.18 0.82 

1 hour 0.11 0.06 0.14 0.03 0.22 0.07 0.52 0.37 2.61 1.47 

6 hours 0.05 0.06 0.04 0.02 0.15 0.04 0.86 0.34 4.26 1.15 

1 day 0.06 0.06 0.07 0.01 0.10 0.07 0.62 0.29 2.78 0.92 

 
Observed and synthetic time series are used to estimate autocorrelations based on a 5 

minute time step. Figure 5.8 shows overestimation by synthetic time series for all lags. The 

“Old Model” results in deviations that go up to 0.2, whereas for the copula models these are 

in all cases lower than 0.1. As was mentioned, this overestimation was expected due to the 

construction of the internal structure, nevertheless this temporal correlation shows to be 

improved with the new models. Further improvements could be explored by introducing a 

random noise to the final 5 minutes time steps with rainfall. Nevertheless the effect of this 
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noise on the other characteristics should be evaluated thus further research is required which 

goes beyond the scope of the present work. 

 
Figure 5.8: Validation of precipitation model based  on autocorrelation for 5 minute time steps 

and all stations (medians). 

Extreme values are compared for the different models using the CvM test. Results are shown 

for different durations and all stations as p-values in Figure 5.9. Extreme values are very 

sensitive to the WSA-WSD modeling. For all durations, results indicate an improvement as 

the copulas are introduced to the model. The asymmetric copulas show even better 

performance as the symmetric one, especially for short durations. In order to understand the 

reasons behind these results it is useful to have a closer look at the observed extreme 

events. Figure 5.1 shows that the location of the extreme events is concentrated to the right 

side of the graph, corresponding to high values of WSA, along the whole range of WSD. 

Important to notice are the extreme values corresponding to short durations, which are 

located in the lower-right corner of the graph. In case of a symmetric copula, the model fails 

to reproduce high (extreme) values of WSA corresponding to low durations, whereas the 

empirical copulas are capable of modeling pairs in this region. For the “Old Model”, short 

durations correspond to low values of L-moments (LMs) of WSD used for estimating WSA. 

Therefore the model is not able to deliver high values of WSA when the durations are short. 
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Figure 5.9: P-values resulting from applying the Cr amér-von Mises test to validate the 

precipitation model based on extreme values observe d during the summer for all 
stations. 

Intensity duration frequency curves (IDFs) derived from observations of 15 stations with 

registers longer than 19 years are compared with the ones resulting from synthetic time 

series and KOSTRA values. Synthetic time series are generated using the “Local Empirical 

Copula” due to the superior performance in estimating extreme events. Errors are presented 

in Figure 5.10 for four different return periods.  

 
Figure 5.10: Comparison of performance from precipi tation model and KOSTRA to reproduce 

observed extremes for different return periods (20,  10, 5 and 2 years). 
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The synthetic time series show on average underestimation of extreme events for durations 

up to 30~60 minutes and all return periods, these results improve for longer durations. On 

the other hand, KOSTRA shows on average errors closer to zero for most durations, 

however the ranges of errors are larger than the synthetic ones for all cases. As the return 

period decreases, the synthetic time series show smaller range of errors and therefore more 

robust results. Both data sets underestimate daily extreme values. Summarizing, synthetic 

time series only outperform KOSTRA design storms for durations higher than 60 minutes; 

however the time series appear to be more robust for all durations. 

The transferability of the model to other regions is tested by validating the external structure 

of the model. For this purpose, 22 stations in Baden Württemberg with record lengths equal 

or longer than 10 years are used. The regional empirical copula is used for validating the 

model and is estimated based on summer and winter events in a similar way as for Lower 

Saxony (NS). The selected marginal models are the same probability distributions as for NS, 

except for WSA summer, which a Weibull distribution is preferred over the Kappa. Mann-

Whitney and Cramér-von Misses tests are applied in a similar way but based on the new set 

of stations. The results are shown here in Figure 5.11. The Mann-Whitney test indicates that 

none of the distributions resulting from long simulations are statistically different to the 

observed ones for all stations and event characteristics. The CvM shows that for some 

stations extreme value simulations are not corresponding to observations; nevertheless the 

test shows results comparable to NS. 

 
Figure 5.11: Evaluation of transferability of the s ingle site model: P-values resulting from 

applying the Mann-Whitney (Summer and winter events : left and right plots of 
violins) and Cramér-von Mises tests to 22 stations in Baden-Württemberg. 
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5.3 MULTI-SITE PRECIPITATION MODEL 

In this section different results related with multi-site synthesis are presented. As mentioned 

in the Method chapter, a vine-copula model is proposed in this Thesis and is thereafter 

compared with the Simulated Annealing (SA) method. Different parameters and results 

involved in the vine-copula model are discussed followed by an evaluation of the proposed 

model in comparison with SA. 

The first step involved in the proposed model is to identify events occurring in several 

stations simultaneously. The 8 case studies presented in the Data Chapter are used to 

identify events classified as isolated or as occurring in several stations. In Table 5.4 the 

percentage of events occurring in either 1, 2 or 3 stations simultaneously are presented in 

the first three lines, whereas the percentage of event in each of the stations are presented in 

the following 3 lines. As some of the cases only include 2 stations, the corresponding cells 

are marked with a “-“. As can be seen most of the events (50-78%) are registered in one 

station, i.e. they are isolated events. Another feature is that for the BAWU cases the 

percentage of events registered in 2 or 3 stations are higher than for the NS cases. This is 

due to the fact that the stations in BAWU are closer to each other with distances ranging 

from 12 to 23 km (see Table 4.3 in Data Chapter), whereas for the NS cases these distances 

go from 15 to 60 km. Additionally from Table 5.4 it can be seen that the percentage of events 

registered in each of the stations is close to balanced.  

Table 5.4: Percentages of observed events occurring  in several stations simultaneously (1, 
2, 3) and in each of the stations (A, B, C) for dif ferent seasons and case studies 

 

The events classified as occurring in 1, 2 or 3 stations are used for estimating Kendall’s Tau 

correlations (see Eq. 3) between different event characteristics. The resulting values for all 

case studies are presented in Figure 5.12. Correlation between WSA and WSD shows to be 

stronger for events occurring in winter compared to summer. This correlation is stronger for 
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1 61 57 58 50 65 57 63 59 77 73 68 58 78 68 68 63 
2 20 21 21 23 35 43 37 41 23 27 21 23 15 21 19 21 
3 19 21 22 27 - - - - - - 11 20 6.6 11 13 16 
A 56 59 64 76 71 77 74 74 73 83 56 70 47 61 65 85 
B 58 54 68 75 79 81 72 78 57 49 55 66 50 54 47 42 
C 70 81 63 58 - - - - - - 44 54 42 47 52 48 
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events observed in several stations and weaker for isolated events. This supports the 

separation of events into seasons and subgroups for selecting the Vine copula models. The 

correlation between variables describing the WSA shows to be weaker compared to the one 

resulting from the WSD variables. These two cases do not show a clear difference between 

summer and winter events. 

 
Figure 5.12: Characteristics of events according to  their occurrence in 1, 2 or 3 stations 

simultaneously for all cases. Left: Kendall’s Tau c orrelation between WSA-WSD 
for each station. Right: Kendall’s Tau correlation between WSA-WSA and WSD-
WSD for pairs of stations. 

The following step of calculation involves the analysis of time series occurring in either 1, 2 or 

3 stations for selecting the Vine-copula models. As explained in the Methods section, the 

vine copulas are used to mimic the correlations involving WSA and WSD for several stations. 

An empirical copula as the one used for the single site model is not possible for multi-sites 

due to the fact that the events are now subdivided into different groups and therefore the 

samples available for each copula model consist of less pairs.  

For events occurring in only one station, the Vine copula consists of one tree with one 

bivariate model, as only two variables WSA and WSD are involved. A Tawn copula (see Eq. 

9) is used for all cases. For events occurring in 2 and 3 stations simultaneously, four and six 

variables are involved, i.e. the WSA and WSD corresponding to each of the involved 

stations. The pre-defined tree structures for events occurring in 2 or 3 stations are used for 

the 8 case studies. These structures were presented in Figure 3.12 (Methods Chapter) and 

guarantee that pairs of WSA-WSD for each of the stations are directly modeled in the first 

step of simulation. Based on the pre-defined tree structures, different pair copula families and 

parameters are selected and estimated for each study case and season separately in a 

sequential way. The parameters are estimated using the Maximum Likelihood method. Many 

different families are chosen for the different structures of the tree. The bivariate copulas 

selected to model the WSA-WSD are in more than half of the cases the Tawn copulas, 
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followed by Clayton. For the WSD-WSD, the t copula was selected for more than 40% of the 

cases, followed by the Gumbel, Frank and Frank-Joe. For the rest of the cases, i.e. excluding 

the first tree, the conditional models include different copulas with Independent, Gaussian, 

Gumbel and Frank accounting for around 70% of the selected families.  

In Figure 5.13 observed and modeled pairs of pseudo-values describing events occurring in 

three stations during summer for the BAWU_A case are presented. Pairs of WSA-WSD 

observed in each of the stations (gray circles with gray background) suggest non-

exchangeable behavior that is reproduced by the Vine model (turquoise crosses with gray 

background). Overall joint structures between pairs of variables are properly modeled by the 

Vine copula as can be inferred from Kendall’s Tau coefficients from upper and lower 

triangular matrixes.  

 
Figure 5.13: Pairs of pseudo-values of summer event s occurring in three stations 

simultaneously for the BAWU_A case (Kendall’s Tau i n red). Upper triangular 
matrix: Observed. Lower triangular matrix: Syntheti c. 
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The probability distributions used for the single site model are fitted to observed time series 

of event characteristics, i.e. summer and winter DSD, WSD and WSA. The Vine copulas are 

used for generating random samples of pseudo-characteristics that need to be back 

transformed to the real space by the marginal distributions. As the copulas are fitted based 

on events occurring in either 1, 2 or 3 stations, the marginal distributions used for the back 

transformation should be based on subsamples of events occurring in each of the considered 

cases. Therefore the probability distributions that are fitted to the whole sample of events can 

be used for the back transformation by using an additional bias correction that is aiming to 

transform the pseudo-value from a subsample corresponding to say an event occurring in 

only 1 station to the total sample of events. Figure 5.14 (left plot) shows the cumulative 

distributions of WSD corresponding to events classified as occurring in 1, 2 or 3 stations 

along with the distribution considering all events together for the summer events observed in 

BAWU_A case. As can be seen the WSD, corresponding to events observed in 3 stations 

(red points) are, for similar frequency values, longer than the ones observed in 1 or 2 

stations. This is logical since events lasting longer, i.e. with longer WSD, are expected to be 

registered by several stations. The bias correction is performed based on the probability 

distribution of the 3 stations together and a curve for correction is provided for each of the 

number of station cases. If for example a Vine copula modeling events in one station gives 

as a result a pseudo-WSD value of 0.5, in order to convert it to WSD a value of 0.3 should be 

used (as can be inferred from the green curve of the right plot in Figure 5.14). On the other 

hand, if a copula fitted to events occurring in 3 stations generates a pseudo-WSD of 0.5, then 

a value of 0.7 should be used (see red curve of the same plot) when the pseudo-value is to 

be transformed using the marginal distribution.  

 
Figure 5.14: Cumulative distribution functions (lef t) and bias correction (right) for WSD of 

summer events corresponding to BAWU_A case. 

As was mentioned, the method based on Vine copulas proposed in this Thesis consists of 

different steps of calculation that are sequential and as such, each step is built on the 
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solution of the previous one. The so called hybrid model is used as a first step of synthesis to 

randomly generate events occurring in 1, 2 or 3 stations and assign the events to each 

particular station based on the observed percentages for each case which are shown in 

Table 5.4. The result of this first step of calculation are long time series of occurrences for 

each of the involved stations, i.e. either a 0 meaning no event or a 1 meaning event 

occurring at a particular station. As an example, a short time series of 20 occurrences is 

generated (see Table 5.5) for the BAWU_A Summer case; therefore percentages presented 

in first column of Table 5.4 are used. The occurrences of events assigned to 1, 2 or 3 

stations are presented in the first line of Table 5.5 and result of considering the percentages 

of 61, 20 and 19, respectively. Accordingly, the assignment of occurrence of event to stations 

A, B or C results from the percentages 56, 58 and 70 for each of the stations. 

Table 5.5: Example of short time series resulting f rom hybrid model for BAWU_A Summer 
case 

Number of 
stations in which 

event occurs 
1 3 3 2 1 1 2 2 3 3 1 1 3 2 1 2 1 2 3 1 

Station A 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 

Station B 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 

Station C 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 

 
Consecutive 

   
Consecutive 

         
Thereafter the fitted Vine copula models and bias correction method are applied to assign 

events characteristics, i.e. WSA and WSD, to each of the time steps in which an event is 

occurring (assigned as a 1 in the Table presented above). The Vine models (and 

consequently bias correction curves) to be used are determined by the number of stations in 

which events are occurring. For the first simulated occurrence shown in Table 5.5, as the 

event is occurring only in Station A, then the Vine model for 1 isolated station is used. 

Whereas for the second simulated occurrence, the Vine model fitted to events occurring in 3 

stations is applied. This results in long time series of events characterized by WSA and WSD 

for each of the stations. 

The following step is to generate long time series of DSD for the different stations 

simultaneously, that means to introduce values randomly generated by the probability 

distribution and to make sure that events occurring in 2 or 3 stations are temporally 

matching. For this purpose and in order to guarantee that events modeled as occurring 

simultaneously in several stations occur in the same temporal period, the DSD are generated 

stochastically for one of the stations and thereafter adjusted for the rest of the stations. The 

station used for DSD generation changes for the different steps of calculation. For example 

for the time series generated and presented in Table 5.5 it can be seen that events 
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corresponding to columns 2, 3, 9, 10, 13 and 19 must occur simultaneously in the 3 stations, 

and thus must have the same temporal location. For columns 2 and 3, events occur in all 

stations for the two consecutive time steps, and therefore the DSD is assigned for one of the 

stations that is selected randomly and thereafter adjusted for the rest of the stations to fulfill 

the total duration. These events are denominated “consecutive” cases. On the other hand, 

for cases like the ones corresponding to columns 3 and 9, many events are occurring and 

hence many DSD are to be introduced in between (1, 3 and 4 for Stations A, B and C).  For 

these cases the station to be used for DSD generation is selected according to the maximum 

number of DSD to be generated, i.e. Station C for the exemplified period. These events are 

denominated “longest” cases. The DSD corresponding to the other two stations are then 

adjusted to match the total duration between events occurring in all stations for that period.  

The described methodology is used for generating continuous time series of events. A first 

attempt is done using the probability distributions fitted to DSD characterizing all observed 

events for each of the involved stations. Results show a systematic underestimation of the 

mean value of DSD when the final time series are evaluated (see Figure 5.15). For this 

reason some alternatives are evaluated which consist of using subsamples of DSD for 

introducing either the “consecutive” or “longest” cases events. Events corresponding to 

“longest” cases are identified from observed time series for each station and a probability 

distribution is fitted to each subsample of DSD. For the “consecutive” cases two alternatives 

are considered here. The first one consists of a probability distribution that is fitted to the 

merging of all DSD from all the stations involved in the multi-site model (events identified as 

“longest” cases are excluded). This alternative results in a systematic overestimation of DSD 

mean values and is presented as “DSD – Subsamples Trial” in Figure 5.15. The last 

alternative consists of identifying events corresponding to “consecutive” cases from observed 

time series for each station and fitting a probability distribution to the sample consisting of 

“consecutive” events for all stations involved in the multi-site synthesis. In this case results 

show overestimation for most of the stations, although some underestimation is as well 

present (See “DSD – Subsamples Final” in Figure 5.15). This last alternative shows the 

lowest overall errors and is therefore preferred for incorporating the DSD within the time 

series and is used for the rest of the analysis. 
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Figure 5.15: Errors of mean values of DSD resulting  from different alternatives of incorporating 

them within the time series for all stations.  

To evaluate the capability of the proposed method to reproduce different event 

characteristics, an alternative method is applied, namely simulated annealing (SA). For this 

method the original model for single sites is applied to generate long time series in every 

station, without taking into account the surrounding stations. Thereafter the events are 

resampled for each of 8 groups in order to match the spatial consistency measures (see 

definitions with Eq. 14, 15 and 16). The aim of the method is to find the resampling positions 

that maximize a criterion. The criterion is composed of different spatial consistency measures 

which are weighted after a sensitivity analysis. The final measures (weights) are: probability 

of rain at both stations or p11 (2e6), correlation (100) and continuity (10). Different 

parameters involved in the annealing optimization criteria are as well set up after a sensitivity 

analysis and include:  the number of temperature changes set up to 1000 and number of 

iterations for each temperature change 500. An initial temperature of 0.1 and temperature 

decrease rate of 0.9 are as well set up. The resampling is performed considering seasons, 

i.e. summer events can only be swapped with summer events and the same for winter. The 

resampling is limited to a window of 50 years, i.e. it is done for different 50 years simulations 

separately. Finally the resampling is based on events, i.e. WSA ≥ 1mm, so the spatial 

consistency measures to be met must be based on time series which only include these 

events. In Figure 5.16 the final target values used within the optimization algorithm are 

presented, i.e. the dashed lines for the three measures. As can be seen, the exclusion of 

small events has a considerable impact in some of these measures. The SA results in a final 

chronology of rainfall events for each of the stations involved in each group case. 
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Figure 5.16: Bivariate spatial consistency measures  from observed (continuous lines) and 

observed without small events (dashed lines) time s eries used as criteria for SA 
optimization. 

Both the Vine copula model and SA provide long time series of event characteristics for each 

of the stations involved in the multi-site synthesis. These time series are thereafter 

transformed into 5 minutes continuous series by applying the internal structure model and 

introducing the small events as for the single site model. Each of the stations is handled 

independently for this last step of calculation.  

The final synthetic time series consist of 100 years of rainfall and are compared with 

observations. Some of the evaluations are based on single stations and others on areal 

precipitation. Spatial consistency measures, i.e for single stations compared in a pair-wise 

way, are estimated based on the 5 minutes long continuous time series. The different 

measures are estimated based on observed and synthetic time series with and without small 

events; the latter analysis is included as it consists of the optimization criteria for the 

resampling algorithm involved in the SA. Some of the results are shown in Figure 5.17 and 

include the measures of a total of 18 pairs of stations with distances ranging from 11.7 km to 

59 km. It can be seen that the SA is better reproducing the continuity measure, especially if 

time series without small events are compared; whereas the correlation is better reproduced 

by the Vine copula. The Log-odds are underestimated by both models; however the Vine 

copula outperforms the SA as the results are closer to observed ones. Overall, Vine copula 

appears to reproduce these measures better, even though they are not directly involved 

within the model set up, as is the case for the SA optimization criteria, so these values are 

validating the results from the Vine Copula model.  
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Figure 5.17: Bivariate spatial consistency measures  of observed and simulated time series 

with and without small events. 

The areal precipitation is estimated including all stations involved for each case study. 

Observed and synthetic time series from multiple stations (2 or 3) are used and the Thiessen 

polygon is applied for this purpose. In the case of 2 stations, the areal rainfall is just the 

average of the 2 time series. For 3 stations the proportion corresponding to each station is 

calculated as shown in the right plot in Figure 5.18. A description of different variables 

involved in the estimation and analysis of areal precipitation for the different considered 

cases is presented in Table 5.6. The reduction factors corresponding to the case studies are 

as well presented (left plot in Figure 5.18 and Table 5.6) and are applied at the end of this 

sub-Chapter for IDF evaluation. Note that for 3 of the 8 case studies, i.e. the cases with 

areas larger than 1000 km2, the factors are resulting from the extrapolation by simple linear 

regressions (shown in Figure 4.17). 

 

 

Figure 5.18: KOSTRA reduction factors for the case studies (left) and graphical explanation of 
criteria adopted for areal estimation and proportio n of stations (right). 
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Table 5.6: Areas, proportion per station and KOSTRA  reduction factors for the different case 
studies. 

CASE  AREA 
[km 2] Proportions 

KOSTRA Reduction Factors * [-]  
for the following durations [min]: 

5, 15 30 60 120 240 360 720 1440 

BAWU_A  391.1  0.37/0.31/0.32  0.47 0.56 0.65 0.70 0.77 0.81 0.86 0.89 

BAWU_B  423.7  0.34/0.30/0.32 0.46 0.55 0.64 0.69 0.77 0.80 0.85 0.89 

BAWU_C  176.3 0.5/0.5  0.58 0.64 0.72 0.77 0.83 0.86 0.90 0.93 

BAWU_D  116.4 0.5/0.5 0.63 0.69 0.76 0.80 0.85 0.88 0.92 0.94 

NS_A  582.8 0.5/0.5 0.42 0.52 0.61 0.67 0.75 0.78 0.84 0.87 

NS_B  2641.2  0.37/0.22/0.41 0.22 0.36 0.47 0.55 0.65 0.69 0.76 0.81 

NS_C  2630.6  0.27/0.38/0.35 0.22 0.36 0.47 0.55 0.65 0.69 0.76 0.81 

NS_D  1146.5  0.43/0.33/0.24  0.33 0.45 0.55 0.61 0.70 0.74 0.80 0.84 
 
Areal precipitation is estimated from 5 minutes time series corresponding to observations 

and resulting from each of the multi-site models according to the proportions indicated in 

Table 5.6. Total seasonal rainfall and proportion of time steps with rainfall are calculated both 

based on single stations and areal precipitation. The values resulting from the models are 

compared with observations and are presented as errors in the following figures (Figure 5.19 

and 5.20). The SA model shows an acceptable performance when total seasonal rainfall is 

evaluated both for single stations and areal precipitation as the errors show to be around 

zero for all stations, with smaller range for the areal precipitation. The Vine Copula  

underestimates the seasonal rainfall, especially the areal rainfall for which the 

underestimation is shown for all the cases. 

 
Figure 5.19: Errors of total seasonal rainfall base d on areal and single sites resulting from two 

models used for multisite synthesis for summer (lef t plots of violins) and winter 
(right plots of violins) for all stations.  

The proportion of time steps with rainfall appears to be better reproduced by the Vine Copula 

model, especially the areal case for which the range of errors is much lower than the rest of 

the cases. The SA on the other hand results in an overestimation for most of the cases 

included in the areal comparison. These results suggest that the Vine Copula model is better 
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in reproducing the simultaneous occurrence of rainfall in several stations, whereas the SA 

fails to mimic this simultaneous behavior. For the SA the overestimation of time steps with 

rainfall results in an acceptable estimation of total rainfall, so the effects are somehow 

compensated. In the following paragraphs the reasoning behind this compensation is 

discussed.  

 
Figure 5.20: Errors of proportion of time steps wit h rainfall based on areal and single sites 

resulting from two models used for multisite synthe sis for summer (left plots of 
violins) and winter (right plots of violins) for al l stations.  

The capability of the models to reproduce different event characteristics is additionally 

evaluated. As mentioned, the synthetic time series are 100 years long, and due to the 

conception of the multisite models, especially for the SA, it is not so straight forward to 

generate long time series several times to apply tests like MW or GINI. Therefore, their 

capability to reproduce different moments is evaluated based on the available data. Different 

moments are considered and ranges of errors for the first order moment and different rainfall 

characteristics are presented in Figure 5.21.  

 
Figure 5.21: Errors of mean values of event charact eristics based on areal and single sites 

resulting from two models used for multisite synthe sis for summer (left plots of 
violins) and winter (right plots of violins) events  for all stations.  
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The comparison based on single stations indicates that the SA model is reproducing the first 

order moments in an acceptable way, as the errors are around zero for all stations. This was 

expected as the SA is using the single site model for simulating events that are only 

resampled, so the final results should be similar. For the model based on Vine copulas the 

single stations results show some deviations. The DSD are for most of the stations 

overestimated, whereas the WSD and WSA and slightly underestimated but range of errors 

are lower and the results for these variables are therefore acceptable. The WSD results in 

higher underestimation compared to WSA, and the combination results in an overestimation 

of WSI for most of the stations. The overestimation of the DSD is a result of the way that the 

dry spells are incorporated after the long time series of events occurring in either 1, 2 or 3 

stations are simulated. On the other hand even if the WSA and WSD are not directly 

modeled from a probability distribution as in the SA case the resulting values are acceptable. 

Event identification based on areal precipitation shows very different results compared with 

single sites. These results show the outperformance of the Vine Copula model over the SA 

for most event characteristics. Vine copula delivers very acceptable errors for all 

characteristics except for the WSA, for which values are underestimated for all cases. This is 

then causing the underestimation of total seasonal rainfall. The SA model results in an even 

stronger underestimations of WSA mean values, but it is compensated with the 

underestimation of DSD, i.e. an overestimation of rainfall events per year and proportion of 

time steps with rain (see Figure 5.20), and results in an acceptable value of total seasonal 

rainfall (as shown in Figure 5.19).  

Results for different moments are presented as RSE in Table 5.7 (see Eq. 18) based on 

areal precipitation for all cases and the two models for comparison. Errors appear to increase 

as the order of the moment evaluated increases as would be expected. The Vine Copula 

model shows for most of the characteristics and moments lower errors compared to the SA 

when areal precipitation is evaluated. 

Table 5.7: Evaluation of statistics of different va riables describing the external structure of 
rainfall events resulting from two models for multi site synthesis based on areal 
precipitation and presented for all cases as RSE. 

RSE [-] Mean Standard 
Deviation Skewness Kurtosis 

Variable  Season SA Vine 
Copula SA Vine 

Copula SA Vine 
Copula SA Vine 

Copula 

DSD Summer 0.15 0.08 0.30 0.07 0.12 0.80 0.31 4.40 
Winter 0.20 0.07 0.36 0.05 0.14 0.45 0.18 1.71 

WSD Summer 0.14 0.06 0.05 0.15 0.18 0.27 0.28 0.54 
Winter 0.10 0.07 0.12 0.13 0.26 0.27 0.81 1.47 

WSA Summer 0.25 0.12 0.38 0.28 0.23 0.26 0.61 0.45 
Winter 0.26 0.13 0.34 0.25 0.34 0.46 1.11 2.81 

WSI Summer 0.24 0.05 0.17 0.27 1.21 0.64 7.29 1.95 
Winter 0.11 0.06 1.15 0.59 3.58 1.65 24.41 6.87 

 



 

 

 
95 

 

IDFs derived from areal precipitation for all cases are compared with the ones resulting from 

synthetic time series (SA and Vine Copulas) and KOSTRA (without and with reduction). The 

factors used for deriving the reductions are presented in the left plot of Figure 5.18 and Table 

5.6. Errors between IDFs derived from observations and the different considered cases are 

presented for return periods that go up to 10 years due to the data availability in the following 

figure (Figure 5.22). The violin-plots include errors resulting from all cases and durations that 

range from 5 minutes up to 1 day. It can be seen that if no reduction factor is included, 

KOSTRA results in an important overestimation of the IDFs for most of the cases. The 

reduction factors improve the performance of KOSTRA significantly (see “KOSTRA – 

Reduced”), the errors are around zero, with overall some underestimation especially for low 

return periods. Range of errors show to be lower for the multisite models, both show 

underestimation of IDFs but the Vine Copulas model shows median errors closer to zero.  

 
Figure 5.22: Comparison of models regarding their a bility to reproduce extreme events for 

durations ranging from 5 minutes to 24 hours for al l stations. 

A more detailed comparison between each of the multi-site models and KOSTRA-Reduced is 

presented here. Errors are shown in Figure 5.23 for both cases and the 3 return periods. The 

ranges of errors resulting from the Vine Copulas model show to be smaller than the ones 

from the SA and KOSTRA. KOSTRA shows to underestimate extreme values for all return 

periods and sub-hourly durations. These underestimations may be related with the reduction 

factors, which range between 0.22 and 0.56 for the corresponding durations as was shown in 

Table 5.6. On the other hand both multi-site models show acceptable results for low 

durations with a slight underestimation for all stations, which is more marked as the duration 

analyzed increases. Summarizing, the multisite models would be preferable for low durations 

and KOSTRA for long ones, and Vine copulas outperforms SA as the ranges of errors are 

lower. 
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Figure 5.23: Comparison of performance from multisi te models (left: SA and right: Vine 
Copula) and KOSTRA - Reduced to reproduce observed extremes for different 
return periods (10, 5 and 2 years). 

For the case studies presented here the mean reduction factors (KOSTRA) range from 0.86 

to 0.9. If the duration of the events is considered then these factors can get a value as low as 

0.2 for short durations (for 15 minutes) resulting in significant underestimations of values 

provided by KOSTRA Reduced for all cases. The reduction factors for low durations could be 

revised to improve the performance of KOSTRA. 

5.4 REGIONALIZATION OF PRECIPITATION 

The aim of the regionalization is to estimate the distributions describing rainfall 

characteristics for any location. These distributions are defined by parameters and are 

characterized by L-moments (LMs). It was mentioned in the methodology section that some 

parameters/LMs to be regionalized can be significantly correlated, and therefore four 

different alternatives are considered. Two of these involve the regionalization of either 

parameters or LMs directly in a sequential way so that the previously regionalized 

parameter/LM can be used in the subsequent estimation as additional information. The other 

two alternatives regionalize the orthogonalized parameters or LMs, so that the correlation 

among them is eliminated; the regionalized values are then back transformed to the original 
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space. The regionalization of LMs/orthogonalized LMs requires a post step of calculation to 

estimate the parameters.  

5.4.1 PRECEDING ANALYSIS  

In order to decide which alternative is more appropriate for regionalizing the model, a 

preprocessing is done based on the four different sets of variables which are used for 

estimating parameters/LMs. The 24 stations used for single site model development are 

used for this preliminary analysis. A multiple linear regression (MLR) is used with the 

following explanatory variables: position of the station, yearly rainfall, gradient of the yearly 

rainfall, elevation and gradient of the elevation. The same method and variables were used 

for regionalizing the “Old Model”. It was mentioned that for the cases in which the original 

parameters or LMs are regionalized, the significantly correlated parameters (or LMs) are as 

well included as explanatory variables. The sequence is defined after a sensitivity analysis 

and higher order LMs (or parameters associated with them) are estimated first and then 

considered as additional information for the consequent order LMs (or parameters). The 

sensitivity analysis is based on events from all stations that are treated as one station, and 

then checked for some stations separately.  

The two cases that involve parameters/orthogonalized parameters are used for estimating 

them and thereafter comparing these values with the ones derived from observations for the 

24 stations. A similar procedure is followed for cases involving LMs. The final comparison is 

presented as Pearson correlations as a measure of linear correlation between observed and 

estimated parameters or LMs. As different numbers of parameters/LMs are involved, along 

with different event characteristics and seasons, all resulting correlations are presented 

together as semi-violins and values close to 1 indicate a good performance of the method. 

The resulting correlations for the different cases in terms of parameters or LMs are shown in 

Figure 5.24. The two semi-violins located on the left of the figure correspond to the two 

alternatives which regionalize parameters and the ones on the right the ones that deal with 

the LMs. The results reveal that either the parameters or the LMs are better reproduced 

when the original values are regionalized rather than the orthogonalized ones. Therefore, 

from these results the orthogonalized cases can be excluded from the analysis.  
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Figure 5.24: Comparison of variables to regionalize  in terms of reproducing the parameters or 

LMs.  

A further analysis is performed in order to decide the implication of regionalizing either the 

parameters or the LMs in the synthesis of long time series. The time series are generated 

using both regionalization methods for 24 stations and all events characteristics along with 

extreme events are evaluated. The overall results are shown in Table 5.8. As the 

regionalization of LMs indicates more cases in which the tests are not rejected especially for 

all events, then this method is preferable. The following analysis is therefore based on the 

regionalization of the LMs. 

Table 5.8: Comparison of regionalization based on P arameters and LMs in terms of 
percentage of cases in which the Tests (MW: all eve nts or CvM: extreme events) 
are not rejected. 

Test Parameters  LMs Total cases 
MW 21 58 24 stations x 4 variables x 2 seasons 
CvM 58 66 24 stations x 5 Durations 

 

In the following analysis the six probability distributions describing the different rainfall 

characteristics, i.e. DSD, WSD and WSA observed in Summer and Winter, are to be 

regionalized based on the proposed and alternative methodologies, namely the copula-

based one, multiple linear regression (MLR) and  regional frequency analysis (RFA). As was 

mentioned the first two methods aim to regionalize LMs, whereas RFA relies on the LMs for 

the grouping of the stations and results in a regional probability distribution for each of the 

groups. According to the probability distributions selected for each of the variables involved 

in the precipitation model different numbers of LMs need to be estimated, these are: 

DSD(LM1,LM2,LM3), WSD(LM1,LM2), WSA(LM1,LM2,LM3) for summer and winter 

separately, i.e. 16 parameters must be estimated for the copula-based and MLR 

regionalization methods. Despite the methodological difference between the 3 methods they 

all are based on the same stations and period of registers along with site descriptors (SDs), 
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hence a comparison among them is appropriate. A total of 26 and 27 SDs are available for 

the regionalization of LMs describing summer and winter events and were presented in the 

sub-Chapter 4.5. 

5.4.2 COPULA-BASED METHOD 

The copula-based proposed model is set up on pseudo-values of SDs which are used for 

simulating possible values of the LMs. The SDs used for the simulation are limited to cases 

that have a Kendall’s Tau correlation (absolute value) equal or higher than 0.4, this way only 

SDs that indicate high correlations with the target variable are included. As an example in 

Figure 5.25 the pseudo-values of target variables LM1 describing summer events are shown 

along with pseudo values of some of the considered SDs. The Kendall Tau correlations 

among different pairs of variables are shown in red. As can be seen if the DSD (LM1) is to be 

estimated based on the shown descriptors, the only variable to be used would be the Annual 

Rainfall, as this is the only SD with an absolute correlation higher than 0.4. For the WSD 

(LM1) the SDs longitude, elevation and distance to sea would be used, whereas for WSA 

(LM1) only longitude and distance to sea. Another aspect of the proposed model is that the 

amount of values to be simulated using each of the SDs is proportional to the Kendall’s Tau.  

This means that for example for the WSD case most of the variables would be generated 

from the pair WSD (LM1)-Longitude since this pair shows the highest correlation, followed by 

distance to sea and then elevation. For the shown example from the total number of samples 

simulated with the first pair, only 87% (0.47/0.54) of values would be generated with the 

second pair and 77% (0.42/0.54) with the third pair. The three samples would then be 

combined and a representative value (e.g. the median) of the WSD (LM1) would be taken 

from this mixed sample. 

The final number of bivariate copulas included for regionalizing each of the LMs is presented 

in Table 5.9. These numbers include copulas fitted to SDs or previously estimated LMs. 

Different families are selected for the different bivariate relationships, among the most 

frequently selected are the Normal, Gumbel and t-copulas. 
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Figure 5.25: Example of relationship between pseudo  values of some site descriptors and 

target variables. Numbers in red indicate the Kenda ll’s Tau correlation 
coefficients. 

Table 5.9: Number of bivariate relationships consid ered in the regionalization of different 
LMs using copula based approach. 

Variable  Moment  Summer  Winter  

DSD 
LM1 7 5 
LM2 12 7 
LM3 12 9 

WSD 
LM1 9 6 
LM2 10 3 

WSA 
LM1 6 1 
LM2 7 2 
LM3 4 3 

  
The variables with the highest correlation coefficient, and therefore with the highest number 

of sampled values for the target LMs, are listed in Table 5.10, along with the values of the 

corresponding Kendall’s Tau. 

Table 5.10: Variables (SD or LM) with highest corre lations with LMs to be regionalized. 

Variable  Moment  Summer  Winter  
Kendall’s 

Tau SD or LM Kendall’s 
Tau SD or LM 

DSD 
LM1 0.61 mean rainfall: summer 0.67 mean rainfall: yearly 
LM2 0.90 DSD_LM1_Summer 0.67 mean rainfall: yearly 
LM3 0.76 DSD_LM2_Summer 0.85 DSD_LM2_Winter 

WSD 
LM1 0.53 Longitude 0.71 WSD_LM1_Summer 
LM2 0.79 WSD_LM1_Summer 0.71 WSD_LM1_Winter 

WSA 
LM1 0.64 WSD_LM1_Summer 0.51 WSD_LM2_Winter 
LM2 0.84 WSA_LM1_Summer 0.9 WSA_LM1_Winter 
LM3 0:80 WSA_LM2_Summer 0.85 WSA_LM2_Winter 

  
As the copula-based method models the pseudo-values, they need to be transformed to the 

LMs space with marginal distributions; therefore these distributions need to be estimated for 

each of the 16 variables based on all stations. The final models involve 3 different types of 

distributions namely Weibull (3 parameters), Generalized Logistic (3 parameters) and 

Wakeby (5 parameters) and are listed in Table 5.11.  
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Table 5.11: Distributions selected for modeling the  marginal behavior of the different LMs. 
Variable  Moment  Summer  Winter  

DSD 
LM1 Wakeby Wakeby 
LM2 Wakeby Wakeby 
LM3 Generalized Logistic Wakeby 

WSD 
LM1 Wakeby Wakeby 
LM2 Wakeby Wakeby 

WSA 
LM1 Generalized Logistic Weibull 
LM2 Generalized Logistic Weibull 
LM3 Generalized Logistic Weibull 

 

5.4.3 MULTI-LINEAR REGRESSION (MLR) 

MLR is as well applied and main features are described as follows. As mentioned to avoid 

colinearity between SDs partial correlations are analyzed and only SDs with partial 

correlations lower than 0.7 are included in the models estimation. Thereafter for the MLR a 

stepwise selection of the model by AIC is applied to decide which SDs and LMs are included 

as explanatory variables. Residuals are supervised to be unbiased with mean values around 

zero. The final number of variables included in each of the MLR models is presented in Table 

5.12. The 1* indicates that the LMi estimated in the previous step of calculation is included as 

explanatory variables as well. 

Table 5.12: Number of explanatory variables conside red in the regionalization of different LMs 
using MLR. 

Variable  Moment  Summer  Winter  

DSD 
LM1 12+1* 4+1* 
LM2 5+1* 4+1* 
LM3 9 14 

WSD LM1 9+1* 3+1* 
LM2 7 15 

WSA 
LM1 4+1* 6+1* 
LM2 1* 1* 
LM3 10 9 

 

5.4.4 REGIONAL FREQUENCY ANALYSIS (RFA) 

A brief resume of the RFA results are extracted from Leimbach (2017) and are presented 

here. The clustering of stations resulted in groups that show very similar spatial distributions 

when the different variables are compared; nevertheless different number of clusters are 

used according to the variable and range from 4 to 6 clusters, and the number of stations per 

cluster range from 5 up to 49 (median 17). The probability distributions fitted to the regional 
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data sets are presented in Table 5.13 and some differ from the ones used in this Thesis 

(Kappa for DSD and WSA and LN3 for WSD), but are related among each other as special 

cases, for example the Generalized Pareto is a special case of the Kappa and the 

Generalized Normal is as well related to the Log Normal. Further details can be found in the 

original work. 

Table 5.13: Distributions and number of clusters se lected for modeling the regional data sets 
involved in the RFA. 

VAR. Detail  Summer  Winter  

DSD PDF Pearson Kappa 
N° clusters 6 5 

WSD PDF Generalized Normal Generalized Normal 
N° clusters 5 4 

WSA PDF Kappa Wakeby or Generalized Pareto 
N° clusters 4 5 

 

One of the stations located in the Lower-Saxony region was excluded from the 

regionalization procedure (Station Braunlage, N° 1 from Table 4.1). The RFA was not able to 

allocate this station to any of the clusters, and therefore it had to be excluded from the 

evaluation of regionalization methods. 

5.4.5 COMPARISON OF DIFFERENT METHODS 

In order to compare the proposed methodology with the alternative commonly used methods, 

long time series are generated based on the 81 stations and cross-validation, i.e. leaving the 

station that is to be estimated out of the analysis. The results of the three regionalization 

methods are as well compared with the singe site model without regionalization here referred 

as “AR from Obs.”. The Regional Empirical Copula is used in all cases for the joint modeling 

of WSA-WSD. The ability of the different regionalization methods to model the different event 

characteristics are evaluated by using the MW Test and the results are shown in Figure 5.26. 

As can be seen, all the regionalization methods result in some of the stations for which the 

tests are rejected as the p-values are lower than 0.05. A comparison among the different 

variables to regionalize reveals that the DSD is the variable that shows better results, 

whereas the WSD is the most difficult one, an effect that is transferred to the WSI. 

Nevertheless when the three methods are compared the values indicate that both RFA and 

Copula-based model are superior compared to MLR as the p-values for all variables are 

higher. A comparison between RFA and Copula-based is not clear from this figure, only the 

WSA shows to be better reproduced using the RFA method. The capability of the different 

models to reproduce event characteristics is as well evaluated based on deviations for 
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different moments. Results are presented as RSE (see Eq. 18) in the Appendix G for all 

stations and the three regionalization models for comparison. 

 
Figure 5.26: P-values resulting from applying the M ann-Whitney test to compare the different 

regionalization models based on summer (left plots of violins) and winter (right 
plots of violins) events characteristics for all st ations.  

The different methods are compared in terms of their ability to reproduce extreme events and 

the CvM Test results are shown in Figure 5.27 for different durations and all stations as p-

values. The test is only applied to 23 of the 81 stations, so only to the stations in which the 

available observed time series is at least 10 years. As expected, the p-values are lower than 

the ones from the original ARP model. Nevertheless, the decline of the results compared to 

direct parameter estimation is not as obvious as for the MW test. A comparison between the 

three regionalization methods indicates that the MLR and copula-based methods perform 

slightly better over all the durations.  
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Figure 5.27: P-values resulting from applying the C ramér-von Mises test to compare the 

different regionalization models based on extreme v alues observed during the 
summer for all stations. 

To further analyze results of extreme values, the Gumbel distribution fitted to annual series of 

different durations is used for the CvM test and to estimate values associated to different 

return periods. The same procedure is followed based on observed time series. Errors (see 

Eq. 17) between observed and estimated values for different durations and return periods 

were thereafter calculated. The results for the return period of 10 years are presented in 

Figure 5.28. The errors show to be more concentrated around zero for the copula-based 

regionalization method. Another aspect that can be seen in the figure is that the errors from 

the original model (without regionalization) are in the range of errors of regionalized values, 

especially if the copula-based method is considered. Figures with errors resulting from other 

return periods (2, 5, 10 and 20) show similar behavior and are presented in the Appendix H.  

 
Figure 5.28: Comparison of regionalization models r egarding their ability to reproduce extreme 

events for different durations and a return period of 10 years.  

An overall comparison of the different regionalization methods is performed by calculating 

the percentage of cases in which the tests are not rejected both for all event characteristics 
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(summer and winter) and for the extreme events. The results are shown in Table 5.14 and 

indicate that for the MW test both RFA and copula based method are as good, as is deduced 

from the Figure 5.26, whereas for the extreme events the three methods perform very 

similarly with MLR slightly outperforming copula based model. Overall the copula based 

model would be preferred over the other two methods, although none of the methods is 

clearly outperforming the others. 

Table 5.14: Comparison of regionalization based on different methods in terms of percentage 
of cases in which the Tests (MW: all events or CvM:  extreme events) are not 
rejected. 

Test RFA MLR Copula  Total cases 
MW 81 70 80 81 stations x 4 variables x 2 seasons 
CvM 85 90 88 23 stations x 5 Durations 

To decide which regionalization method is more robust the RSE are calculated based on 

several variables describing events (4 moments of DSD, WSD, WSA and WSI summer and 

winter events) and for several extreme events (Durations of 5, 15, 30, 60 and 180 minutes 

and return periods of 2, 5, 10 and 20 years). These RSE are calculated based on the time 

series corresponding to the cross validation (RSELOOCV) analysis that were presented in the 

previous figures. An additional analysis is done with the three regionalization methods but 

based on all stations (RSEALL), i.e. excluding cross validation. The ratio of RSE estimated 

with the inclusion of all stations over the one obtained by cross validation is calculated using 

Equation 21. Values of the ratio close to 1 show that the method is robust to new stations. 

The results are shown in the Figure 5.29 both for all and extreme events. The copula-based 

regionalization method shows a clear superiority compared to the other two methods in terms 

of robustness to new stations. The RFA method appears to be very sensitive to the addition 

of more stations. 
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Figure 5.29: Ratio between Relative Standard Errors  resulting from using all stations and cross 

validation for the four moments and all event chara cteristics (left plots of violins) 
and extreme events for all durations and return per iods (right plots of violins) for 
all stations. 

The different assessment criteria for evaluating the regionalization of the model presented in 

the previous paragraphs are based on the external structure. A last analysis is included in 

which the internal structure is as well evaluated. IDFs derived from observations of 14 

stations with registers longer than 19 years are compared with the ones resulting from 

synthetic time series and KOSTRA values. Synthetic time series are generated using the 

copula-based regionalized method as it showed to be the most robust method. Errors are 

presented in Figure 5.30 for 4 different return periods. The medians and ranges of errors 

resulting from both data sets are comparable; nevertheless regionalization shows to be 

slightly more robust compared to KOSTRA. Regionalized time series results show on 

average underestimation of extreme events when all stations are considered, except for 

durations of 240 to 720 for which median of errors are close to zero. Regionalized time series 

outperform KOSTRA design storms for the mentioned durations, for other durations both 

data sets are similar. 
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Figure 5.30: Comparison of performance from regiona lization model using Copulas and 

KOSTRA to reproduce observed extremes for different  return periods (20, 10, 5 
and 2 years). 

5.5 UNCERTAINTY ANALYSIS  

In this Thesis two different sources of uncertainty are considered: natural variability of the 

stochastic process and uncertainty of the parameter estimation. The first uncertainty is 

analyzed using fixed parameters which are estimated based on all available observations 

and are assumed to be correct. The uncertainty of model parameter estimation is analyzed 

considering different percentages of available data which are used for the estimation. These 

percentages are 100, 75 and 50% and data is randomly sampled with replacement from all 

observed events. The analysis consists of simulating 100 samples of events and only 

considers the external structure. The different realizations are used to extract the four 

moments describing event characteristics (DSD, WSD, WSA and WSI both summer and 

winter) and the intensities of extreme values associated to 4 return periods (2, 5, 10 and 20 

years) and 5 durations (5, 15, 30, 60 and 180 minutes). An example for one station (Lingen) 

is shown in Figure 5.31 (top: mean values and bottom: extreme events with Tr=2 years). The 

horizontal red lines (continuous: summer/extreme values and dashed: winter) indicate the 

attributes estimated from all observations, i.e. the target values. The semi-violins (left: 

summer and right: winter) and violins (extreme values) indicate the distribution of attributes 

resulting from each of the 100 realization. The label “AR” stands for results of the alternating 
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renewal process, i.e. the analysis of natural variability of the stochastic process. The other 

distributions (“100%”,”75%” and “50%”) result from the simulations using re-estimated model 

parameters after resampling different percentages from observed events.  

 

        

 
Figure 5.31: Mean values (top) and extreme events w ith a Tr=2 years (bottom) resulting from 

observations (red lines) and 100 realizations (Viol inplots) using the single site 
model based on all observed events (AR), and resamp ling of different percentages 
of observed events (100, 75  and 50%). 

The aim is to compare the resulting values from the different realizations with the target 

values (estimated from all observations). For this purpose some quantiles representing the 

100 realizations are extracted, namely 0.05, 0.25, 0.5, 0.75 and 0.95, and deviations from 

these quantiles to target values, i.e. to the red horizontal lines in Figure 5.31, are calculated 

for each station and thereafter the RSE is computed based on all stations. The computation 

involves a total of 81 stations (for moments describing all events) and 23 stations with at 

least 9 years of observations (for extreme events), i.e. stations located in the state of Lower 

Saxony and surroundings used for regionalization of the model. The analyses are performed 

using the regional empirical copula. 

RSE are presented in Figures 5.32 and 5.33 for mean values of event characteristics and 

extreme events. The red dots show the results for the natural variability of the process, 

whereas the different curves indicate the uncertainty of parameter estimation. As can be 
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seen from the red dots the results for the mean values of event characteristics that are 

directly modeled, i.e. DSD, WSD and WSA indicates that the model is unbiased as the 

lowest RSE corresponds to the median and the behavior is symmetric around it, i.e. for low 

and high quantiles, when all stations are considered in the analysis. For the WSI which is 

derived from the ratio WSA/WSD the results indicate a tendency of underestimating the 

mean value for all stations as the lowest RSE corresponds to the quantile 0.75. The 

Standard Deviation (SD) shows a slight overestimation for all characteristics, whereas the 

overestimation is more obvious for the Skewness and Kurtosis (see Appendix I). When 

extreme values are analyzed (see red dots in Figure 5.33), the model shows to overestimate 

intensities, especially for short durations, whereas for durations of 30 and 60 minutes the 

results are acceptable, as the behavior is closer to unbiased for all stations. As was 

mentioned, the uncertainty analysis of the input data is studied by considering the different 

percentages of available events which are used for estimating parameters of the probability 

distributions and thereafter generating long synthetic time series. As expected the different 

curves in Figures 5.32 and 5.33 indicate that the RSE increases as the different percentages 

of input data decreases. Nevertheless the resulting values show the same behavior as the 

ones from the original model for all the analyzed attributes, showing that the model is quite 

robust to the input data.  

Uncertainty of parameter estimation and natural variability of the stochastic process are 

compared by calculating ratios of RSE considering different percentages of available data 

over RSE using all observed events, i.e. “AR”. Median values of these ratios both for different 

event characteristics and for extreme events are presented in Table 5.15. The values 

indicate that the model is very robust to input data, as the increment in RSE shows to be 

limited, especially for the WSD, WSI and extreme events which have ratios close to 1. 

Uncertainty of parameter estimation shows to be in the range of natural variability of the 

process for most of the attributes. Maximum ratios are as well presented and reach a value 

of 2 for all events and 1.47 for extreme values as maximum deviations.  
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Figure 5.32: Uncertainty of mean values: RSE for different quantiles resulting from 100 

realizations using the single site model based on a ll observed events (red dots) 
and on resampling of different percentages of event s (blue curves) for 81 stations. 
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Figure 5.33: Uncertainty of extreme events: RSE for different quantiles resulting from 100 

realizations using the single site model based on a ll observed events (red dots) 
and on resampling of different percentages of event s (blue curves) for 23 stations. 
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Table 5.15: Ratios between RSE estimated based on resampling 100, 75 and 50% of o bserved 
events over RSE estimated with the original AR model. The values c orrespond to 
median and maximum ratios. 

Case  Median  
100% 

Median 
75% 

Median 
50% 

Maximum 
100, 75, 50% 

DSD* 1.18 1.32 1.33 2.02 
WSD* 1.05 1.06 1.03 1.80 
WSA* 1.12 1.14 1.19 1.91 
WSI* 1.00 1.01 1.02 1.65 

Extreme Events**  1.03 1.06 1.07 1.47 
*includes 4 moments, summer and winter 
** includes 4 return periods and 5 durations 
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6 APPLICATION TO URBAN HYDROLOGY  

Precipitation time series of high temporal resolution are of particular interest for applications 

in urban hydrology. In this Chapter different analyses based on various rainfall time series 

are performed regarding the implication for urban hydrological modeling.  The small fictional 

urban hydrological system presented in sub-Chapter 4.7 is used for this purpose. It allows 

carrying out continuous simulations for assessing the occurrence of floodings, even for long 

time series. 

6.1 UNCERTAINTY OF INPUT DATA IN THE RESPONSE OF URBAN 

CATCHMENTS 

Two different analyses are performed to assess the uncertainty introduced by observed time 

series and its propagation in urban hydrological simulations. On one hand the source of error 

due to serial autocorrelation in time series and on the other hand the natural variability of the 

stochastic process and its effect on the hydrological response. 

As was mentioned in sub-Chapter 4.1, the variables describing characteristics of rainfall 

events show significant autocorrelations, especially for WSD. In order to analyze the effect of 

this autocorrelation in urban response, different time series are generated based on 

observed ones by randomly resampling the order of rainfall events and therefore removing 

the autocorrelation. The resampling is performed without replacement for each season 

separately. A total of 10 resampled time series with length equal to the observed ones are 

generated for each of the 24 stations used for developing the single site model. Figure 6.1 

shows that the autocorrelation is reduced to values around the zero for all event 

characteristics. 
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Figure 6.1: Autocorrelation of summer (left plots o f violins) and winter (right plots of violins) 

events for all stations resulting from original tim e series (Obs.) and resampling 
without replacement based on observed time series ( Res. 1 to 10).  

The 10 resampled time series are used as the input for the urban system and flooding and 

overflow events are compared with the ones resulting from the observed time series. Median 

errors of duration and volume resulting from the 10 simulations are calculated for each 

station (see Eq. 17). A similar analysis is performed for assessing the natural variability of the 

process, but in this case the resampling of events is performed with replacement, i.e. some 

events may be included more than once and consequently others excluded from the 

generated time series. The errors resulting from both analyses and for all stations are 

presented in Figures 6.2 and 6.3. Range of errors resulting from the analysis of serial 

autocorrelation are smaller than the ones representing the natural variability of the process. 

This is explained by the fact that in the first case, i.e. resampling without replacement, always 

the same set of events is compared just the order of occurrence is altered. 

Clustering of events can induce temporal autocorrelation and therefore cause more severe 

flood events resulting from the cluster effect of intense events. The removal of 

autocorrelation of rainfall events does not result in a systematic underestimation of variables 

describing flood events. The errors show a balance between under- and overestimation that 

could rather be explained by the variability of the stochastic process. However, removing 

autocorrelation results in a systematic underestimation of overflow volume and duration, 

therefore the temporal occurrence of events shows to be very important for the overflow 

response. Nevertheless, the figures show that the input uncertainty has a stronger effect on 

the variables describing flood events, especially the volume which shows a larger range of 

errors.  
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Figure 6.2: Errors of flood event characteristics f or all stations resulting from resampling the 

observed time series. Sources of error: Serial auto correlation (left) and natural 
variability (right). 

 
Figure 6.3: Errors of overflow event characteristic s for all stations resulting from resampling 

the observed time series. Sources of error: Serial autocorrelation (left) and natural 
variability (right). 

The errors representing the natural variability of the stochastic process are included later 

when different precipitation models are evaluated. These errors show to be spread around 

medians (+4% for overflow, +3% and +7% for flood duration and volume) and show under- 

as well as overestimation of the resulting values for the different stations. They are later 

referred as “Resampling Obs.” and are used for assessing the uncertainty introduced by the 

natural variability of the process and to compare the range of errors provided by the different 

precipitation models. 

6.2 EFFECT OF THE INTERNAL DISTRIBUTION IN THE RESPONSE OF 

URBAN CATCHMENTS 

The influence of the shape of synthetic events in the reproduction of flood events is analyzed 

here. For this purpose the 24 stations applied for developing the single site model are used 

for modeling flood events using the fictional urban hydrological system. The resulting flood 

events are then used as a reference for comparing synthetic shapes. Rainfall events causing 



 

 

116 

flooding are identified from the observed time series. Characteristics describing these events 

(WSA, WSD, WSI, WSPeak and WSTpeak) are extracted. These characteristics describing 

real events are then used for fitting theoretical shapes. Rainfall events causing flooding are 

then replaced by the new events with theoretical internal distributions. The new time series 

are used for modeling flood events, and these results are compared with the ones from the 

original observed time series. Three different theoretical shapes are considered, as 

described in Figure 3.15 (Methods Chapter). All are based on the exponential shape with 

different concentration of rainfall around the peak. 

The use of the theoretical shape of the “Old model” (D.Expo.1Peak*) shows a very low 

performance in terms of flood events. In particular for the station Braunlage the flood volume 

shows to be overestimated for more than 80% of the events. To illustrate the case, one of the 

biggest flood events resulting from observed time series registered in this station is shown in 

Figure 6.4. The observed rainfall event is used for deriving the three theoretical ones and all 

are shown in the left plot, whereas the flood events resulting from all these different inputs 

are shown in the right plot. For the selected event the volume of the flood event is 

overestimated by 192% (see right plot in Figure 6.4), whereas this overestimation is reduced 

using the alternative theoretical shapes to 106 and 65%. It can be seen from the figures that 

the rainfall event is characterized by several peaks that result in multi-peak flooding 

response.  

Figure 6.4: Observed and theoretical rainfall event s (left) and resulting flood events (right) for 
one important flood in Station Braunlage. The numbe rs [%] indicate the 
overestimation of flooding volume compared to resul ts from observations. 

As the double exponential theoretical shape is not able to model floods with multiple peaks, 

results are more accurate when the volume of rainfall is not so concentrated around the peak 

of the rainfall event delivering flooding events which are more distributed over a longer time 

period (e.g. case “D:Expo. 1/3 Peak*”). The comparison of the different theoretical shapes is 

done based on all rainfall events causing floodings identified from the observed time series of 

the 24 stations. The results of flood characteristics (mean annual volume and duration) are 

presented as errors in Figure 6.5 for the three different theoretical shapes. The reduction of 

errors is significant, especially for the volume characteristic. Absolute errors of volume are 

lower for 23 out of 24 stations, when the 1 Peak* and 1/3 Peak* cases are compared. When 
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the duration of flood events is compared, more than half of the stations show lower errors 

when considering the 1/2 or 1/3 Peak* cases. Nevertheless as the errors resulting from the 

duration of flood events are much lower than the ones corresponding to the volume, the 

results from this second variable are considered for deciding which internal distribution to 

use. Finally, the model that will be used for the internal distribution is the 1/3 Peak* case. 

Spilling to a natural river at the outlet of the system is additionally analyzed (both volume and 

duration). Absolute errors are always lower than 2% for both variables and all analyzed 

synthetic shapes (see Figure 6.6). The model selected for the internal distribution shows 

errors closer to a non-biased behavior with median values closer to zero.  

 
Figure 6.5: Errors of flood events for all stations  resulting from different internal distributions 

based on observed events. 

 
Figure 6.6: Errors of overflow events for all stati ons resulting from different internal 

distributions based on observed events. 

The fictional urban model used here has the advantage that allows performing a continuous 

simulation and thus including the complete rainfall time series along with all flood events. The 

model used is small, simple and meant to represent a portion of a city. The effect of the size 

of urban model is briefly analyzed by simulating some of the biggest events causing flooding 
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for the Braunlage station using a more complex system and comparing the errors resulting 

from the different theoretical shapes considered here. The comparison of results from both 

the simple and complex model is presented in the Appendix J. The same tendency is seen 

for all events when the different synthetic shapes are compared. The overall errors are much 

lower for the complex system.  

6.3 SINGLE SITE PRECIPITATION MODEL 

The different single site models presented in sub-Chapter 5.1 are used for generating long 

synthetic time series which are applied as input for urban hydrological modeling. The urban 

model is run with a 5 minute time step and therefore the internal precipitation structure plays 

an important role. Results are presented in terms of errors for the 24 stations and shown in 

Figure 6.7. The uncertainty introduced by the natural variability of the process (“Resampling 

Obs.”) is as well included in the plot, which  show errors that go up to ±25% for flood 

durations and -35/+50% for volume (dotted lines), just from randomly sampling events from 

observed time series.  

The “Old Model” results in overestimation of flood event characteristics, especially for the 

volume. This overestimation results from the internal structure of the model, for which the 

volume of rainfall is concentrated around the peak intensity of the events. These errors are 

reduced with the new proposed techniques. The range of errors is smaller when the 

symmetric copula is replaced by the regional and local empirical copulas. For these two 

copulas mean values of the error of simulated volume is close to zero indicating a balance 

between over and under estimation for the different stations. The duration shows more cases 

in which this variable is underestimated, but the range of errors is smaller compared to the 

volume error range. The benefit of using the copulas is shown in the plots, as errors can be 

reduced almost up to the natural variability of the observations.  

Figure 6.8 shows the errors for the volume of flood events resulting from synthetic series 

(median of 10 realizations simulated with the “Local Empirical Copula”) and KOSTRA events 

(median of 9 cases, see sub-Chapter 3.6.4). For KOSTRA, the duration must be defined 

therefore concentration time of the system is estimated based on different rainfall 

hyetographs and runoff hydrographs as around 2 hours. Synthetic time series show on 

average overestimation of flood volume for return periods of 10 and 20 years, whereas errors 

are close to zero for the rest of the cases. KOSTRA events with duration of 2 hours show on 

average underestimation for all return periods. Synthetic time series show smaller range of 

errors for all return period, especially for low ones. Overall, the precipitation model performs 

more robust compared to the design practice KOSTRA, as was the case for the IDF curves 

(see sub-Chapter 5.2). 
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Figure 6.7: Validation of precipitation model based  on errors of flood events for all stations. 

Dotted lines indicate maximum and minimum error of flooding volume for 
resampling observations. 

 
Figure 6.8: Comparison of performance from precipit ation model and KOSTRA to reproduce 

volume of flood events. 

The ability of the precipitation model to reproduce the average yearly overflow volume and 

duration is evaluated and results are presented in Figure 6.9. Overflow results are less 

sensitive to the natural variability of rainfall events showing errors between -7 and + 12% 

(see “Resampling Obs.”). 
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Figure 6.9: Validation of precipitation model based  on errors of overflowing events for urban 

system with T20 and all stations. For the “Old Mode l” an additional variant is 
considered (semi-transparent plots) in which small events are included. 

As small events are neglected in the “Old Model”, overflow characteristics are 

underestimated for all stations, these results are improved with the inclusion of such events 

(semi-transparent plots). Overflow results do not show to be sensitive to the internal 

distribution of events and neither to the joint modeling of WSA-WSD as extremes do not play 

a pivotal role. On the other hand, they are very sensitive to the occurrence of small events. 

Errors show on average a slight underestimation of duration and volume that could result 

from the lack of serial autocorrelation in the time series of rainfall events, as was the case of 

source of error introduced by the presence of autocorrelation (see Figure 6.3). The range of 

errors increases slightly with increase of retention tank size from T20 to T40 (not shown 

here). As mentioned before, event based simulations (KOSTRA) cannot be used for 

assessing these long-term properties. 

6.4 REGIONALIZATION OF PRECIPITATION 

The regionalization of the precipitation model is evaluated in terms of applicability to urban 

hydrological purposes. A similar approach as for assessing the single site model is 

performed here. The only difference is that one of the stations (Braunlage) is eliminated from 

the analysis, as it is not involved in the regionalization procedure. The results from the 

different regionalization methods are compared with the ones from the original single site 

model “AR from Obs.” which corresponds to the “Regional Empirical Copula” case presented 

in the preceding Sub-chapter (with the exclusion of Braunlage). Errors are computed based 

on different flooding and overflow characteristics and presented in Figure 6.10 and 6.11. 

As expected the range of errors resulting from different regionalization methods are bigger 

than the one resulting from the original model without regionalization. Nevertheless, resulting 
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values are still acceptable. Multi-linear regression (MLR) tends to underestimate all resulting 

values for most of the stations, as the median values are negative. On the other hand 

Regional Frequency Analysis (RFA) and Copula based regionalization techniques show 

better results, especially for the volumes of flooding and overflow, for which the errors are on 

average close to zero. This indicates a balance between over- and underestimation for the 

different stations. A comparison between RFA and Copula based models indicates that the 

volumes have a similar range of errors for flooding and overflow, whereas the durations are 

barely better reproduced by the copula based regionalization, as the range of errors is 

smaller.   

 
Figure 6.10: Validation of regionalization of the p recipitation model based on errors of flood 

events for stations with long registers.  

 
Figure 6.11: Validation of regionalization of preci pitation model based on errors of overflowing 

events for urban system with T20 and stations with long registers.  
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7 SYNTHESIS 

7.1 SUMMARY AND CONCLUSIONS 

The goal of this work was to develop a stochastic model that can properly reproduce 

simultaneously mean event properties and extreme value statistics of rainfall required for 

urban modeling. The model is based on Alternating Renewal process and derived from an 

existing one developed by Haberlandt (1996) by introducing major improvements to properly 

synthesize rainfall in a high temporal resolution. The proposed model is applied for single site 

simulations in locations with observations and a methodology for regionalizing the model is 

as well presented. Furthermore an extension of the existing model from single site to multi-

site applications is developed. The proposed methodologies are compared with alternative 

ones applied by the hydrological community for similar purposes. An additional validation of 

the model is performed by using a fictional drainage system to model the response of an 

urban network. The different developments are tested for different stations in Germany in 

which registers of rainfall in a 5 minutes resolution are available. A comparison with a 

common practice design strategy, in this case KOSTRA, is as well included in order to 

discuss the advantages and limitations of considering a range of possible events into the 

analysis. The main findings are discussed in the following paragraphs. 

The single site model involves the temporal simulation of long continuous precipitation for 

single stations. The proposed model is compared with the existing one, here denominated as 

“Old Model”. The major improvements introduced into the model are: i) separation of events 

into two seasons, ii) inclusion of small events, iii) use of copula functions to jointly model 

variables involved in the external and internal structures, and iv) modification of the shape for 

the internal structure. The main results are the following: 

- Introducing seasonality into the model, i.e. analyzing events for summer and winter 

separately, shows to be very important for reproducing the distribution of event characteristic, 

especially for the variables describing the durations, as shown in Figure 5.4. Seasonality was 

neglected in the “Old Model”. 

- Small events account for an important volume (19% to 37%) of annual rainfall and therefore 

their inclusion is suitable for properly modeling the total amount of rainfall. Errors are 

significantly reduced with the updated models which introduce these small events as shown 

in Figure 5.6.  

- The use of copulas to model WSD and WSA jointly showed to be propitious. Direct and 

simultaneous simulation of WSA and WSD and successive estimation of WSI is benefited by 
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the bivariate models. Synthetic series show to be similar to observed ones for most of the 

variables and stations; the proposed models which include copulas have a superior 

performance compared to the “Old Model” (see Figure 5.4 and Tables 5.2 and 5.3). 

- The effect of incorporating appropriate dependence structures to model WSA-WSD is clear 

when the extreme values are evaluated (see Figure 5.9). These events show to be better 

reproduced when the copulas able to model asymmetric structures are incorporated into the 

model, i.e. the empirical copulas. As pointed out by Vandenberghe et al. (2010), even the 

use of some asymmetric copulas could be problematic when extreme storms are to be 

simulated, due to the fact that the degree of asymmetry is non-homogeneous (changes with 

the probability). The use of empirical models proposed here is able to capture the particular 

behaviour of non-exchangeability.  

- When IDF curves are evaluated, the proposed precipitation model shows on average 

underestimation of extreme events for durations up to 30~60 minutes and all return periods. 

Results improve for longer durations as errors and ranges are reduced as shown in Figure 

5.10. Nevertheless errors corresponding to short durations and high return periods are on 

average lower than the ones reported by Verhoest et al. (1997), Bernadara et al. (2007) and 

Vernieuwe et al. (2015). The precipitation model outperforms KOSTRA design storms only 

for durations higher than 60 minutes. 

- The transferability of the model to new regions is tested for a set of stations belonging to a 

region with very different topographic and climatic conditions. Despite of this challenging 

feature, the transferability was straightforward and shows acceptable results as can be 

depicted from Figure 5.11, both for all event characteristics and for extreme values. 

- Two different sources of uncertainty are analyzed, namely the natural variability of the 

stochastic process and the uncertainty of parameter estimation. The analysis of the first 

source of uncertainty depicts the models ability to reproduce the variables DSD, WSD and 

WSA, whereas there is a tendency to underestimate the WSI. For the extreme events, the 

model shows to overestimate intensities, especially for short durations, whereas for durations 

of 30 and 60 minutes the results are more acceptable, as the behavior is closer to unbiased. 

In terms of uncertainty of model parameters, the model shows to be very robust, as the 

general behavior is not affected by the percentage of available input data (see Figures 5.32 

and 5.33). 

The plots in Figure 7.1 summarize the main outputs of the proposed copula based single site 

model, both in terms of reproducing the mean value of all event characteristics 
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(summer/winter: left/right semi violins) and extreme events corresponding to durations of 5 

minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours and 1 day. Both 

plots demonstrate the ability of the model to mimic different events and its overall 

outperformance compared with the design practice KOSTRA depicted from the lower range 

of errors. These errors correspond to the “Local Empirical Copula” applied to the stations 

used for developing the single site model. 

Figure 7.1: Summary of results of the proposed mode l for single site synthesis in terms of 
mean value of all event characteristics (left) and extreme values (right).  

The multi-site model involves the temporal and spatial simulation of long continuous 

precipitation for several stations simultaneously. The developed method consists of an 

extension of the Alternating Renewal based process model to a multi-site application. 

Therefore it is event based and benefits from the fact that the number of parameters is not 

affected by the temporal resolution. It involves several steps of calculation that are 

sequential, namely the hybrid model, Vine copulas and incorporation of dry spells. The 

proposed model has the advantage that it accounts for the spatial extension of events within 

the hybrid model for simulating rainfall characteristics; however the several stages of 

simulation make it complex and difficult to interpret. The multi-site model is compared to the 

alternative Simulated Annealing (SA) method. The main results are the following: 

- Synthetic time series are compared in a pair-wise way, i.e. every two stations, to estimate 

spatial consistency measures. Overall, these measures (as shown in Figure 5.17) are better 

reproduced by the Vine copula model compared to the alternative method. Furthermore, 

these measures are not involved within the Vine copula model, as is the case for the SA 

optimization criteria, so these outcomes emphasize the satisfactory performance of the 

developed model. 

- The capability of the two models to reproduce different event characteristics is additionally 

compared. The evaluation based on single sites depicts some deficiencies of the proposed 

model, however these results are improved when the evaluation is performed based on areal 

precipitation (see Figure 5.21). Overall SA performs better for single stations but fails when 

the areal precipitation is considered. These results suggest that the Vine copula model 
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outperforms in reproducing the simultaneous occurrence of rainfall in several stations, 

whereas the SA misses to mimic this behavior. Unfortunately, the proposed method 

systematically underestimates total seasonal rainfall as can be depicted from Figure 5.19. 

- When IDF curves are evaluated, the proposed precipitation model shows acceptable results 

as the ranges of errors are smaller than the ones from the SA and KOSTRA (see Figures 

5.22 and 5.23). Vine copulas outperforms SA, however these models would be preferable for 

low durations and KOSTRA for long ones. The reduction factors applied to KOSTRA are 

provided for different durations and areas of application, though for large areas extrapolation 

by simple linear regressions was necessary. These factors could be revised, as they result in 

a systematic underestimation of extreme values. For example for similar sizes of areas of 

application and durations, Myers & Zehr (1980) provide reduction factors developed for the 

city of Chicago that indicate a good agreement for durations shorter than 1 hour but these 

factors are higher (7% to 18%) than the ones applied in this Thesis for longer durations. 

Additionally the authors provide different factors for different return periods, and for high 

return periods (100 years), KOSTRA reduction factors show to be higher (10%) that the 

provided ones for durations lower than 6 hours. The inclusion of the return period in the 

estimation of the KOSTRA reduction factors could lead to better results. 

The plots in Figure 7.2 summarize the general performance of the proposed copula based 

multi-site model, both in terms of reproducing the mean value of all event characteristics 

(summer/winter: left/right semi violins) and extreme events for durations ranging from 5 

minutes to 1 day. The results are based on areal precipitation and extreme values are 

compared with average values estimated from KOSTRA. The plot on the left demonstrates 

the ability and difficulty to mimic the event characteristics for several stations simultaneously, 

as some of these variables are well reproduced, whereas others like the WSA are 

systematically underestimated. The plot on the right shows the ability of the method to 

reproduce extreme values and its outperformance compared with the design practice 

KOSTRA, despite the underestimation for most of the stations the model delivers a smaller 

range of errors.  
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Figure 7.2: Summary of results of the proposed mode l for multi-site synthesis in terms of 
mean value of all event characteristics (left) and extreme values (right).  

The regionalization of the model involves the temporal simulation of long continuous 

precipitation for single stations without observations. A methodology is developed that 

involves the use of several site descriptors that are available for any location. Copula 

models, conditioned to the descriptors, are used to estimate possible values of variables 

describing rainfall events. The variables are thereafter useful for estimating the model 

parameters. The proposed methodology has the advantages that it is very fast to implement 

and easy to interpret. The copula-based method is compared with alternative regionalization 

methods commonly applied by the hydrological community, namely multi-linear regression 

(MLR) and regional frequency analysis (RFA). The main results are the following: 

- Different evaluations based on all event characteristics and extreme values are performed 

for the three methods. Overall the copula based model would be preferred over the other two 

methods, although none of the methods is clearly outperforming the others. 

- Regionalization depicts the difficulty of reproducing all event characteristics, whereas 

extreme values show a better performance compared to non-regionalized results (see 

Figures 5.26 and 5.27). The three methods considered here point the same conclusion. 

- The use of copulas for regionalization clearly outperforms the alternative methods in terms 

of robustness to new stations as depicted from Figure 5.29. As the copula is derived from 

ranks or pseudo-values, rather than values itself, the estimation of the models show to be 

robust to the inclusion/exclusion of some stations. Furthermore, RFA method appears to be 

very sensitive to the addition of more stations. 

- IDFs resulting from the proposed copula-based regionalization method are compared with 

KOSTRA in Figure 5.30. Ranges of errors indicate a slightly more robust performance of 

regionalized time series compared to KOSTRA. Regionalization shows on average 

underestimation of extreme events, except for durations of 4 to 12 hours for which median of 

errors are close to zero. Regionalized time series outperform KOSTRA design storms for the 

mentioned durations, for other durations both data sets are similar. 
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The plots in the following Figure 7.3 summarize the outputs of the proposed copula based 

regionalization method, both in terms of reproducing the mean value of all event 

characteristics (summer/winter: left/right semi violins) and extreme events for durations 

ranging from 5 minutes to 1 day. Regionalization is compared with the original model, i.e. 

without regionalization. These plots demonstrate the difficulty to regionalize all events and 

the ability of the method to regionalize extreme values.  

Figure 7.3: Summary of results of the proposed mode l for regionalization in terms of mean 
value of all event characteristics (left) and extre me values (right).  

The application of the synthetic time series as input for urban hydrological modeling has 

been advantageous to assess the implications of some of the proposed techniques. A simple 

fictional drainage system has been used for this purpose allowing for continuous simulations. 

An overall assessment is therefore possible since the whole time series of rainfall and flood 

events are included in the analysis. The main findings are described here:   

- As exposed by Smith et al. (2013) temporal clustering of flood events is an important 

element in urban hydrological systems, as many flood events occur within short periods or as 

response of long rainfall events. Nevertheless, in this Thesis the significant autocorrelation of 

duration of events did not show to have a relevant effect on the flood events. As clustering of 

events can induce temporal autocorrelation, a systematic underestimation of flood 

characteristics was expected by removal of the autocorrelation. However, this is not the case 

and the errors showed a balance between under- and overestimation that could be explained 

as a result from the natural variability of rainfall events or just as a sampling error (see Figure 

6.2). On the other hand, overflow events showed to be very sensitive to the temporal 

occurrence of rainfall events, as the removal of the autocorrelation resulted in a systematic 

underestimation of both duration and volume (see Figure 6.3). 

- Uncertainty of rainfall data used as input for urban hydrological simulations shows to have a 

stronger effect on the variables describing flood events, especially the volume which shows 

the largest range of errors. Overflow characteristics result in much lower errors.  
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- The internal structure of the model plays a pivotal role both in terms of properly reproducing 

the flood and overflow events. The volume of these events is noticeable improved (see 

Figures 6.5 and 6.6) when the new internal structure is used which provides precipitation 

profiles with lower concentrations around the peak.    

- Regarding the single site model, the hydrological implication of using different dependence 

structures to model WSA-WSD is assessed by the response urban hydrological. The effect of 

considering the asymmetry is clear when the flood events are evaluated (see Figure 6.7), in 

which both volume and duration show to be better reproduced with the use of the empirical 

copulas. This hydrological interpretation is, according to Vandenberghe et al. (2010), a 

challenge that deserves further research. 

- For more localized structures, i.e. the Local Empirical Copula, the range of errors is 

reduced, in particular for the volume and duration of flood events (see Figure 6.7). 

Nevertheless the Regional Empirical Copula performs in an acceptable way, suggesting that 

the joint structure of WSA-WSD can properly be modeled by a unique Copula for all stations. 

The use of one regional copula provides an important benefit, since the joint structure does 

not need to be regionalized, hence omitting the uncertainties that would be introduced during 

this process. Similar results were found by Balistrocchi & Bacchi (2011) for 3 long time series 

recorded in different climate regions in Italy, for which the strength of dependence between 

volume and duration shows to be independent of the rain gauge location. 

- A comparison between the single site model and KOSTRA depicts that, on average, 

KOSTRA underestimates flood volumes, whereas synthetic time series overestimate these 

volumes for high return periods and results are improved as the return period decreases. 

Nevertheless, the proposed precipitation model shows more robust results as the range of 

errors both for rainfall and flood volume are smaller than KOSTRA, especially for low return 

periods (see Figures 5.10 and 6.8). Furthermore, as KOSTRA is derived from observations 

its evaluation is consequently comparing data to data, whereas the synthetic time series 

consist of a data to model comparison. The performance of the precipitation model is 

acceptable compared to the design practice with KOSTRA. 

- Rainfall-runoff transformation shows a non-linear behavior. If a duration equal to the 

concentration time of 2 hours is considered, KOSTRA results in a proper estimation of rainfall 

however the flooded volume is underestimated as depicted from Figures 5.10 and 6.8. 

Results are more consistent for synthetic time series suggesting an advantage of continuous 

over event based modeling. 

- Overflow behavior does not show to be sensitive to the joint modeling of WSA-WSD and 

the inclusion of seasonality into the model; whereas the modeling of small events is pivotal, 
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as was stated by Grodek et al. (2011). The inclusion of small events reduces the errors 

significantly as shown in Figure 6.9. However these errors show on average a slight 

underestimation that could result from the lack of serial autocorrelation in the time series of 

rainfall events, nevertheless the underestimation is not systematic as some stations result in 

overestimation. A systematic underestimation of overflow duration is reported by Haberlandt 

(1996). KOSTRA is not suitable for the continuous simulation of the overflow dynamics. 

- The regionalization of the model results as expected in bigger range of errors, both for 

flooding and overflow events, compared to the original one (see Figures 6.10 and 6.11). MLR 

tends to underestimate all resulting values for most of the stations. A comparison between 

RFA and the copula based model indicates that the volumes have a similar range of errors 

for flooding and overflow, whereas the durations are barely better reproduced by the copula 

method, as the range of errors is smaller. Furthermore, the errors of overflow volume are in 

the range to the ones reported by Cowpertwait et al. (1996), which for small steep 

catchments range between -28% and +25%. 

Overall the different proposed modifications to the model show to deliver satisfactory results 

both for the average event statistics and for the extremes. Compared to other existing 

models commonly applied by the hydrological community, the copula-based methods 

proposed in this Thesis have shown to perform very satisfactory in the simulation of rainfall 

events for high temporal resolutions. Furthermore, the model has several advantages: it is 

fast to be set up, simple to interpret, easy to transfer to other regions and the number of 

parameters is not affected by the temporal resolution, which is propitious for its 

regionalization. The provided model outperforms the available design practices for particular 

events; moreover it shows a robust behavior both for extreme value estimations and for 

flooding and overflow resulting from urban hydrological simulations. 
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7.2 FUTURE RESEARCH 

Time series of rainfall in a high temporal resolution are very useful for several purposes. 

Working with this type of data leads to some open questions that are involved in different 

stages of analysis presented here. One important aspect that was pointed out during this 

study is regarding the autocorrelation of time series in a 5 minutes temporal resolution. It was 

shown that the internal structure of the model results in an overestimation of this 

autocorrelation. A possibility to improve these results could be to introduce some noise to the 

final time series and therefore reduce the autocorrelation, whilst conserving other aspects of 

rainfall events like duration and volume. The open question is to explore how this 

autocorrelation affects the final application of the precipitation model, that could be the 

quantification of rainfall erosivity, hydrological applications involving urban or small, steep 

rural catchments, engineering design of flash flood control structures, etc. 

Regarding the multi-site model, one limitation of the existing models is that they are complex 

and hard to interpret, involving several stages of simulation. The model proposed in this 

Thesis consists as well of several steps that follow each other and is not easy to interpret. 

Furthermore, the model was only applied to cases involving 2 and 3 stations. Despite the fact 

that it could be applied to data sets involving more stations, a limitation could be the length of 

data available in several stations simultaneously for setting up the different modules within 

the model, especially the Vine copulas. Another important aspect that is subject of further 

research is the regionalization of this multi-site model, i.e. setting up the model for locations 

without observations. Future work could involve exploring the capability of the radar data, 

which is spatially and temporally available in very high resolutions, to extract some of the 

characteristic which are required for modeling rainfall in multiple sites simultaneously. For 

instance the radar data could be used for estimating the Vine copulas, which are based on 

pseudo-observations, or deriving the different bias corrections. 

Finally the application of the precipitation model to simulate precipitation for a future scenario 

could be as well of interest. As the precipitation events are characterized by probability 

distributions which result from fitting the parameters to LMs describing the events 

characteristics, a methodology for estimating the LMs for a future climate scenario would be 

useful. The methodology could follow the regionalization idea proposed here, but using 

climatic SDs for a future scenario, resulting from a global or regional climate model, and 

providing estimated LMs for a future condition.   



 

 

 
131 

 

REFERENCES 

Aas, K., Czado, C., Frigessi, A., Bakken,  H., 2009. Pair-copula constructions of multiple dependence. 
Insurance, Mathematics and Economics 44, 182-198. 

Adler, D., 2015. vioplot: Violin plot [online]. R package version 0.2. Available from: https://cran.r-
project.org/web/packages/vioplot. [Accessed 30 March 2016]. 

Alila, Y., 1999. A hierarchical approach for the regionalization of precipitation annual maxima in 
Canada. Journal of Geophysical Research, 104(D24), 31.645-31.655. 

Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., Feyen, L., 2014. Advances in pan-European 
flood hazard mapping. Hydrological Processes, 28: 4067-4077. doi: 10.1002/hyp.9947. 

Ariff, N. M., Jemain, A. A., Ibrahim, K., Wan Zin W. Z., 2012. IDF relationship using bivariate copula for 
storm events in Peninsular Malaysia. Journal of Hydrology, 470-471, 158–171. 

Arnaud, P., Bouvier, C., Cisneros, L., Dominguez, R., 2002. Influence of rainfall spatial variability on 
flood prediction. Journal of Hydrology, 260, 216-230.  

Asong, Z. E., Khaliq, M. N., Wheater, H. S., 2015. Regionalization of precipitation characteristics in the 
Canadian Prairie Provinces using large-scale atmospheric covariates and geophysical attributes. 
Stochastic Environmental Research and Risk Assessment, 29: 875-892. 

Asquith, W., 2016. lmomco---L-moments, censored L-moments, trimmed L-moments, L-comoments, 
and many distributions. R package version 2.2.3, Texas Tech University, Lubbock, Texas. 

Azzalini, A., 2015. The R package 'sn': The Skew-Normal and Skew-t distributions (version 1.3-0). 

Bacchi, B., Kottegoda. N. T., 1995. Identification and calibration of spatial correlation patterns of 
rainfall. Journal of Hydrology, 165, 311-348. 

Balistrocchi, M., Bacchi, B., 2011. Modelling the statistical dependence of rainfall event variables 
through copula functions. Hydrology and Earth System Sciences, 15, 1959-1977. (doi:10.5194/hess-
15-1959-2011) 

Bárdossy, A., 1998. Generating Precipitation Time Series Using Simulated Annealing. Water 
Resources Research, 34, 1737–1744. 

Barredo, J. I., 2007. Major flood disasters in Europe: 1950-2005. Natural Hazards, 42, 125–148. 
doi:10.1007/s11069-006-9065-2 

Bartels, H., Dietzer, B., Malitz, G., Albrecht, F. M., Guttenberger, J., 2005. Offenbach am Main 
KOSTRA-DWD-2000, Starkniederschlagshöhen für Deutschland (1951–2000) – 
Fortschreibungsbericht. 

Beck, F., 2013. Generation of spatially correlated synthetic rainfall time series in high temporal 
resolution: a data driven approach. Ph.D. Thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 
Stuttgart, ISBN 9783942036238. 

Bedford, T., Cooke, R. M., 2001. Probability density decomposition for conditionally dependent 
random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 32, 245-268. 



 

 

132 

Bernard, C., Czado, C., 2015. Conditional quantiles and tail dependence. Journal of Multivariate 
Analysis, 138, 104-126. 

Bernardara, P., De Michele, C., Rosso, R., 2007. A simple model of rain in time: An alternating 
renewal process of wet and dry states with a fractional (non-Gaussian) rain intensity. Atmospheric 
Research, 84, 4, 291-301. 

Brechmann, E. C., Czado, C., Aas, K., 2012. Truncated regular vines in high dimensions with 
applications to financial data. Canadian Journal of Statistics, 40 (1), 68-85. 

Brechmann, E. C., Schepsmeier, U., 2013. Modeling Dependence with C- and D-Vine Copulas: The R 
Package CDVine. Journal of Statistical Software, 52(3), 1-27. 

Breiman, L., 2001. Random Forests. Machine Learning, 45(1), 5-32. 

Burton, A., Fowler, H. J., Kilsby, C. G., O’Connel, P. E., 2008. RainSim: a spatial–temporal stochastic 
rainfall modelling system. Environmental Modelling and Software, 1356–1369. 

Carr, D., Lewin-Koh, N., Maechler, M., Deepayan, S., 2015. hexbin: Hexagonal Binning Routines. R 
package version 1.27.1. https://CRAN.R-project.org/package=hexbin [Accessed 15 December 2016] 

Chowdhary, H., Escobar, L. A., Singh, V. P., 2011. Identification of suitable copulas for bivariate 
frequency analysis of flood peak and flood volume data. Hydrology Research, Vol. 42 No. 2–3, 193–
216. 

Cohen, J., Cohen, P., West, S.G., Aiken, L.S., 2003. Applied multiple regression/correlation analysis 
for the behavioral sciences. L. Erlbaum Associates, Mahwah, N.J. 

Cowpertwait, P. S. P., O’Connell,  P. E., Metcalfe, A. V., Mawdsley, J. A., 1996. Stochastic point 
process modelling of rainfall. II. Regionalisation and disaggregation. Journal of Hydrology, 175, 47-65. 

Cowpertwait, P. S. P., Kilsby, C., O’Connell, P., 2002. A space-time Neyman-Scott model of rainfall: 
Empirical analysis of extremes. Water Resources Research, 38(8), doi:10.1029/2001WR000709. 

Cowpertwait, P. S. P., Lockie, T., Davis., M. D., 2004. A stochastic spatial-temporal disaggregation 
model for rainfall. Research Letters in the Information and Mathematical Sciences, 6, 109–122. 

Cowpertwait, P. S. P., Isham, V., Onof, C., 2007. Point process models of rainfall: developments for 
fine-scale structure. Proceeding of Royal Society A, 463, 2569-2587. (doi: 10.1098/rspa.2007.1889) 

Cowpertwait, P. S. P., 2011. A regionalization method based on a cluster probability model. Water 
Resources Research, 47: W11525. 

Cox, D. R., Wermuth, N., 1996. Multivariate dependencies. London: Chapman & Hall. 

CRED, 2017. EM-DAT. The international disaster database. Available from: www.emdat.be. 
[Accessed on August 2017]. 

Czado, C., 2010. Pair copula constructions of multivariate copulas. In P. Jaworki, F. Durante, W. 
Härdle, and T. Rychlik (Eds.), Workshop on Copula Theory and its Applications. Springer-Verlag Berlin 
Heidelberg 2010. 

Delignette-Muller, M.L., Pouillot, R., Denis, J.B., Dutang, C., 2010. fitdistrplus: help to fit of a 
parametric distribution to non-censored or censored data [online]. R package. Available from: 
http://cran.r-project.org/web/packages/fitdistrplus/index.html [Accessed 30 March 2012]. 



 

 

 
133 

 

Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., Rieckermann, J., 2013. Improving 
uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and 
Earth System Sciences, 17, 4209-4225. (doi:10.5194/hess-17-4209-2013) 

Dißmann, J. F., Brechmann, E. C., Czado, C., Kurowicka, D., 2013. Selecting and estimating regular 
vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-
69. 

Dupuis, D. J., 2007. Using Copulas in Hydrology: Benefits, Cautions and Issues. Journal of 
Hydrological Engineering, 12, 381-393. 

DWA, 2006. Hydraulische Bemessung und Nachweis von Entwässerungssystemen, Arbeitsblatt A 
118, Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Germany. 

DWA, 2012. Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer, Arbeitsblatt A 531, Deutsche 
Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Germany. 

DWD, 2015. Climate Data Center. [Online] Available at: ftp://ftp-cdc.dwd.de/pub/CDC/ [Accessed 01 - 
11 - 2016]. 

DWD, 2016. Datensatzbeschreibung. Vieljährliche Raster des mittleren Vegetationsbeginns in 
Deutschland. [Online] Available at: ftp://ftp-
cdc.dwd.de/pub/CDC/grids_germany/multi_annual/vegetation_begin/BESCHREIBUNG_gridsgermany
_multi_annual_vegetation_begin_de.pdf [Accessed 02 - 11 - 2016]. 

Eggert, B. , Berg, P. , Haerter, J. O. , Jacob, D. , Moseley, C., 2015. Temporal and spatial scaling 
impacts on extreme precipitation. Atmospheric Chemistry and Physics, 15, 5957–5971. 

Fagerland, M. W., Sandvik, L., 2009. The Wilcoxon–Mann–Whitney test under scrutiny. Statistics in 
Medicine, 28: 1487–1497. (doi: 10.1002/sim.3561) 

Fraley C., Raftery A. E., 2007. Model-based methods of classification: Using the mclust software in 
chemometrics. Journal of Statistical Software, 18, paper i06. 

Gaál, L., Molnar, P., Szolgay, J., 2014. Selection of intense rainfall events based on intensity 
thresholds and lightning data in Switzerland. Hydrology and Earth System Sciences, 18, 1561–1573. 

Garcia-Guzman, A., Aranda-Oliver, E., 1993. A stochastic model of dimensionless hyetograph. Water 
Resources Research, 29, 2363-2370. 

Genest, C., Favre, A., 2007. Everything You Always Wanted to Know about Copula Modeling but 
Were Afraid to Ask. Journal of Hydrological Engineering, 12, 347-368. 

Genest, C., Nešlehová, J. G., 2013. Assessing and modeling asymmetry in bivariate continuous data. 
In Copulae in Mathematical and Quantitative Finance. Proceedings of the Workshop Held in Cracow, 
10-11 July 2012 (P. Jaworski, F. Durante & W.K. Härdle, Editors). Springer, Berlin, 91-114.  

Grimaldi, S., Serinaldi, F., 2006. Design hyetograph analysis with 3-copula function. Hydrological 
Sciences Journal, 51, 223-238. 

Grimaldi, S., Petroselli, A., Serinaldi, F., 2012. A continuous simulation model for design-hydrograph 
estimation in small and ungauged watersheds. Hydrological Sciences Journal, 57 (6), 1035–1051. 

Grodek, T., Lange, J., Lekach, J., Husary, S., 2011. Urban hydrology in mountainous middle eastern 
cities. Hydrology and Earth System Sciences, 15 (3), 953-966. 



 

 

134 

Gyasi-Agyei, Y., Charles, S., 2012. Modelling the dependence and internal structure of storm events 
for continuous rainfall simulation. Journal of Hydrology, 464, 249-261. 

Haberlandt, U., 1996. Stochastische Synthese und Regionalisierung des Niederschlages für 
Schmutzfrachtberechnungen. PhD Thesis, Universität Stuttgart, Mitteilungen, Heft 88, 1996. ISBN 
3921694884. 

Haberlandt, U., 1998. Stochastic rainfall synthesis using regionalized model parameters. Journal of 
Hydrologic Engineering, 3, 160–168. 

Haberlandt, U., Ebner von Eschenbach, A.-D., Buchwald, I., 2008. A space-time hybrid hourly rainfall 
model for derived flood frequency analysis. Hydrology and Earth System Sciences, 12, 1353-1367. 

Haberlandt, U., Radtke, I., 2014. Hydrological model calibration for derived flood frequency analysis 
using stochastic rainfall and probability distributions of peak flows. Hydrology and Earth System 
Sciences, 18, 353–365. 

Hernaéz, P. F., Martin-Vide, J., 2011. Regionalization of the probability of wet spells and rainfall 
persistence in the Basque Country (Northern Spain). International Journal of Climatology, 32(12), 
1909–1920. 

Hintze, J. L., Nelson, R. D., 1998. Violin Plots: A Box Plot-Density Trace Synergism. The American 
Statistician, 52(2), 181-84.  

Hofert, M., Maechler, M., 2011. Nested Archimedean Copulas Meet R: The nacopula Package. 
Journal of Statistical Software, 39(9), 1-20. 

Hofert, M., Kojadinovic, I., Maechler, M., Yan, J., 2015. copula: Multivariate Dependence with Copulas. 
R package version 0.999-14 URL http://CRAN.R-project.org/package=copula [Accessed 15 December 
2016]. 

Hosking, J. R. M., 1990. L-moments: Analysis and Estimation of Distributions using Linear 
Combination of Order Statistics. Journal of the Royal Statistical Society (Series B), 52, 105-124 

Hosking, J. R. M., Wallis, J. R., 1997. Regional Frequency Analysis. An Approach Based on L-
Moments. Cambridge: Cambridge University Press. 

Hsu, M. H., Chen, S. H., Chang, T. J., 2000. Inundation simulation for urban drainage basin with storm 
sewer system. Journal of Hydrology, 234, 21-37. 

Hu, Y., 2013. Extreme value mixture modelling: An R package and simulation study. MSc (Hons) 
Thesis, University of Canterbury, New Zealand. 

Hundertwasser, F., 1996. Hundertwasser Architektur. Taschen, Köln. ISBN 3822885940. 

Imhoff, K., Imhoff, K.R., 2007. Taschenbuch der Stadtentwässerung, Oldenburg Industrieverlag, 30. 
Auflage, 508 p. 

Joe, H., 1996. Families of m-variate distributions with given margins and m(m-1)/2 bivariate 
dependence parameters. L. Rüschendorf and B. Schweizer and M. D. Taylor (Ed.), Distributions with 
Fixed Marginals and Related Topics. 

Kaczmarska, J., Isham, V., Onof, C., 2014. Point process models for fine-resolution rainfall. 
Hydrological Sciences Journal, Volume 59 (11), 1972-1991.  

Kao, S., Govindaraju, R., 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett 
family of copulas. Water Resources Research, 44, W02415, doi:10.1029/2007WR006261. 



 

 

 
135 

 

Kaufman, L., Rousseeuw P. J.,1990. Finding Groups in Data: An Introduction to Cluster Analysis. 
Wiley, New York. 

Katz, R. W., Parlange, M. B., 1995. Generalizations of chain-dependent processes: application to 
hourly precipitation. Water Resources Research, 31 (5), 1331–1341. 

Kim, D., Olivera, F., Cho, H., Socolofsky, S. A., 2013. Regionalization of the Modified Bartlett-Lewis 
Rectangular Pulse Stochastic Rainfall Model. Terrestrial, Atmospheric and Oceanic Sciences, Vol. 24, 
No. 3, 421-436. 

Kleiber, W., Katz, R. W., Rajagopalan, B., 2012. Daily spatiotemporal precipitation simulation using 
latent and transformed Gaussian processes. Water Resources Research, 48, 1-17. 

Kohonen, T., 1990. The self-organizing map. Proceedings of the IEEE, 78(9):1464-1480. 

Kojadinovic, I., Yan, J., 2010. Modeling Multivariate Distributions with Continuous Margins Using the 
copula R Package. Journal of Statistical Software, 34(9), 1-20. 

Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998. A mathematical framework for studying rainfall 
intensity-duration-frequency relationships. Journal of Hydrology, 206 (1-2), 118–135. 

Leimbach, S., 2017. Comparison of regionalization approaches for rainfall characteristics in Germany. 
Hannover: Master Thesis. Institute of Water Resources Management, Hydrology and Agric. Hydraulic 
Engineering. 

Licznar, P., Schmitt, T. G., Rupp, D. E., 2011. Distributions of microcanonical cascade weights of 
rainfall at small timescales. Acta Geophysica, 59, 1013–1043. (doi:10.2478/s11600-011-0014-4) 

Liu, M., Bárdossy, A., Zehe, E., 2013. Interaction of valleys and circulation patterns (CPs) on spatial 
precipitation patterns in southern Germany. Hydrology and Earth System Sciences, 17(11): 4685-
4699. 

MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. 
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: 
Statistics, 281--297, University of California Press, Berkeley, Calif.  

Maidment, D. R., 1993. Handbook of Hydrology. McGraw-Hill, Inc. ISBN 0070397325.  

Mehrotra R, Srikanthan R, Sharma A., 2006. A comparison of three stochastic multi-site precipitation 
occurrence generators. Journal of Hydrology, 331, 280–292, DOI:10.1016/j.jhydrol.2006.05.016. 

Mehrotra, R., Westra, S., Sharma, A., Srikanthan, R., 2012. Continuous rainfall simulation: 2. A 
regionalized daily rainfall generation approach. Water Resources Research, 48(1), 1-16. 

Meierdiercks, K. L., Smith, J. A., Baeck, M. L., Miller, A. J., 2010. Analyses of urban drainage network 
structure and its impact on hydrologic response. Journal of the American Water Resources 
Association, 46, 932–943. 

Modarres, R., 2010. Regional Dry Spells Frequency Analysis by L-Moment and Multivariate Analysis. 
Water Resources Management, 24(10), 2365-1380. 

Mohd Daud, Z. Mat Rasid, S. M., Abas, N., 2016. A Regionalized Stochastic Rainfall Model for the 
Generation of High Resolution Data in Peninsular Malaysia. Modern Applied Science, Vol. 10, No. 5, 
77-86. 



 

 

136 

Morales-Nápoles, O., 2008. Bayesian belief nets and vines in aviation safety and other applications. 
Ph.D. Thesis, Technische Universiteit Delft. 

Möser, W., Raschke, E., 1984. Incident Solar Radiation over Europe Estimated from METEOSAT 
Data. Journal of Climate and Applied Meteorology, Volume 23, 166-170.  

Mosthaf, T., Bárdossy, A., 2017. Regionalizing nonparametric models of precipitation amounts on 
different temporal scales. Hydrology and Earth System Sciences, 21, 2463-2481. 

Müller, H., Haberlandt, U., 2016. Temporal rainfall disaggregation using a multiplicative cascade 
model for spatial application in urban hydrology. Journal of Hydrology (SI "Measuring & Modeling 
Rain"), accepted 

Müller, T., Schütze, M., Bárdossy, A., 2017. Temporal asymmetry in precipitation time series and its 
influence on flow simulations in combined sewer systems. Advances in Water Resources, 107, 56–64. 

Müller-Westermeier, G., 1995. Numerische Verfahren zur Erstellung klimatologischer Karten. Berichte 
des Deutschen Wetterdienstes 193, Offenbach am Main: Selbstverlag des Deutschen Wetterdienstes. 

Muller , A., Arnaud , P. Lang, M., Lavabre J., 2009. Uncertainties of extreme rainfall quantiles 
estimated by a stochastic rainfall model and by a generalized Pareto distribution. Hydrological 
Sciences Journal, 54:3, 417-429. 

Myers, V. A., Zehr, R. M., 1980. A methodology for point-to-area rainfall frequency ratio. NOAA 
Technical Report NWS 24, National Weather Service, NOAA, U. S. Department of Commerce, 
Washington, D.C.. 

Nelsen, R. B., 2006. An Introduction to Copulas. 2nd edition. Springer, New York. ISBN 
9780387286594. 

Nguyen, V., Peyron, N., Rivard, G., 2002. Rainfall Temporal Patterns for Urban Drainage Design in 
Southern Quebec. Global Solutions for Urban Drainage, 1-16. doi: 10.1061/40644(2002)237. 

Ochoa-Rodriguez, S., Wang, L., Gires, A., Pina, R. D., Reinoso-Rondiel, R., Bruni, G., Ichiba, A., 
Gaitan, S., Cristiano, E., van Assel, J., Kroll, S., Murla, D., Tisserand, B., Schertzer, D., 
Tchiguirinskaia, I., Onof, C., Willems, P., ten Veldhuis, M-C., 2015. Impact of spatial and temporal 
resolution of rainfall inputs on urban hydrodynamic outputs: A multi-catchment investigation. Journal of 
Hydrology, 531, 389-407. 

Paschalis, A., Molnar, P., Fatichi, S., Burlando, P., 2013. A stochastic model for high-resolution space-
time precipitation simulation. Water Resources Research, 49 (12), 8400–8417. 

Peel, M. C., Finlayson, B. L., McMahon, T. A., 2007.  Updated world map of the Köppen-Geiger 
climate classification. Hydrology and Earth System Sciences, 11 (5), 1633–1644. 

Pham, M. T., Vanhaute, W. J., Vandenberghe, S., De Baets, B., Verhoest, N. E. C., 2013. A copula-
based assessment of Bartlett–Lewis type of rainfall models for preserving drought statistics. Hydrology 
and Earth System Sciences Discussions, 10, 7469-7516. (doi:10.5194/hessd-10-7469-2013) 

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ [Accessed 15 December 2016]. 

Rau, P., Bourrel, L., Labat, D., Melo, P., Dewitte, B., Frappart, F., Lavado, W., Felipe, O., 2017. 
Regionalization of rainfall over the Peruvian Pacific slope and coast. International Journal of 
Climatology, 37: 143–158. doi:10.1002/joc.4693 



 

 

 
137 

 

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., Gratzki, A., 2013. A Central European 
precipitation climatology - Part I: Generation and validation of a high-resolution gridded daily data set 
(HYRAS). Meteorologische Zeitschrift, 22(3), 235-256. 

Rodriguez-Iturbe, I., Cox, D. R., Isham, V., 1988. A point process model for rainfall: further 
developments. Proceedings of the Royal Society of London A, 417, 283–298. 
(doi:10.1098/rspa.1988.0061) 

Rossman, L. A., 2010. Storm Water Management Model Version 5.0 User’s Manual Revised July 
2010. U.S. Environmental Research Agency. EPA/600/R-05/040.  

Salvadori, G., De Michele, C., 2006. Statistical characterization of temporal structure of storms. 
Advances in Water Resources, 29 (2006), 827–842. 

Salvadori, G., De Michele, C., Kottegoda, N. T., Rosso, R., 2007. Extremes in Nature: An Approach 
Using Copulas. Springer, Dordrecht, The Netherlands. ISBN 9781402044144. 

Scarrott, C. J., MacDonald, A., 2012. A review of extreme value threshold estimation and uncertainty 
quantification. REVSTAT - Statistical Journal 10(1), 33-59. 

Schepsmeier, U., Stoeber, J., Brechmann E. C., Graeler B., Nagler T., Erhardt, T., 2016. VineCopula: 
Statistical Inference of Vine Copulas. R package version 2.0.1. https://CRAN.R-
project.org/package=VineCopula [Accessed 15 December 2016]. 

Serfozo, R., 2009. Basics of applied stochastic processes. Springer, Berlin. ISBN 9783540893318.  

Serinaldi, F., Kilsby, C. G., 2013. The intrinsic dependence structure of peak, volume, duration, and 
average intensity of hyetographs and hydrographs. Water Resources Research 49, 3423-3442,  
10.1002/wrcr.v49.6. 

Smith, B. K., Smith, J. A., Baeck, M. L., Villarini, G., Wright, D. B., 2013. Spectrum of storm event 
hydrologic response in urban watersheds. Water Resources Research, 49, 2649-2663. 

Sordo, M. A., de Souza, M. C., Suárez-Llorens, A., 2016. Testing variability orderings by using Gini’s 
mean differences. Statistical Methodology, 32, 63–76. 

Suzuki R., Shimodaira H., 2006. Pvclust: an R package for assessing the uncertainty in hierarchical 
clustering. Bioinformatics, 12: 1540-1542 

Sveinsson, O. G. B., Salas, J. D., Boes, D. C., 2002. Regional Frequency Analysis of Extreme 
Precipitation in Northeastern Colorado and Fort Collins Flood of 1997. Journal of Hydrologic 
Engineering, 7(1), 49-63. 

Tarpanelli, A., Franchini, M. , Brocca, L., Camici, S. ,Melone, F., Moramarco, T., 2012. A simple 
approach for stochastic generation of spatial rainfall pattern. Journal of Hydrology, 472, 63–76. 

Tawn, J. A., 1988. Bivariate extreme value theory: models and estimation. Biometrika, 75(3), 397-415. 

U.S. Soil Conservation Service, 1985. National Engineering Handbook, Sec. 4, Hydrology U.S. 
Department of Agriculture, Washington D.C.. 

Vandenberghe, S., Verhoest, N.E.C., De Baets, B., 2010. Fitting bivariate copulas to the dependence 
structure between storm characteristics: A detailed analysis based on 105 year 10 min rainfall. Water 
Resources Research, 46, W01512. (doi:10.1029/2009WR007857) 



 

 

138 

Vandenberghe, S., Verhoest, N.E.C., Onof, C.,  De Baets, B., 2011. A comparative copula-based 
bivariate frequency analysis of observed and simulated storm events: a case study on Bartlett-Lewis 
modeled rainfall. Water Resources Research, 47(7). (doi: 10.1029/2009WR008388) 

Venables, W. N., Ripley, B. D., 2002. Modern Applied Statistics with S. Fourth edition. Springer. 

Verhoest, N., Troch, P.E., Troch, F.P., 1997. On the applicability of Bartlett–Lewis rectangular pulses 
models in the modeling of design storms at a point. Journal of Hydrology, 202, 108–120. 

Vernieuwe, H., Vandenberghe, S., De Baets, B., Verhoest, N. E. C., 2015. A continuous rainfall model 
based on vine copulas. Hydrology and Earth System Sciences, 19, 2685-2699. doi:10.5194/hess-19-
2685-2015. 

Verworn, H. R., 2008. Flächenabhängige Abminderung statistischer Regenwerte. Korrespondenz 
Wasserwirtschaft 9(1): 493-498. 

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American 

Statistical Association, 58, 236-244. 

Wilks, D. S., 1998. Multisite generalization of a daily stochastic precipitation generation model. Journal 
of Hydrology, 210, 178–191. 

Wilks, D. S., 2008. High-resolution spatial interpolation of weather generator parameters using local 
weighted regressions. Agricultural and Forest Meteorology, 148, 111-120. 

Willems, P., 2001. A spatial rainfall generator for small spatial scales. Journal of Hydrology, 252, 126–
144. 

WMO,  2012. Climate and meteorological information requirements for water management. Technical 
Report Series N° 1. WMO-No. 1094. ISBN 978926311094 7. 

Wu, J. Y., Thompson, J. R., Kolka, R. K., Franz, K. J., Stewart, T. W., 2013. Using the Storm Water 
Management Model to predict urban headwater stream hydrological response to climate and land 
cover change. Hydrology and Earth System Sciences, 17, 4743-4758. doi:10.5194/hess-17-4743-
2013. 

Xiang, Y., Gubian, S., Suomela, B., Hoeng, J., 2013. Generalized Simulated Annealing for Global 
Optimization: the GenSA Package. The R Journal, 5(1),13-29. 

Xiong, L., Yu, K., Gottschalk, L., 2014. Estimation of the distribution of annual runoff from climatic 
variables using copulas. Water Resources Research, 50, 7134–7152. 

Yan, J., 2007. Enjoy the Joy of Copulas: With a Package copula. Journal of Statistical Software, 21(4), 
1-21. 

Zhang, L., Singh, V., 2007. Gumbel-Hougaard copula for trivariate rainfall frequency analysis. Journal 
of Hydrologic Engineering, 12, 409-419. 

Zhang, Z., Switzer P., 2007. Stochastic space-time regional rainfall modeling adapted to historical rain 
gauge data. Water Resources Research, 43, W03441. doi:10.1029/2005WR004654.  



 

 

 
139 

 

LIST OF PUBLICATIONS  

JOURNAL PAPERS  

Callau Poduje, A. C., Haberlandt U., 2017. Short time step continuous rainfall modeling and 

simulation of extreme events. Journal of Hydrology, 552, 182-197. 

  



 

 

140 

  



 

 

 
141 

 

 

 

 

 

 

 

APPENDIX 

 

 

 
 



APPENDIX A 
Graphical explanation of steps involved in Synthesis with Single Site Model.

1) Simulation of pseudo-pairs of WSA-WSD;                  
Converting pseudo-values to values (WSA and WSD); 

2) Simulation of values of DSD;

3) Calculation of WSI=WSA/WSD, estimation of pseudo-WSI; 
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3) Calculation of WSI=WSA/WSD, estimation of pseudo-WSI; 
Simulation of pseudo-WSPeak conditioned to pseudo-WSI; 
Converting pseudo-WSPeak to WSPeak;

4) Estimation of WSTpeak;

5) Estimation of the shape parameter λ;
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5) Selection of DSDs;
Selection of locations within DSDs;                                                         

6) Introducing small events.
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APPENDIX B 
Graphical explanation of steps involved in Synthesis with Multi-Site Model.

1) Simulation of occurrence of events in 1,2, … , k stations; 
Assignment of event to the different locations; 

2) Simulation of pseudo-pairs of WSA-WSD for events occurring 
in 1, 2, … , k stations;
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3) Bias correction of pseudo values of WSA and WSD;  
Converting pseudo-values to values (WSA and WSD); 

4) Simulation of values of DSD for one of the stations;         
Setting of DSD for the other stations to match total duration;
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(Similar to Single Site Model)

5) Calculation of WSI=WSA/WSD, estimation of pseudo-WSI; 
Simulation of pseudo-WSPeak conditioned to pseudo-WSI; 
Converting pseudo-WSPeak to WSPeak;

6) Estimation of WSTpeak;

7) Estimation of the shape parameter λ;

8) Selecting DSDs;
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8) Selecting DSDs;
Selecting locations within DSDs;                                               

9) Introducing  small events.
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APPENDIX C 
Graphical explanation of steps involved in Regionalization of the model.

STEPSSTEPS .
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1) Selection of a location for the regionalization;               
Extraction of site descriptors (SDs) for the location;  

2) Estimation of pseudo-SDs;

3) Simulation of pseudo-LMtarget conditioned to pseudo-SDi;   
Merging of simulated values using several SDs;

0.0 0.4 0.8

0.
0

1.
0

2.
0

D
en

si
ty

0.0 0.4 0.8

0.
0

0.
6

1.
2

D
en

si
ty

0.0 0.4 0.8

0.
0

1.
0

Merging & Median

D
en

si
ty

0.0 0.4 0.8

0.
0

0.
4

0.
8

D
e

n
si

ty

0

11

Probability Density Function

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

LMLMtargettarget

pseudopseudo--LMLMtargettarget

pseudopseudo--LMLMtargettarget

SDSD11

SDSD22

SDSD33

target i
Merging of simulated values using several SDs;

4) Converting median of pseudo-LMtarget to LMtarget;

5) Estimation of model parameters using different order of 
regionalized LMtarget .



APPENDIX D 

Latitude
°

Longitude 
°

Elevation 
'mNN

From
-

To
-

Length 
years

MW 
Test

CvM 
Test

IDF 
eval.

MW 
Test

CvM 
Test

IDF 
eval.

MW 
Test

CvM 
Test

IDF 
eval.

MW 
Test

CvM 
Test

IDF 
eval.

1 BRAUNLAGE 3984 Lower Saxony 51.73 10.6 607 1993 2013 21 x x x x x x

2 BRAUNSCHWEIG-VOEL. 54251_10348 Lower Saxony 52.3 10.45 81.2 1998 2012 15 x x x x

3 CUXHAVEN 31121_10131 Lower Saxony 53.87 8.7 5 2000 2012 13 x x x x

4 DIEPHOLZ 56329_10321 Lower Saxony 52.58 8.35 39 1996 2012 16 x x x x x x x

5 EMDEN 60820_10200 Lower Saxony 53.35 7.27 0 1998 2012 15 x x x x

6 FREIBURG/ELBE E082 Lower Saxony 53.83 9.25 2 2003 2012 10 x x x x

7 GARDELEGEN 3169 Saxony-Anhalt 52.51 11.4 47 1993 2013 21 x x x x x x

8 GOETTINGEN 10444 Lower Saxony 51.5 9.95 167 1994 2013 20 x x x x x x x x x

9 HANNOVER-LANG. 1538 Lower Saxony 52.47 9.68 55 1993 2013 21 x x x x x x

10 HARZGERODE 3193 Saxony-Anhalt 51.65 11.14 404 1993 2013 21 x x x x x x

11 JORK-MOORENDE E188 Lower Saxony 53.52 9.73 1 2003 2012 10 x x x x

12 LEINEFELDE 3400 Saxony-Anhalt 51.39 10.3 356 1993 2013 21 x x x x x x x x x

13 LINGEN 1132 Lower Saxony 52.52 7.3 22 1993 2013 21 x x x x x x

14 LUECHOW 10253 Lower Saxony 52.97 11.13 17 1993 2013 20 x x x x x x

15 MAGDEBURG 3177 Saxony-Anhalt 52.1 11.58 76 1993 2013 21 x x x x x x

16 NORDERNEY 32126_10113 Lower Saxony 53.72 7.15 11 1993 2012 19 x x x x x x

17 OLDENBURG 10215 Lower Saxony 53.18 8.18 11 1998 2013 15 x x x x

18 OSNABRÜCK 1516 Lower Saxony 52.26 8.05 95.4 1993 2013 21 x x x x x x x x x

19 SALZUFLEN,BAD 1525 North Rhine-Westphalia 52.11 8.75 134.6 1993 2013 21 x x x x x x x x x

20 SOLTAU 10235 Lower Saxony 52.97 9.8 75.6 1993 2013 21 x x x x x x x x x

21 UELZEN E475 Lower Saxony 52.95 10.53 50 2003 2012 9 x x x x x x x

22 UMMENDORF 3173 Saxony-Anhalt 52.16 11.18 162 1993 2013 21 x x x x x x

23 WENDISCH_EVERN E298 Lower Saxony 53.22 10.47 62 2003 2012 10 x x x x

24 WERNIGERODE 3180 Saxony-Anhalt 51.85 10.77 234 1993 2013 21 x x x x x x

25 ALFHAUSEN E626 Lower Saxony 52.48 7.92 65 2004 2012 8 x

26 BARNSTORF E545 Lower Saxony 52.70 8.48 34 2005 2012 7 x

27 BARSINGHAUSEN-HOHENBOST. E744 Lower Saxony 52.32 9.43 110 2004 2012 9 x

28 BASSUM E438 Lower Saxony 52.87 8.70 40 2004 2012 9 x

29 BENTHEIM,BAD E704 Lower Saxony 52.30 7.13 50 2005 2012 7 x

30 BERKA E931 Lower Saxony 51.68 10.12 136 2005 2012 8 x

31 BEVERN,KR.HOLZMINDEN E818 Lower Saxony 51.85 9.50 110 2006 2012 7 x

32 BLECKEDE-WALMSBURG E297 Lower Saxony 53.25 10.85 12 2004 2012 8 x

33 BOCKHORN-GRABSTEDE E200 Lower Saxony 53.37 7.97 11 2005 2012 7 x

34 BORKUM-FLUGPLATZ E008 Lower Saxony 53.60 6.70 3 2006 2012 7 x

35 BREMERVOERDE 10139 Lower Saxony 53.45 9.13 10 2006 2012 7 x

36 DINKLAGE E631 Lower Saxony 52.68 8.12 25 2005 2012 7 x

37 DOLLART-KANALPOLDER E207 Lower Saxony 53.23 7.22 2 2005 2012 8 x

38 DORNUM E025 Lower Saxony 53.65 7.43 1 2005 2012 8 x

39 DRANSFELD-OSSENFELD E970 Lower Saxony 51.53 9.80 317 2004 2012 8 x

40 DROCHTERSEN E091 Lower Saxony 53.72 9.38 1 2005 2012 7 x

41 ESSEN-BROCKHAUSEN,_BAD E718 Lower Saxony 52.33 8.40 48 2006 2012 7 x

42 FALLINGBOSTEL,_BAD E571 Lower Saxony 52.85 9.68 70 2004 2012 8 x x x x

43 FRANKENFELD-HEDERN E564 Lower Saxony 52.77 9.40 19 2005 2012 7 x

44 GROSS_BERSSEN E513 Lower Saxony 52.73 7.50 26 2005 2012 7 x

45 HAMBURG-NEUWIEDENTHAL C720 Hamburg 53.48 9.90 3 2005 2012 8 x

46 HANNOVER-HERRENHAUSEN E755 Lower Saxony 52.40 9.67 50 2004 2012 8 x

47 HARZBURG,BAD E897 Lower Saxony 51.90 10.57 201 2006 2012 6 x

48 HEESLINGEN-WIERSDORF E364 Lower Saxony 53.30 9.33 27 2005 2012 7 x

49 HERZBERG-LONAU E950 Lower Saxony 51.68 10.37 340 2006 2012 6 x

50 HUDE/OL. E335 Lower Saxony 53.12 8.42 4 2005 2012 7 x

51 KIRCHDORF,KR.DIEPHOLZ E651 Lower Saxony 52.60 8.85 34 2005 2012 7 x

52 KOENIGSMOOR E277 Lower Saxony 53.23 9.65 40 2004 2012 8 x

Details of all rain gauge stations available for the different analysis.

N° NAME ID
Transferability

STATE
Single Site Model Multi-Site Model RegionalizationDATA AVAILABILITYPOSITION
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N° NAME ID
Transferability

STATE
Single Site Model Multi-Site Model RegionalizationDATA AVAILABILITYPOSITION

53 LAMSTEDT E087 Lower Saxony 53.63 9.10 27 2004 2012 8 x

54 LANGELSHEIM-ASTFELD E884 Lower Saxony 51.93 10.35 210 2006 2012 6 x

55 LAUTERBERG,BAD-BARTOLFEL E955 Lower Saxony 51.60 10.47 305 2006 2012 6 x

56 LIEBENBURG-OTHFRESEN E871 Lower Saxony 52.02 10.40 187 2004 2012 8 x

57 LOCCUM E659 Lower Saxony 52.47 9.15 59 2006 2012 6 x

58 MITTELNKIRCHEN-HOHENFELD E099 Lower Saxony 53.55 9.62 1 2004 2012 8 x

59 MOORMERLAND-NEERMOOR E212 Lower Saxony 53.32 7.43 0 2005 2012 8 x

60 MORINGEN-LUTTERBECK E839 Lower Saxony 51.72 9.83 240 2004 2012 9 x

61 NEUSTADT_AM_RUEBENBERGE E667 Lower Saxony 52.50 9.48 40 2006 2012 6 x

62 NORDEN-LEYBUCHTPOLDER E103 Lower Saxony 53.50 7.12 1 2005 2012 7 x

63 NORTHEIM-IMBSHAUSEN E858 Lower Saxony 51.77 10.05 212 2004 2012 8 x x x x

64 OTTERSBERG-OTTERSTEDT E342 Lower Saxony 53.13 9.15 17 2005 2012 7 x

65 OVELGOENNE E232 Lower Saxony 53.38 8.45 3 2004 2012 8 x

66 RASTEDE E234 Lower Saxony 53.25 8.23 16 2005 2012 7 x

67 RINGE-GROSSRINGE E601 Lower Saxony 52.60 6.90 13 2005 2012 7 x

68 RINTELN-VOLKSEN E738 Lower Saxony 52.13 9.12 212 2006 2012 6 x

69 ROTENBURG E355 Lower Saxony 53.13 9.33 32 2004 2012 8 x

70 ROTHENFELDE,BAD E727 Lower Saxony 52.10 8.18 95 2005 2012 7 x

71 SCHARNHORST-MARWEDE E586 Lower Saxony 52.73 10.35 72 2006 2012 7 x

72 SCHWANEWEDE-NEUENK. E246 Lower Saxony 53.22 8.52 1 2005 2012 7 x

73 SCHWARME E445 Lower Saxony 52.92 9.05 12 2005 2012 8 x

74 SEESEN E864 Lower Saxony 51.90 10.18 186 2004 2012 8 x x x x

75 SPRINGE E764 Lower Saxony 52.20 9.55 98 2006 2012 7 x

76 STEINAU,KR.CUXHAVEN E078 Lower Saxony 53.70 8.88 1 2004 2012 9 x

77 TWIST-HEBELERMEER E501 Lower Saxony 52.75 7.08 19 2005 2012 7 x

78 UETZE E688 Lower Saxony 52.47 10.18 60 2006 2012 7 x

79 VERDEN-DAUELSEN E451 Lower Saxony 52.97 9.23 21 2004 2012 8 x

80 WEDEMARK-ELZE E672 Lower Saxony 52.58 9.73 39 2006 2012 7 x

81 WESTERSTEDE E229 Lower Saxony 53.25 7.93 7 2005 2012 7 x

82 WORPSWEDE-HUETTENBUSCH E254 Lower Saxony 53.28 8.98 7 2004 2012 9 x

83 ABTSGMUEND-UNTERGROENINGEN 71525 Baden-Württemberg 48.92 9.92 432 2003 2012 10 x x

84 BALTMANNSWEILER-HOHENGEHREN 71155 Baden-Württemberg 48.77 9.45 457 1997 2012 16 x x

85 BERKHEIM 90284 Baden-Württemberg 48.05 10.08 570 1997 2012 16 x x

86 BUCHENBACH 70323 Baden-Württemberg 47.97 8.00 445 2003 2013 11 x x x x x

87 DEGGENHAUSERTAL-AZENWEILER 70153 Baden-Württemberg 47.80 9.42 708 1997 2012 16 x x x x x

88 ELLWANGEN-RINDELBACH 71605 Baden-Württemberg 48.98 10.13 460 2002 2012 11 x x

89 ELZACH-FISNACHT 70304 Baden-Württemberg 48.20 8.12 440 2004 2013 10 x x

90 EMMENDINGEN-MUNDINGEN 70314 Baden-Württemberg 48.13 7.83 201 2002 2013 12 x x x x x

91 FREIBURG 70354 Baden-Württemberg 48.04 7.82 236 1994 2013 19 x x x x x

92 HECHINGEN 71058 Baden-Württemberg 48.38 8.98 522 1997 2012 16 x x

93 HOHENSTEIN-BERNLOCH 90164 Baden-Württemberg 48.35 9.33 740 1997 2012 16 x x x x x

94 KIRCHBERG/JAGST-HERBOLDSHAUSEN 71615 Baden-Württemberg 49.18 9.98 426 1997 2012 16 x x

95 KOENIGSFELD/SCHWARZWALD 71005 Baden-Württemberg 48.15 8.43 730 2003 2012 10 x x

96 LANGENENSLINGEN-ITTENHAUSEN 90156 Baden-Württemberg 48.20 9.33 777 1997 2012 16 x x x x x

97 LAUDA-KOENIGSHOFEN-HECKFELD 73942 Baden-Württemberg 49.55 9.63 324 1997 2012 16 x x x x x

98 MERGENTHEIM,BAD-NEUNKIRCHEN 73930 Baden-Württemberg 49.48 9.77 250 1997 2012 16 x x x x x

99 MUENSINGEN-APFELSTETTEN 90163 Baden-Württemberg 48.38 9.48 750 1997 2012 16 x x x x x

100 ROTTENBURG-KIEBINGEN 71064 Baden-Württemberg 48.47 8.97 360 2003 2012 10 x x

101 STOCKACH 70173 Baden-Württemberg 47.87 9.02 532 2003 2012 10 x x

102 ULM 90307 Baden-Württemberg 48.38 9.95 567 1993 2012 20 x x

103 WEINGARTEN, 70145 Baden-Württemberg 47.80 9.62 440 1997 2012 16 x x x x x

104 WUESTENROT-OBERHEIMBACH 71573 Baden-Württemberg 49.13 9.50 392 1997 2012 16 x x



APPENDIX E 
Homogeneity analysis: Double-mass curves (NS, 81 stations, Monthly rainfall 2007-2012)



 
 
 
 
 
 



Homogeneity analysis: Double-mass curves (BAWU, 22 stations, Monthly rainfall 2007-2012) 

 
 



APPENDIX F
Details of all site descriptors available for regionalization of the model.

Latitude Longitude Elevation 
Distance 
to Shore 

line

Mean 
Annual 
Rainfall

Mean 
Summer 
Rainfall

Mean 
Winter 
Rainfall

Mean # 
Days 

PP>10mm

Mean # 
Days 

PP>20mm

Mean # 
Days 

PP>30mm

Mean # 
Days 
"Hot"

° ° mNN km mm mm mm d/y d/y d/y d/y

2 BRAUNSCHWEIG-VOEL. 54251_10348 52.3 10.45 81.2 171.85 634 194 140 13 3 1 6
3 CUXHAVEN 31121_10131 53.87 8.7 5 0.51 829 241 187 21 5 1 2
4 DIEPHOLZ 56329_10321 52.58 8.35 39 85.41 712 201 177 15 3 1 6
5 EMDEN 60820_10200 53.35 7.27 0 2.48 812 229 189 20 4 1 3
6 FREIBURG/ELBE E082 53.83 9.25 2 2.98 862 259 193 21 4 1 4
7 GARDELEGEN 3169 52.51 11.4 47 153.58 555 169 126 12 3 1 10
8 GOETTINGEN 10444 51.5 9.95 167 227.45 649 188 147 14 3 1 8
9 HANNOVER-LANG. 1538 52.47 9.68 55 125.36 663 188 158 15 3 0 6

10 HARZGERODE 3193 51.65 11.14 404 244.41 582 169 122 21 4 2 4
11 JORK-MOORENDE E188 53.52 9.73 1 47.9 735 222 172 17 3 1 5
12 LEINEFELDE 3400 51.39 10.3 356 249.39 750 208 179 16 3 1 4
13 LINGEN 1132 52.52 7.3 22 74.55 787 216 197 20 4 1 6
14 LUECHOW 10253 52.97 11.13 17 99.38 573 182 130 11 3 1 8
15 MAGDEBURG 3177 52.1 11.58 76 199.85 522 165 112 10 3 1 10
16 NORDERNEY 32126_10113 53.72 7.15 11 0 748 215 169 19 4 1 1
17 OLDENBURG 10215 53.18 8.18 11 24.43 823 236 203 18 4 1 5
18 OSNABRÜCK 1516 52.26 8.05 95.4 124.18 861 227 235 22 4 1 6
19 SALZUFLEN,BAD 1525 52.11 8.75 134.6 138.14 834 230 213 19 3 0 6
20 SOLTAU 10235 52.97 9.8 75.6 96.28 806 222 214 20 5 2 6
21 UELZEN E475 52.95 10.53 50 99.42 680 201 166 14 4 1 6
22 UMMENDORF 3173 52.16 11.18 162 188.47 563 171 122 13 3 1 8
23 WENDISCH_EVERN E298 53.22 10.47 62 70.77 708 208 174 16 3 1 7
24 WERNIGERODE 3180 51.85 10.77 234 220.74 630 182 148 13 3 1 5
25 ALFHAUSEN E626 52.48 7.92 65 90.07 856 225 230 19 3 1 7
26 BARNSTORF E545 52.70 8.48 34 71.46 723 205 184 16 3 1 6
27 BARSINGHAUSEN-HOHENBOST. E744 52.32 9.43 110 130.28 798 225 201 18 4 1 7
28 BASSUM E438 52.87 8.70 40 54.57 749 210 188 16 4 1 6
29 BENTHEIM,BAD E704 52.30 7.13 50 98.94 867 230 226 21 4 1 7
30 BERKA E931 51.68 10.12 136 214.71 702 207 163 14 3 1 7
31 BEVERN,KR.HOLZMINDEN E818 51.85 9.50 110 179.31 855 226 222 22 4 1 5
32 BLECKEDE-WALMSBURG E297 53.25 10.85 12 65.29 652 194 158 13 3 1 7
33 BOCKHORN-GRABSTEDE E200 53.37 7.97 11 12.38 844 238 201 19 4 1 4
34 BORKUM-FLUGPLATZ E008 53.60 6.70 3 0 823 227 193 20 3 1 1
35 BREMERVOERDE 10139 53.45 9.13 10 32.85 826 243 198 18 4 1 5
36 DINKLAGE E631 52.68 8.12 25 77.49 743 209 186 16 3 1 6
37 DOLLART-KANALPOLDER E207 53.23 7.22 2 0.15 718 217 158 19 4 1 3
38 DORNUM E025 53.65 7.43 1 3.75 890 245 210 23 4 1 2
39 DRANSFELD-OSSENFELD E970 51.53 9.80 317 219.8 816 219 208 20 4 1 5
40 DROCHTERSEN E091 53.72 9.38 1 17.65 818 236 193 19 4 1 4
41 ESSEN-BROCKHAUSEN,_BAD E718 52.33 8.40 48 112.46 769 209 202 18 5 1 8
42 FALLINGBOSTEL,_BAD E571 52.85 9.68 70 96.31 806 221 215 20 5 1 6
43 FRANKENFELD-HEDERN E564 52.77 9.40 19 87.96 720 210 181 16 4 1 7
44 GROSS_BERSSEN E513 52.73 7.50 26 54.14 808 226 200 18 3 1 6
45 HAMBURG-NEUWIEDENTHAL C720 53.48 9.90 3 58.19 740 226 175 16 3 1 5
46 HANNOVER-HERRENHAUSEN E755 52.40 9.67 50 130.98 679 197 159 15 3 1 7
47 HARZBURG,BAD E897 51.90 10.57 201 212.89 782 218 188 16 5 1 5
48 HEESLINGEN-WIERSDORF E364 53.30 9.33 27 51.18 810 236 200 17 4 1 5
49 HERZBERG-LONAU E950 51.68 10.37 340 223.86 1395 349 388 42 8 3 2
50 HUDE/OL. E335 53.12 8.42 4 25.7 784 225 193 18 4 1 5
51 KIRCHDORF,KR.DIEPHOLZ E651 52.60 8.85 34 85.85 691 205 163 14 3 1 7
52 KOENIGSMOOR E277 53.23 9.65 40 73.41 803 239 197 17 3 1 6
53 LAMSTEDT E087 53.63 9.10 27 22.54 880 251 210 21 5 2 4
54 LANGELSHEIM-ASTFELD E884 51.93 10.35 210 200.61 851 233 210 22 5 1 5
55 LAUTERBERG,BAD-BARTOLFEL E955 51.60 10.47 305 235.41 995 248 274 25 6 2 4
56 LIEBENBURG-OTHFRESEN E871 52.02 10.40 187 195.58 882 239 226 24 4 1 5
57 LOCCUM E659 52.47 9.15 59 106.77 683 201 163 14 3 1 8
58 MITTELNKIRCHEN-HOHENFELD E099 53.55 9.62 1 41 796 232 192 17 4 1 5
59 MOORMERLAND-NEERMOOR E212 53.32 7.43 0 3.53 815 232 190 18 4 1 3
60 MORINGEN-LUTTERBECK E839 51.72 9.83 240 202.22 843 208 232 21 4 1 5
61 NEUSTADT_AM_RUEBENBERGE E667 52.50 9.48 40 114.68 702 198 171 16 4 1 7
62 NORDEN-LEYBUCHTPOLDER E103 53.50 7.12 1 1.06 862 241 202 20 4 1 2
63 NORTHEIM-IMBSHAUSEN E858 51.77 10.05 212 204.38 774 220 183 18 4 1 5
64 OTTERSBERG-OTTERSTEDT E342 53.13 9.15 17 49.19 786 237 186 17 3 1 6
65 OVELGOENNE E232 53.38 8.45 3 2.71 788 235 183 17 3 1 4
66 RASTEDE E234 53.25 8.23 16 16.3 852 237 213 20 4 1 5
67 RINGE-GROSSRINGE E601 52.60 6.90 13 68.71 806 224 203 17 3 1 6
68 RINTELN-VOLKSEN E738 52.13 9.12 212 140.8 865 234 225 22 4 1 7
69 ROTENBURG E355 53.13 9.33 32 60.26 807 238 199 18 4 1 7
70 ROTHENFELDE,BAD E727 52.10 8.18 95 136.44 879 228 237 22 5 1 6
71 SCHARNHORST-MARWEDE E586 52.73 10.35 72 125.32 750 208 200 17 4 1 7
72 SCHWANEWEDE-NEUENK. E246 53.22 8.52 1 14 706 210 166 14 3 1 5
73 SCHWARME E445 52.92 9.05 12 59.95 717 209 175 15 3 1 6
74 SEESEN E864 51.90 10.18 186 196.81 900 250 221 22 4 1 5
75 SPRINGE E764 52.20 9.55 98 145.49 839 217 227 21 4 1 6
76 STEINAU,KR.CUXHAVEN E078 53.70 8.88 1 14.28 819 245 184 18 3 1 4
77 TWIST-HEBELERMEER E501 52.75 7.08 19 49.49 767 216 191 16 3 1 6
78 UETZE E688 52.47 10.18 60 149.36 703 204 174 15 3 1 7
79 VERDEN-DAUELSEN E451 52.97 9.23 21 64.41 735 214 183 16 4 1 6
80 WEDEMARK-ELZE E672 52.58 9.73 39 118.28 699 197 178 17 5 1 7
81 WESTERSTEDE E229 53.25 7.93 7 24.32 812 235 200 19 4 1 4
82 WORPSWEDE-HUETTENBUSCH E254 53.28 8.98 7 32.64 793 235 192 18 3 1 5

PP: Precipitation
POT_EV: Potential Evapotranspiration
AVG.: Average

N° NAME ID



2 BRAUNSCHWEIG-VOEL. 54251_10348
3 CUXHAVEN 31121_10131
4 DIEPHOLZ 56329_10321
5 EMDEN 60820_10200
6 FREIBURG/ELBE E082
7 GARDELEGEN 3169
8 GOETTINGEN 10444
9 HANNOVER-LANG. 1538

10 HARZGERODE 3193
11 JORK-MOORENDE E188
12 LEINEFELDE 3400
13 LINGEN 1132
14 LUECHOW 10253
15 MAGDEBURG 3177
16 NORDERNEY 32126_10113
17 OLDENBURG 10215
18 OSNABRÜCK 1516
19 SALZUFLEN,BAD 1525
20 SOLTAU 10235
21 UELZEN E475
22 UMMENDORF 3173
23 WENDISCH_EVERN E298
24 WERNIGERODE 3180
25 ALFHAUSEN E626
26 BARNSTORF E545
27 BARSINGHAUSEN-HOHENBOST. E744
28 BASSUM E438
29 BENTHEIM,BAD E704
30 BERKA E931
31 BEVERN,KR.HOLZMINDEN E818
32 BLECKEDE-WALMSBURG E297
33 BOCKHORN-GRABSTEDE E200
34 BORKUM-FLUGPLATZ E008
35 BREMERVOERDE 10139
36 DINKLAGE E631
37 DOLLART-KANALPOLDER E207
38 DORNUM E025
39 DRANSFELD-OSSENFELD E970
40 DROCHTERSEN E091
41 ESSEN-BROCKHAUSEN,_BAD E718
42 FALLINGBOSTEL,_BAD E571
43 FRANKENFELD-HEDERN E564
44 GROSS_BERSSEN E513
45 HAMBURG-NEUWIEDENTHAL C720
46 HANNOVER-HERRENHAUSEN E755
47 HARZBURG,BAD E897
48 HEESLINGEN-WIERSDORF E364
49 HERZBERG-LONAU E950
50 HUDE/OL. E335
51 KIRCHDORF,KR.DIEPHOLZ E651
52 KOENIGSMOOR E277
53 LAMSTEDT E087
54 LANGELSHEIM-ASTFELD E884
55 LAUTERBERG,BAD-BARTOLFEL E955
56 LIEBENBURG-OTHFRESEN E871
57 LOCCUM E659
58 MITTELNKIRCHEN-HOHENFELD E099
59 MOORMERLAND-NEERMOOR E212
60 MORINGEN-LUTTERBECK E839
61 NEUSTADT_AM_RUEBENBERGE E667
62 NORDEN-LEYBUCHTPOLDER E103
63 NORTHEIM-IMBSHAUSEN E858
64 OTTERSBERG-OTTERSTEDT E342
65 OVELGOENNE E232
66 RASTEDE E234
67 RINGE-GROSSRINGE E601
68 RINTELN-VOLKSEN E738
69 ROTENBURG E355
70 ROTHENFELDE,BAD E727
71 SCHARNHORST-MARWEDE E586
72 SCHWANEWEDE-NEUENK. E246
73 SCHWARME E445
74 SEESEN E864
75 SPRINGE E764
76 STEINAU,KR.CUXHAVEN E078
77 TWIST-HEBELERMEER E501
78 UETZE E688
79 VERDEN-DAUELSEN E451
80 WEDEMARK-ELZE E672
81 WESTERSTEDE E229
82 WORPSWEDE-HUETTENBUSCH E254

PP: Precipitation
POT_EV: Potential Evapotranspiration
AVG.: Average

N° NAME ID

Mean # 
Days 

"Summer"

Mean # 
Days 

"Snow"

Mean # 
Days 

"Frost"

Mean # 
Days "Ice"

Mean 
Annual 

Sunshine

Mean 
Summer 
Sunshine

Mean 
Winter 

Sunshine

Mean Start 
Veget. 
Period

Mean Diff. 
PP and 

POT_EV

Annual AVG. 
Mean  

Temperature

d/y d/y d/y d/y h h h - mm °C

34 25 67 20 1618 637 165 83 8 9.5
13 18 47 14 1674 650 163 86 229 9.6
31 17 66 15 1522 589 154 80 129 9.6
20 16 55 12 1553 588 160 82 231 9.5
24 21 66 16 1555 609 148 86 267 9.1
41 26 87 20 1583 625 158 83 -42 9.2
36 31 75 18 1490 585 158 84 57 9.2
32 23 70 18 1575 619 161 82 64 9.6
24 62 105 33 1601 603 190 97 45 7.6
28 18 65 15 1559 618 143 84 151 9.4
24 49 88 29 1559 608 168 93 162 8.2
30 15 55 12 1473 566 157 78 206 10
36 26 79 19 1648 649 161 84 -45 9.1
43 29 76 19 1685 657 184 83 -116 9.5
9 14 39 10 1677 641 169 85 177 9.7

27 18 65 14 1511 585 146 82 227 9.4
31 21 59 14 1512 586 156 81 264 9.8
30 27 61 15 1512 582 165 83 223 9.7
32 27 76 19 1546 606 150 85 199 9.1
33 25 79 19 1567 618 149 85 58 9.1
36 30 77 21 1601 631 165 86 -49 9.2
31 26 75 18 1588 627 152 86 94 9.2
29 40 82 22 1520 594 169 89 33 8.9
31 16 63 13 1508 582 155 80 236 9.6
31 21 65 15 1509 585 150 81 126 9.5
32 28 63 18 1500 587 152 84 176 9.5
30 21 65 15 1498 581 146 82 150 9.3
32 16 58 13 1508 578 162 79 252 9.8
33 28 73 15 1450 586 138 83 97 9.2
30 34 72 17 1410 573 128 85 244 9.1
32 22 68 18 1600 636 146 85 39 9.2
22 17 59 14 1552 601 151 83 253 9.4
10 13 39 10 1697 655 170 84 227 9.8
26 19 69 16 1537 604 145 84 226 9.2
30 17 62 13 1508 587 149 80 145 9.6
21 16 54 12 1556 592 159 81 117 9.5
15 16 50 12 1615 622 159 84 303 9.5
29 47 89 27 1480 579 159 91 223 8.3
24 20 65 16 1561 616 146 85 218 9.2
33 17 63 14 1505 583 155 80 168 9.7
32 22 73 17 1539 604 149 84 201 9.2
34 21 64 14 1495 586 146 81 103 9.7
29 17 59 13 1492 576 152 80 209 9.7
28 20 62 15 1554 619 140 84 140 9.6
33 20 65 16 1545 609 155 82 70 9.7
31 39 74 19 1433 585 134 88 179 9.2
27 19 69 16 1524 598 148 84 194 9.2
18 89 113 41 1468 564 168 104 838 6.9
26 19 65 15 1517 591 145 82 196 9.4
33 21 63 14 1489 580 149 81 93 9.6
29 20 71 17 1509 605 134 85 173 9.2
24 23 69 16 1569 615 150 86 289 9.1
29 34 77 19 1452 587 140 87 251 8.9
27 54 94 25 1455 581 148 92 388 8.1
29 51 85 28 1497 589 156 93 293 8.5
35 19 62 14 1511 589 151 81 78 9.7
27 19 66 16 1558 617 143 84 190 9.3
21 16 57 12 1549 594 154 82 232 9.4
30 42 86 23 1467 579 150 89 232 8.4
34 20 65 15 1529 603 151 81 101 9.7
16 15 49 12 1600 611 162 83 257 9.5
30 37 79 20 1455 578 146 87 174 8.8
28 20 69 16 1541 601 149 83 183 9.3
22 15 57 14 1515 589 147 83 212 9.5
25 19 62 14 1516 588 147 82 267 9.4
32 13 55 12 1501 579 155 78 196 9.9
31 29 70 19 1491 583 153 85 254 9.3
30 21 70 17 1532 600 145 84 197 9.3
32 22 64 14 1511 587 158 81 258 9.7
34 27 79 19 1565 621 150 84 129 9.2
25 21 65 15 1519 589 149 83 111 9.4
31 16 64 15 1528 597 146 81 99 9.5
29 50 79 22 1454 580 146 90 298 8.8
32 30 67 18 1479 581 147 84 221 9.3
23 18 63 15 1593 624 151 85 211 9.2
29 15 58 12 1507 580 155 79 167 9.7
35 23 70 17 1546 614 150 82 88 9.5
31 19 68 17 1568 611 150 83 123 9.4
34 23 68 15 1541 609 151 82 96 9.6
24 17 60 13 1527 591 148 82 222 9.5
26 17 70 15 1533 600 146 83 194 9.2



2 BRAUNSCHWEIG-VOEL. 54251_10348
3 CUXHAVEN 31121_10131
4 DIEPHOLZ 56329_10321
5 EMDEN 60820_10200
6 FREIBURG/ELBE E082
7 GARDELEGEN 3169
8 GOETTINGEN 10444
9 HANNOVER-LANG. 1538

10 HARZGERODE 3193
11 JORK-MOORENDE E188
12 LEINEFELDE 3400
13 LINGEN 1132
14 LUECHOW 10253
15 MAGDEBURG 3177
16 NORDERNEY 32126_10113
17 OLDENBURG 10215
18 OSNABRÜCK 1516
19 SALZUFLEN,BAD 1525
20 SOLTAU 10235
21 UELZEN E475
22 UMMENDORF 3173
23 WENDISCH_EVERN E298
24 WERNIGERODE 3180
25 ALFHAUSEN E626
26 BARNSTORF E545
27 BARSINGHAUSEN-HOHENBOST. E744
28 BASSUM E438
29 BENTHEIM,BAD E704
30 BERKA E931
31 BEVERN,KR.HOLZMINDEN E818
32 BLECKEDE-WALMSBURG E297
33 BOCKHORN-GRABSTEDE E200
34 BORKUM-FLUGPLATZ E008
35 BREMERVOERDE 10139
36 DINKLAGE E631
37 DOLLART-KANALPOLDER E207
38 DORNUM E025
39 DRANSFELD-OSSENFELD E970
40 DROCHTERSEN E091
41 ESSEN-BROCKHAUSEN,_BAD E718
42 FALLINGBOSTEL,_BAD E571
43 FRANKENFELD-HEDERN E564
44 GROSS_BERSSEN E513
45 HAMBURG-NEUWIEDENTHAL C720
46 HANNOVER-HERRENHAUSEN E755
47 HARZBURG,BAD E897
48 HEESLINGEN-WIERSDORF E364
49 HERZBERG-LONAU E950
50 HUDE/OL. E335
51 KIRCHDORF,KR.DIEPHOLZ E651
52 KOENIGSMOOR E277
53 LAMSTEDT E087
54 LANGELSHEIM-ASTFELD E884
55 LAUTERBERG,BAD-BARTOLFEL E955
56 LIEBENBURG-OTHFRESEN E871
57 LOCCUM E659
58 MITTELNKIRCHEN-HOHENFELD E099
59 MOORMERLAND-NEERMOOR E212
60 MORINGEN-LUTTERBECK E839
61 NEUSTADT_AM_RUEBENBERGE E667
62 NORDEN-LEYBUCHTPOLDER E103
63 NORTHEIM-IMBSHAUSEN E858
64 OTTERSBERG-OTTERSTEDT E342
65 OVELGOENNE E232
66 RASTEDE E234
67 RINGE-GROSSRINGE E601
68 RINTELN-VOLKSEN E738
69 ROTENBURG E355
70 ROTHENFELDE,BAD E727
71 SCHARNHORST-MARWEDE E586
72 SCHWANEWEDE-NEUENK. E246
73 SCHWARME E445
74 SEESEN E864
75 SPRINGE E764
76 STEINAU,KR.CUXHAVEN E078
77 TWIST-HEBELERMEER E501
78 UETZE E688
79 VERDEN-DAUELSEN E451
80 WEDEMARK-ELZE E672
81 WESTERSTEDE E229
82 WORPSWEDE-HUETTENBUSCH E254

PP: Precipitation
POT_EV: Potential Evapotranspiration
AVG.: Average

N° NAME ID

Summer AVG. 
Mean  

Temperature

Winter AVG. 
Mean  

Temperature

Annual AVG. 
Minimum 

Temperature

Summer AVG. 
Minimum 

Temperature

Winter AVG. 
Minimum 

Temperature

Annual AVG. 
Maximum 

Temperature

Summer AVG. 
Maximum 

Temperature

Winter AVG. 
Maximum 

Temperature

°C °C °C °C °C °C °C °C

17.4 1.7 5.7 12.6 -0.7 13.4 22.5 4.2
16.9 2.5 7.1 14 0.5 12.3 20.1 4.5
17.2 2.2 5.4 12 -0.5 13.6 22.3 4.8
16.6 2.5 6.2 12.6 0.2 13 21 4.9
16.6 1.8 5.5 12.1 -0.6 12.9 21.4 4.2
17.5 1.1 4.7 11.5 -1.7 13.7 23.3 4
17 1.4 4.9 11.4 -1.3 13.5 22.7 4.1

17.4 1.9 5.5 12.3 -0.7 13.6 22.5 4.5
15.6 -0.3 3.5 10.3 -3 11.6 20.8 2.5
17.1 2 5.6 12.3 -0.5 13.2 21.9 4.4
16.2 0.3 4.6 11.4 -2.1 12 21.3 2.7
17.4 2.7 6.3 12.8 0.3 13.9 22.3 5.2
17.2 1.3 4.8 11.5 -1.4 13.4 22.8 3.9
17.9 1.2 5.2 12.3 -1.5 14 23.5 4.2
16.6 3 7.5 14.2 1.2 12 19.3 4.8
16.9 2.3 5.7 12.2 -0.3 13.4 21.8 4.8
17.4 2.5 6.1 12.5 0.1 13.7 22.4 4.9
17.2 2.2 6 12.5 -0.3 13.5 22.2 4.7
17 1.5 5.1 11.7 -1.1 13.3 22.3 4.1
17 1.3 4.9 11.6 -1.3 13.3 22.5 4

17.4 1.2 5.3 12.3 -1.4 13.3 22.8 3.8
17.2 1.6 5.3 12.2 -1 13.2 22.3 4.1
16.9 1.1 5 12 -1.7 13 22 4
17 2.4 5.6 11.9 -0.2 13.6 22.1 4.8

17.2 2.2 5.6 12 -0.4 13.5 22.2 4.7
17.2 1.8 6.1 12.8 -0.4 13.3 22.3 4.2
16.9 2 5.5 12 -0.5 13.4 22.1 4.5
17.3 2.6 6.1 12.5 0.2 13.8 22.3 5.2
17.3 1.3 5.2 12 -1.4 13.5 22.8 4
16.9 1.4 5.3 12 -1.1 13.2 22.3 3.9
17.2 1.5 5.4 12.2 -0.9 13.3 22.5 4
16.6 2.3 6 12.5 0 13 21.1 4.7
16.7 3 7.4 13.9 1.2 12.3 19.7 4.8
16.7 1.9 5.4 11.9 -0.6 13 21.6 4.3
17.1 2.4 5.7 12.1 -0.2 13.6 22.2 4.9
16.7 2.5 6.2 12.7 0.2 13 21.1 4.9
16.5 2.6 6.5 13 0.5 12.6 20.3 4.8
16.1 0.6 4.4 11 -2.1 12.3 21.3 3.2
16.7 1.8 5.6 12.2 -0.6 12.9 21.5 4.2
17.3 2.2 5.7 12.1 -0.3 13.8 22.6 4.8
17.1 1.7 5.3 12 -0.9 13.3 22.2 4.2
17.5 2.1 5.7 12.3 -0.5 13.7 22.6 4.6
17 2.5 5.9 12.2 0 13.6 22 5

17.3 2.2 6 12.8 -0.3 13.3 21.9 4.5
17.5 2 5.7 12.4 -0.6 13.7 22.7 4.5
17.2 1.5 5.4 12.4 -1.2 13.3 22.4 4.2
16.8 1.9 5.4 12 -0.7 13.1 21.7 4.3
14.8 -0.8 3.4 10.4 -3.3 10.6 19.4 1.7
16.9 2.2 5.6 12 -0.4 13.3 21.8 4.6
17.4 2.1 5.7 12.2 -0.4 13.7 22.5 4.7
16.9 1.7 5.3 12 -0.8 13.1 21.9 4.1
16.6 1.9 5.4 11.9 -0.6 12.9 21.3 4.3
17 1 5.1 12 -1.5 13 22.1 3.7

16.2 0.2 4.2 11.2 -2.5 12.3 21.5 2.9
16.4 0.7 4.8 11.6 -1.8 12.4 21.4 3.3
17.5 2.2 5.9 12.4 -0.4 13.8 22.8 4.7
17 1.9 5.4 12 -0.6 13.2 21.9 4.4

16.6 2.4 6 12.3 0 13.1 21.1 4.8
16.4 0.6 4.4 11.3 -2.1 12.6 21.8 3.2
17.5 2.1 5.7 12.4 -0.6 13.8 22.8 4.6
16.6 2.6 6.5 13 0.5 12.7 20.5 4.8
16.8 0.9 4.8 11.6 -1.7 12.9 22.1 3.5
16.9 1.9 5.4 12 -0.6 13.2 21.9 4.4
16.9 2.3 6.1 12.7 -0.1 13 21.3 4.6
16.8 2.3 5.8 12.4 -0.2 13.2 21.6 4.7
17.3 2.7 6.1 12.5 0.2 13.9 22.3 5.2
17 1.8 5.6 12.2 -0.7 13.2 21.9 4.2
17 1.8 5.4 12 -0.7 13.2 22 4.2

17.3 2.2 5.8 12.2 -0.3 13.7 22.5 4.9
17.2 1.4 5.1 11.9 -1.3 13.4 22.6 4
16.8 2.2 5.6 12.1 -0.4 13.1 21.5 4.6
17.2 2.1 5.6 12.2 -0.4 13.5 22.3 4.6
16.7 1 5.1 12 -1.6 12.6 21.6 3.4
17.1 1.7 5.7 12.4 -0.7 13.3 22.3 4.1
16.6 2 5.5 12.1 -0.5 12.9 21.3 4.3
17.1 2.6 6 12.4 0.1 13.6 22 5
17.5 1.7 5.5 12.3 -0.9 13.6 22.8 4.3
17.1 1.9 5.5 12.1 -0.6 13.4 22.2 4.4
17.5 2 5.6 12.4 -0.7 13.7 22.8 4.6
16.9 2.4 6 12.4 0 13.2 21.5 4.8
16.7 1.9 5.1 11.5 -0.7 13.1 21.6 4.4



2 BRAUNSCHWEIG-VOEL. 54251_10348
3 CUXHAVEN 31121_10131
4 DIEPHOLZ 56329_10321
5 EMDEN 60820_10200
6 FREIBURG/ELBE E082
7 GARDELEGEN 3169
8 GOETTINGEN 10444
9 HANNOVER-LANG. 1538

10 HARZGERODE 3193
11 JORK-MOORENDE E188
12 LEINEFELDE 3400
13 LINGEN 1132
14 LUECHOW 10253
15 MAGDEBURG 3177
16 NORDERNEY 32126_10113
17 OLDENBURG 10215
18 OSNABRÜCK 1516
19 SALZUFLEN,BAD 1525
20 SOLTAU 10235
21 UELZEN E475
22 UMMENDORF 3173
23 WENDISCH_EVERN E298
24 WERNIGERODE 3180
25 ALFHAUSEN E626
26 BARNSTORF E545
27 BARSINGHAUSEN-HOHENBOST. E744
28 BASSUM E438
29 BENTHEIM,BAD E704
30 BERKA E931
31 BEVERN,KR.HOLZMINDEN E818
32 BLECKEDE-WALMSBURG E297
33 BOCKHORN-GRABSTEDE E200
34 BORKUM-FLUGPLATZ E008
35 BREMERVOERDE 10139
36 DINKLAGE E631
37 DOLLART-KANALPOLDER E207
38 DORNUM E025
39 DRANSFELD-OSSENFELD E970
40 DROCHTERSEN E091
41 ESSEN-BROCKHAUSEN,_BAD E718
42 FALLINGBOSTEL,_BAD E571
43 FRANKENFELD-HEDERN E564
44 GROSS_BERSSEN E513
45 HAMBURG-NEUWIEDENTHAL C720
46 HANNOVER-HERRENHAUSEN E755
47 HARZBURG,BAD E897
48 HEESLINGEN-WIERSDORF E364
49 HERZBERG-LONAU E950
50 HUDE/OL. E335
51 KIRCHDORF,KR.DIEPHOLZ E651
52 KOENIGSMOOR E277
53 LAMSTEDT E087
54 LANGELSHEIM-ASTFELD E884
55 LAUTERBERG,BAD-BARTOLFEL E955
56 LIEBENBURG-OTHFRESEN E871
57 LOCCUM E659
58 MITTELNKIRCHEN-HOHENFELD E099
59 MOORMERLAND-NEERMOOR E212
60 MORINGEN-LUTTERBECK E839
61 NEUSTADT_AM_RUEBENBERGE E667
62 NORDEN-LEYBUCHTPOLDER E103
63 NORTHEIM-IMBSHAUSEN E858
64 OTTERSBERG-OTTERSTEDT E342
65 OVELGOENNE E232
66 RASTEDE E234
67 RINGE-GROSSRINGE E601
68 RINTELN-VOLKSEN E738
69 ROTENBURG E355
70 ROTHENFELDE,BAD E727
71 SCHARNHORST-MARWEDE E586
72 SCHWANEWEDE-NEUENK. E246
73 SCHWARME E445
74 SEESEN E864
75 SPRINGE E764
76 STEINAU,KR.CUXHAVEN E078
77 TWIST-HEBELERMEER E501
78 UETZE E688
79 VERDEN-DAUELSEN E451
80 WEDEMARK-ELZE E672
81 WESTERSTEDE E229
82 WORPSWEDE-HUETTENBUSCH E254

PP: Precipitation
POT_EV: Potential Evapotranspiration
AVG.: Average

N° NAME ID
Mean Solar 
Radiation

Mean # Days 
Summer 
PP>0mm

Mean # Days 
Summer 
PP>1mm

Mean # Days 
Summer 
PP>2mm

Mean # Days 
Summer 
PP>3mm

Mean # Days 
Winter 

PP>0mm

Mean # Days 
Winter 

PP>1mm

Mean # Days 
Winter 

PP>2mm

kWh/m² d/0.5y d/0.5y d/0.5y d/0.5y d/0.5y d/0.5y d/0.5y

1028 105.2 71 55.7 44.7 112.8 69 52.6
1005 100.4 71.2 59.3 51.1 115.1 84.2 70.8
996 94.4 64.7 52.3 43.1 100 65 50.8
1019 91.3 59.2 45.5 36.6 104.2 63.9 49
993 97.5 66.8 53.7 43.4 105.1 65.9 51.4
1022 100 65.1 49.9 39.7 114 71.7 54.3
1000 101.2 67.3 53 43.3 112.7 70.7 54
1000 91 63 49 40.4 104.6 69 53.2
1014 97.4 60.9 47.9 38.3 111.2 65.5 49
977 87.1 55.8 42.2 33.9 98.2 58.3 42.2
1007 93.2 61.7 48.5 38.9 105.5 67.6 50.1
998 95.6 66.6 53.3 42.7 107.5 72 55.9
1016 106.8 69.7 54.3 43.3 114.7 69.4 53.2
1042 93.1 65.4 51.5 41.6 105.9 76.2 58.1
1041 87.1 56.2 44 34 97.4 57.4 39.9
993 99.9 68.9 53.9 43 112.3 74.9 57.2
992 91.6 65.1 51.9 42.2 100.3 70.1 55.7
989 95.6 60.4 47.1 37.6 108.3 66.7 50.2
979 82.9 56.1 42.9 34.4 91.6 60.3 45.2
994 83.9 48.4 35.6 27.7 94.9 48.2 32.9
1035 100.7 68.2 53.7 43.7 113.4 78.1 60.8
991 86.4 64.2 50.7 41.3 94.5 66.9 51.5
988 93.8 63.7 50.9 41 106.4 72.9 55.3
994 98.9 65.8 52.5 43.1 108.1 68.5 52.6
994 95.3 63 49.6 39.2 108.5 70.9 53.7
994 94.2 65.1 51.2 42.4 106 73.1 56.1
993 93.8 63.3 50 40.7 103.2 66.6 51.5
1005 103.8 68 53.5 42 111.7 68.8 51.9
999 97.5 62.3 47.5 38.1 107.8 64.3 47.1
978 99.9 66.1 52.8 43.5 104.1 65.3 50.2
999 92.6 59.7 45.8 36.3 103 61.2 44.6
1002 103.4 67.3 53 42.2 113.4 71.1 53.8
1033 97.1 66.4 51.6 41.1 106.1 64.4 46.6
983 91.1 57.9 45.4 36 103.8 62.6 46.3
995 96.5 64.3 50.9 41.4 108.8 70.8 53.9
1012 91.3 61 47.7 37.8 101.1 62.9 47.6
1032 93.3 68.3 55.7 45.8 102.9 72.7 55.9
994 100.1 68.4 53.3 43.2 107.7 67.1 51
986 97 61.5 47.8 38 108.4 65.9 49.9
995 99 63.8 48.6 38.2 110.9 69 52
981 97.1 70.2 55.8 45.7 108.7 72.5 56
994 91.4 60.4 47 37.8 103.1 64.2 47.1
992 102.3 69.2 55.3 44.8 108.3 69.1 51.1
971 99.1 63.8 49.7 40.7 110.5 68.3 50.7
1001 99.9 65.4 50.1 40.1 110.8 69.2 53.3
971 94.7 58.4 45.1 35.3 107.4 62.3 46.2
982 96.1 61.7 47.1 37.4 107.4 65.3 49.1
988 86.8 53 39.2 30.1 98.6 57.7 40.7
989 99.3 67.7 55.1 44.7 107.3 69.2 53.6
999 95 65.4 52.2 41.9 103.2 65.9 49.8
979 90.2 61.7 48.6 38.9 98 61.3 46.8
989 98.4 66.8 53.1 44.1 103.6 65.9 50.7
977 81.8 61.3 48.5 38.2 93.2 65.2 50
993 96.8 66.2 52.6 42.4 105.4 68.6 52.1
1005 89.2 53.6 39.1 29.9 101.4 55.3 38.3
1000 101.1 67.5 52.8 42.1 107.7 68.3 49.8
978 97.8 68.9 56 46.1 103.2 68.5 53.1
1017 82.6 56.3 44.2 35.2 94.1 61.8 43.8
994 89.9 62.8 49.5 39.8 100.7 66.3 51.3
996 98.2 66.8 52.5 43.3 108.4 69.3 52.7
1022 81.6 51.1 38.8 30.7 91.9 53.3 38.2
998 89.1 57.8 43.7 34.5 99.9 60.4 43.4
985 86.6 61.8 50 41.5 99.2 68 52.1
989 86.3 52.9 38.8 29.8 101.3 54.8 38.2
993 100.9 66 51.1 40.5 107.4 68.1 50.2
1009 89.9 60.7 47.2 37.7 102.3 66.8 50.5
986 99.9 63.7 49.2 38.4 106.6 64.4 48.4
981 93 61.1 47.4 38.2 104.2 65.9 50.3
997 93.6 61 47.7 38.1 102.2 62.1 45.5
989 91.8 61.3 47.9 38.9 102.3 65.5 48.3
991 92.6 71.6 59.4 49.5 105.6 81.6 67.8
994 101.6 61.2 47.7 38.1 114.9 65.2 48.4
988 97 60.8 47.2 35.7 108.1 65.9 48.3
991 92.7 61.3 47.3 37.7 106.9 69.4 52.8
1001 95.2 60.5 48.1 39.6 108.5 68.2 52.3
1004 100.5 67.4 51.7 40.9 106.8 65.5 50.4
1008 102.2 68.4 54.7 44.3 114 75.8 59.5
990 83.7 52.3 39.6 31.2 94.1 52.7 36.5
996 97.7 64.9 51.1 41.4 106.1 68.3 52.5
1002 87.9 56.4 43.8 34.8 99.2 60.7 44.1
986 101.6 68.3 53.6 43.1 110.3 68.6 50.9



APPENDIX G 
Evaluation of statistics of different variables describing the external structure of rainfall events resulting from synthesis based on observations and three 
regionalization models presented for all (81) stations as RSE. 
 

 
 
 
 
 

Variable Season AR RFA MLR COPULA AR RFA MLR COPULA AR RFA MLR COPULA AR RFA MLR COPULA

Summer 0.01 0.07 0.07 0.06 0.02 0.08 0.19 0.06 0.13 0.12 0.45 0.14 0.35 0.26 0.10 0.33

Winter 0.01 0.10 0.09 0.09 0.03 0.11 0.07 0.08 0.16 0.19 0.19 0.18 0.41 0.46 0.45 0.41

Summer 0.01 0.11 0.10 0.10 0.07 0.14 0.14 0.15 0.31 0.24 0.33 0.33 0.70 0.55 0.74 0.74

Winter 0.01 0.12 0.11 0.12 0.05 0.14 0.12 0.15 0.25 0.23 0.28 0.29 0.55 0.50 0.62 0.64

Summer 0.01 0.05 0.05 0.05 0.03 0.11 0.11 0.11 0.19 0.29 0.27 0.28 0.48 0.73 0.68 0.73

Winter 0.01 0.05 0.05 0.06 0.04 0.14 0.11 0.13 0.21 0.41 0.26 0.28 0.53 1.09 0.62 0.68

Summer 0.05 0.09 0.11 0.09 0.13 0.19 0.17 0.14 0.38 0.49 0.37 0.39 0.96 1.32 0.90 0.97

Winter 0.06 0.09 0.11 0.10 0.22 0.29 0.23 0.20 0.51 0.95 0.61 0.60 1.42 3.08 1.74 1.77

Mean Standard Deviation Skewness KurtosisRSE [-]

DSD

WSD

WSA

WSI



APPENDIX H 
Comparison of regionalization methods regarding their ability to reproduce extreme events for different 
durations and return periods. Errors for 23 stations. 
 

 
 

 



 
 

 
 



APPENDIX I 
Uncertainty analysis of natural variability of the stochastic process (red dots) and parameter estimation 
(blue curves). 
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APPENDIX J   
Effect of size of urban drainage system in the estimation of flood events. 
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