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Kurzfassung

Die Schätzung der Niederschlagsmenge ist eine anspruchsvolle Aufgabe, vor allem für hohe
zeitliche Auflösungen. Räumliche Niederschlagsvariabilität ist schwer zu beobachten und
wird oft als eine wichtige Fehlerquelle für Ermittlung des Gebietsniederschlags angesehen.
Eine eingeschränkte Anzahl der Niederschlagsmesser auf der einen Seite, die Ungenauigkeit
der Fernerkundung auf der anderen Seite, sind die Herausforderungen für die Ermittlung des
Gebietsniederschlags.

In dieser Studie wird zuerst die Bedeutung der zeitlichen Auflösung der Regendaten und die
Dichte des Niederschlagsmessnetzes für die Leistung von räumliche Interpolationsverfahren un-
tersucht, wenn Wetterradar als zusätzliche Information berücksichtigt wird. Vier verschiedene
Interpolationstechniken werden verglichen und mit Kreuzvalidierung ausgewertet. Kriging
mit Externem Drift (KED), Indikator Kriging mit Externem Drift (IKED) und Conditional
Merging (CM) untersuchen die Verwendung der Radardaten als zusätzliche Information, wobei
Ordinary Kriging (OK) keine weiteren Informationen verwendet und als Referenzverfahren
berücksichtigt wird. CM erbringt die besten Ergebnisse im Vergleich mit den anderen Interpo-
lationsverfahren. Die Berücksichtigung von Radardaten scheint auch für sehr hohe zeitliche
Auflösungen von Vorteil zu sein. Die Glättung der Radardaten verbessert die Leistung im
Zusammenfügen mit den Regenschreiberdaten. Dies zeigt, dass Radardaten Probleme haben.

In Anbetracht der Tatsache, dass Radardaten von Fehlerquellen betroffen sind, wird ein neues
Verfahren zur Korrektur der Radardaten vorgeschlagen, Quantile-Mapping. CM und KED
werden verwendet, um die Korrekturmethode zu bewerten. Die Interpolationstechniken werden
verglichen und mit Kreuzvalidierung ausgewertet. Die Korrektur durch Quantile-Mapping führt
zu einer Verbesserung der Radardaten und der Leistung der Interpolationstechniken.

Aufgrund der Tatsache, dass Messgeräte nicht überall zur Verfügung stehen, werden im näch-
sten Schritt fahrende Autos als Niederschlagsmesser (RCs) untersucht. Scheibenwischer und
optische Sensoren werden zur Messung von Niederschlagsintensitäten berücksichtigt. In
Laborversuchen haben die Beziehungen zwischen Regenintensitäten, welche von konven-
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tionellen Regenmessern aufgezeichnet wurde, und den entsprechenden Signalen von Scheiben-
wischer und optischen Sensoren vielversprechende Ergebnisse gezeigt. Die Messung mit
Scheibenwischer wird als unpraktisch angesehen, da die Einstellung der Scheibenwischerfre-
quenz durch mehrere Faktoren beeinflusst wird. Im nächsten Schritt werden die Ergebnisse der
Laborversuche in Computerexperimenten verwendet, um Gebietsniederschlag zu schätzen.

Aufgrund der geringen Anzahl von RCs auf Straßen und das Fehlen eines Bezugs werden
die Computerexperimente durchgefürt. Im Anschluss werden die im Labor beobachteten
Messfehler in Computerexperimenten verwendet um einen möglichen Vorteil der Ermittelung
des Gebietsniederschlags mit RCs zu untersuchen. Danach werden die Gebietsniederschläge in
einem hydrologischen Modell verwendet um zu untersuchen ob RCs eine Verbesserung der
Modellierung ermöglichen. Zu diesem Zweck werden die Radardaten als Referenz betrachtet
und die anderen Datenquellen werden daraus extrahiert. Die Ergebnisse zeigen, dass die
RCs nützlichen Zusatzinformationen zur Ermittlung des Gebietsniederschlags sowie für die
hydrologische Modellierung bereitstellen.

Allgemein lässt sich schließen, dass die Notwendigkeit für bessere Datenquellen zur Ermittlung
des Gebietsniederschlages, insbesondere für feine zeitliche Auflösungen, offensichtlich ist.
Dieser Bedarf kann durch alternative Quellen wie RCs befriedigt werden.

Schlagworte: Wetterradar, RainCars, Geostatistik
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Abstract

Rainfall estimation is a challenging task, especially for high temporal resolutions. Spatial
rainfall variability is difficult to observe and is often remarked as an important source of error
for areal rainfall estimation. Restricted number of recording rain gauges, on the one hand, and
inaccuracy of the remote sensing techniques, on the other hand, are the challenges for areal
rainfall estimation using available sources of data.

In this study, firstly, the degree of importance of rainfall data temporal resolution and rain
gauge network density on the performance of interpolation techniques is addressed, considering
weather radar as additional information. Four different interpolation techniques are compared
and evaluated by means of cross validation. Kriging with External Drift (KED), Indicator
Kriging with External Drift (IKED) and Conditional Merging (CM) investigate the use of
radar data as additional information, whereas Ordinary Kriging (OK) is used as the reference
method in which no additional information is used. CM performed the best among the other
interpolation techniques. Radar data is observed to be beneficial even for very high temporal
resolution. Smoothing the radar data improved the performance in merging rain gauge and
radar data. This can represent the difficulties original radar data has.

Considering the fact that radar data suffers from sources of error, next, a method is proposed to
correct weather radar data using ground observations. The quantile mapping bias correction
method is used to correct radar data. CM and KED are used in order to evaluate the correction
method. The interpolation techniques are compared by means of cross validation. Implementing
bias correction resulted in the improvement of the radar data and the performance of the
interpolation techniques.

Rain gauges are not available all over a study area, therefore, moving cars measuring rainfall
(RCs) are investigated in the next step. In laboratory experiments, windshield wiper frequency
and optical sensors are considered for measuring rainfall intensities. For this purpose, a tipping
bucket is placed as reference measuring true rainfall intensity. The sensor readings for both
wiper frequency and optical sensors are analyzed against the reference. Wiper frequency
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and optical sensors showed promising results indicating rain rate. However, since wiper
frequency adjustment is affected by several factors, considering wiper frequency for rainfall
measurement is impractical. Therefore, in the next step, the uncertainties only related to optical
sensors derived from laboratory experiments are used in computer experiments for areal rainfall
estimation.

Due to the low number of RCs in the streets and the lack of a reference source for them,
computer experiments are carried out to investigate RCs for areal rainfall estimation and
discharge simulation. The measurement errors explicitly observed in laboratory experiments
are used for RCs. To this end, radar data is considered as the reference and the other sources of
data, i.e. hypothetical RCs and rain gauges, are extracted therefrom. OK is used for estimating
areal rainfall for all the sources. The areal rainfall estimations corresponding to each sources of
data are evaluated by comparing with the reference. Additionally, the areal rainfall estimations
are used in a hydrological model for discharge simulation to assess the need for such sources
of data. The results show that the RCs provide useful additional information for areal rainfall
estimation as well as for discharge simulation.

In general, it could be concluded that although using additional information, such as weather
radar, for areal rainfall estimation improve the interpolation performances, the need for a better
source of data in particular for fine temporal resolution is evident. This need might be satisfied
using alternative sources such as RCs.

Keywords: Weather radar, RainCars, Geostatistics
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Chapter 1

Motivation and objectives

The quality of climate data influences hydrological analyses significantly. Moreover, better
input data, in general, help to improve our understanding about the hydrological processes. A
better understanding of the processes results in improvement of the analyses. Rainfall data is
an important input for hydrological analyses. Reliable precipitation information is required
especially for highly dynamic and nonlinear processes such as floods. Rain gauges provide
valuable information, but at irregularly spaced points with a certain density. On the other hand,
rain gauges cannot be located overall because of the high cost. Interpolation techniques are
used to estimate rainfall amount for locations where no observation is available. Observing
spatial rainfall variability is difficult and is often addressed as an important source of error for
areal rainfall estimation. The spatial variability of rainfall is rather significant for fine temporal
resolution analyses, such as urban hydrology. The spatial configuration and the number of rain
gauges are the factors influencing the quality of areal rainfall estimation. Improvement of the
quality of short time rainfall estimation is the main concern in this study. This is accomplished
by investigating, on the one hand, the current means of rainfall measurement, and, on the other
hand, moving cars for measuring rainfall (RCs).

The spatial variability of rainfall could be captured using advanced technologies, such as
weather radar. A weather radar device estimates precipitation intensity by analyzing the
reflected energy from hydrometeors at a certain height above the ground. Radar data with high
spatial and temporal resolution could be used directly, for example, as input in hydrological
modeling, as additional information in interpolation techniques and for analyzing rainfall
patterns. However, radar data contains errors because of its simple principle behind precipitation
estimation. One of the objectives of this study is to investigate the importance of using radar
data as additional information for areal rainfall estimation in different interpolation techniques.
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1. Motivation and objectives

In addition to the choice of interpolation techniques, several other factors, such as the temporal
resolution of data and the number of observations in the study area influence the quality of areal
rainfall estimation. As a result, the benefit of using radar data for different temporal resolutions
and different network density scenarios is first addressed. Although radar data provide valuable
information and are widely used, they are not without errors. On the other hand, rain gauges
provide accurate point-information. Improving the quality of rainfall estimation by weather
radar is another topic in this study. Consequently, a method for correcting radar data merged
with observation data is developed. Increasing the number of observations results in a higher
rain gauge network density. The number of observations could be increased by taking non-
recording rain gauges with a daily observation interval into consideration. Therefore, a method
is proposed for disaggregating non-recording rain gauges using weather radar data.

In addition to ordinary devices measuring rainfall, several alternatives are proposed in different
studies to compromise the need for high quality data. The initial intention of those techniques is
often not for rainfall measurement purposes. As a result, they are not as accurate as high quality
observation devices, such as rain gauges. However, considering them as inaccurate economical
alternatives, the number of observations could in fact be higher than accurate rain gauges.
HABERLANDT and SESTER (2010) proposed for the first time the idea of using RCs. They
considered wiper speed as an indicator for rain intensity. The initial intention was to investigate
the use of RCs because of: (1) the ease of determining the coordinates by GPS and recording the
required information on a small memory chip and (2) feasibility of transmitting the information
via mobile phones for online access. A huge number of cars world wide represents the potential
of such an approach. They investigated the benefit of using those moving sensors in a modelling
study, using hypothetical uncertainties for RCs rainfall measurements. Investigating RCs for
rainfall measurement purposes in details is another objective of this study. The possibility of
using RCs for point rain measurement is first addressed with laboratory experiments. In other
words, the main objective of this part of the study is to analyze the uncertainties related to
RCs. Car speed, as an important factor influencing the rainfall estimation, is also investigated
by a car speed simulator in laboratory. Verifying the benefit of using RCs for areal rainfall
estimation and discharge simulation purposes is addressed next. Due to the insufficient number
of RCs in field experiment and the lack of a reference data for them, computer experiments
are set up. In addition to the number of RCs, several uncertainties are investigated to consider
factors such as wind speed, road spray and tree coverage. The main objective of this part of
the thesis is to describe a better understanding of how RCs could help for the need mentioned
earlier. The research hypothesis is that inaccurate RCs are able to collect more information
than rain gauges which could result in improving the quality of rainfall estimation.
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Chapter 2

Introduction and overview

Hydrology studies the circulation of water and its elements through the hydrologic cycle. The
evaporated water from oceans and land surface falls back as precipitation to the earth. The
precipitation, is intercepted by plants and vegetation, produces runoff on the land surface,
percolates into soil, recharges groundwater, becomes river discharge, and eventually, flows out
into the oceans. Two basic precipitation mechanisms are convective and stratiform, describing
precipitation formation. The main difference between the two mechanisms is the time needed
until precipitation develops. The stratiform precipitation with weak vertical air motions needs
quit long for developing precipitation (hours) and precipitation particles are initiated mainly
at the top of the cloud system. On the other hand, the convective precipitation with strong
vertical air motions are developed quite fast (approx. 45 min) and the precipitation particles
are developed at cloud base during cloud formation (MAIDMENT, 1992). Estimation of
precipitation amount, as one of the most important elements in the hydrologic cycle, plays an
important role in the hydrologic analyses. Precipitation data is required for different purposes
such as designing constructions like dams, dikes and sewage systems, plans for overcoming
problems related to droughts or floods, and furthermore, for future scenarios such as climate
change studies. Rainfall, as the most common precipitation type, is mainly discussed in this
study.

Rainfall data with coarse temporal resolution could be obtained with the help of relatively
dense non-recording rain gauge networks and new technologies such as satellites. Additionally,
the spatial variation in coarse resolution is less than in fine resolution. Rainfall estimation
in fine temporal resolution is still challenging. Improvement of the quality of short time
rainfall estimation is the main focus of this study. Following the objectives of this dissertation,
investigating ordinary means of rainfall measurement, i.e. rain gauges and weather radar, is
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2. Introduction and overview

first addressed, while evaluating the new idea of using moving cars for measuring rainfall
(RainCars) is discussed thereafter.

2.1 Rainfall measurement techniques

Precipitation intensity, as expressed by the World Meteorological Organization, is the amount
of precipitation collected per unit time interval (LANZA et al., 2006). The current means for
measuring rainfall can be categorized as remote sensing techniques, e.g. satellite and weather
radar, direct measurement techniques, e.g. tipping bucket, and economical alternatives for
increasing the observation network density such as acoustic disdrometers.

The definition of weather radar (RAdio Detection And Ranging) describes the detection
of “anything in the atmosphere which returns to a receiver a detectable amount of power ”
(BATTAN, 1973). Although the origin of using radar for meteorological purposes goes back
to the end of the 19th century (GRIFFITH, 1995), the development of the devices is still in
focus (e.g. LENGFELD et al., 2014). Quantitatively, rainfall amount (R) is expressed using
its relationship with the reflectivity (Z) observed by a radar device. A transmitted pulse from
the radar antenna is not completely returned to the radar depending on the number, size,
shape, relative position, orientation and composition of the particles being observed by radar.
The average received power can be expressed by the radar system characteristics, which is
constant, and the radar reflectivity (Z) (GRIFFITH, 1995). Different parameter sets for the Z-R
relationship are needed depending on several factors, such as the rain type (AUSTIN, 1987).
The rainfall amount estimation is often inaccurate due to the simple principle of detecting any
object in the atmosphere by weather radar. Inaccuracy of radar data can be explained by factors
such as rain type or the existence of frozen particles. The attenuation is a common problem
related to weather radar data. Several methods are proposed for correcting the attenuation.
MAY (2014), for example, addressed the attenuation issue by following algorithms: Linear,
ZPHI (reflectivity-differential phase shift), Self-Consistent, and Modified Self-Consistent. He
suggests that using more sophisticated methods such as Self-Consistent is more preferable
because of the sensitivity of the fixed-coefficient algorithms (Linear and ZPHI). However, he
is of the opinion that validating the techniques by comparing radar rainfall estimations with
observation gauges has problems due to the difference in temporal and spatial scales of the two
sources. The strength of attenuation also depends on the radar type (X- or C-Band) (DELRIEU

et al., 2000) where the X-Band radar is more sensitive. Radar clutter is expressed as unwanted
echoes on radar display (HAYKIN et al., 1982). Statistical approaches are usually proposed
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2.1 Rainfall measurement techniques

for detecting clutters such as by LI et al. (2014). Ground clutters could be identified using
a clear-air condition; however, clutter locations appearing under anomalous propagation are
hard to detect. The data often differs from ground observations due to the fact that the radar
measurements take place at a certain height from the ground. This is more evident for high
temporal resolution data.

© 2016 Ehsan Rabiei

Figure 2.1: Hanover Weather Radar Station, located at Hanover airport

The German Weather Service (DWD) weather radar stations are sometimes located at airports
because of the importance of weather data in aviation industry. Figure 2.1, for example,
illustrates the weather radar location at Hanover airport.

Most of the weather radars in Europe are C-Band (freq. 5.6 GHz and wavelength 5.4 cm),
S-Band (freq. 2.8 GHz and wavelength 10.7 cm) and X-Band (freq. 9.4 GHz and wavelength
3.2 cm) devices. DWD radar network provides rainfall information using C-Band weather radar
systems with an azimuth resolution of 1◦, the spatial resolution along each beam of 1 km, and
a temporal resolution of 5 min. S-Band and X-Band radar devices are for middle range and
short range purposes, respectively. The inexpensive X-Band radar devices are implemented
mainly for urban hydrology or regional catchments. The X-Band radar devices are also used
for measuring rainfall in remote areas such as valleys (HAGEN, 2013).

Following the strategies for the DWD radar devices, in order to scan the entire atmosphere up
to 18 km a total of eleven scans with different radar elevations, shown in Fig. 2.2, are carried
out every 5 min. The bright blue precipitation scan shows the scan which takes place with
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2. Introduction and overview

the radius of up to 150 km from radar device for estimating the rainfall amount. The other 10
scans with certain elevation settings reach the radius of up to 180 km in order to capture the
3D rainfall information for purposes such as now casting (WEIGL, 2013). Due to the principle
behind rainfall estimation by weather radar, coarse temporal resolutions are expected to be more
representative as the temporal variation of rainfall over a large time becomes less important.

Figure 2.2: DWD Weather radar scan strategy (HELMERT et al., 2014)

The reflectivities associated with a radar cell represent an average value of a certain volume.
Due to the fact that this volume becomes bigger when farther away from the radar origin,
the spatial resolution of the captured rainfall information decreases. This could be more
significant for high temporal resolution data and/or for convective rain events when the effects
of non-uniform beam-filling are more in evidence. The non-uniform beam-filling phenomenon
occurs when a radar cell is partly rainy. Hence, in addition to common problems radar data
has, for example clutters and attenuation, the rainfall amount is often under- or overestimated
by weather radar. Due to all the difficulties connected with radar data, several methods are
proposed for correction. KITCHEN et al. (1994), for example, proposed a method to compensate
for the effects of bright band, range, and orographic growth. Bright band appears when there
exists a transition from ice crystal fall to rainfall.

Figure 2.3, for example, illustrates the spatial distribution of rainfall data observed by Hanover
weather radar for January 1, 2006 at 00:55. The DWD parameters are used in the Z-R
relationship for converting reflectivity to rainfall intensity (see Chapters 3 and 4). This figure

6



2.1 Rainfall measurement techniques
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Figure 2.3: Rainfall spatial distribution observed by Hanover weather radar on January 1, 2006 at 00:55

shows that a relatively good spatial variability of rainfall amount over a large area can be
observed by a weather radar. However, the radar observations can be not comparable with
ground observations due to all the problems mentioned earlier.

In contrast to weather radar, rain gauges provide relatively accurate point information. However,
they are located irregularly in the study area. There are several types of rain gauges used for
rainfall measurement purposes, such as the tipping bucket, weighing rain gauge and disdrometer.
The gauges are divided into two types of instrument by LANZA et al. (2006): catching and
non-catching. The catching instruments collect precipitation through an orifice and measure
the water volume over a certain time. The second group, e.g. disdrometers, estimate the
precipitation amount by analysing the droplet size distribution (DSD).

Rain gauges could be classified into two main categories: (1) non-recording rain gauges
with a daily temporal resolution and (2) recording rain gauges with finer temporal resolution.
According to the DWD (DWD, 2016), the number of stations for recording rain gauges with
hourly temporal resolution and non-recording rain gauges with daily temporal resolution in
Germany are 1293 and 5538, respectively. Those numbers include also the stations that were
only temporally in operation. Non-recording rain gauges provide accurate accumulative rainfall
depth over a particular period of time, usually a day. The number of non-recording rain gauges
is much higher than the number of recording rain gauges. Increasing the number of observations
could be carried out by taking non-recording rain gauges into consideration. Disaggregating
non-recording rain gauges is required before being merged with recording rain gauges.
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2. Introduction and overview

(a) tipping bucket (b) weighing rain gauges (c) disdrometer

Figure 2.4: Ordinary rain gauges

One of the popular devices used widely for measuring the amount of rainfall is the tipping
bucket, Fig. 2.4a. The tipping balance of the two buckets represents the rainfall amount
collected between the two sequence tips. This restricts the accuracy of the device when it
comes to measuring rainfall amount for low intensities. On the other hand, the rainfall amount
collected could have evaporated between events. There are some standard correction methods
proposed to overcome these issues. Self-siphoning rain gauges could have a higher resolution,
but are subject to errors mainly because of the time needed for emptying the siphon (SERRA

et al., 2001). The weighing rain gauges do not have the problems mentioned and are more
accurate, Fig. 2.4b. The difference in weight of the rainfall amount collected in the storage
represents the rainfall amount happening between the measuring time steps. The device is
able to compensate noises such as evaporation and a significant weight change when, for
example, unwanted particles fall into the storage. However, it has a time delay of 1 to 10
min for the rain intensity output. The resolution of the data is typically between 0.01 and 0.1
mm of rainfall amount. The DWD uses Pluvio OTT weighing rain gauges as the recording
rain gauges in Germany. In general, wind can affect the rain gauges with orifice which could
also introduce some errors for such devices. Disdrometers analyze the DSD parameters for
estimating the rainfall amount, Fig. 2.4c. A similar way as explained for weather radar is used
for estimating the rainfall intensity. A laser beam transmits from one side, where the particle
size and speed is estimated depending on the voltage and the signal length at the receiver. The
rainfall intensity is estimated using the Z-R relationship (CARACCIOLO et al., 2008). Although
disdrometers provide valuable information, the data could contain errors because of indirect
rainfall measurements.
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2.1 Rainfall measurement techniques

In addition to local measurement techniques, the global need for frequent and accurate pre-
cipitation measurements could be satisfied using data obtained from satellite remote sensing.
KUMMEROW et al. (1998) described the Tropical Rainfall Measuring Mission (TRMM) sensor
package. It carried the TRMM Microwave Imager (TMI), the precipitation radar (PR), and the
Visible and Infrared Radiometer System (VIRS). Additionally, to measure the total upwelling
radiant energy, it carried two related Earth Observing System (EOS) instruments in the Clouds
and Earth’s Radiant Energy System (CERES) and the Lightning Imaging System (LIS). Al-
though TRMM’s precipitation radar (PR) suffered from similar uncertainties to ground-based
radars for rainfall estimation, the TRMM PR has delivered a unique 17-year dataset of global
tropical rainfall. The TRMM 3B42 product is available in 3-hour temporal resolution and a
0.25-degree by 0.25-degree spatial resolution. The data have a coverage of 50◦ N - 50◦ S.
The TRMM satellite ended its journey on April 15, 2015. SMITH et al. (2007) described the
mission of the International Global Precipitation Measurement (GPM) Program which is to
provide observations of rain and snow worldwide every three hours. The design of the GPM
was by following the knowledge and published findings of the TRMM. The GPM instruments
are designed to detect falling snow, measure light rain, and provide quantitative estimates of
microphysical properties of precipitation particles. The GPM Core Observatory satellite was
launched on February 27th, 2014. The satellite data was evaluated in several studies. PRAKASH

et al. (2016), for example, described the GPM-based multi-satellite IMERG precipitation esti-
mates for the southwest monsoon season which is notably better than the TRMM Multi-satellite
Precipitation Analysis (TMPA) in capturing heavy rainfall over India.

Several alternative ways are proposed for rainfall measurement such as acoustic disdrometer
(JONG, 2010), microwave links (RAHIMI et al., 2006; UPTON et al., 2005; ZINEVICH et al.,
2009) and optical sensors (HYDREON, 2012; XANONEX, 2012). The main objective of using
these techniques is to improve the accuracy of rainfall estimation by increasing the number
of observations in an economical manner. As the methods mainly mentioned are not initially
aimed for rainfall measurement purposes, they are usually not as accurate as ordinary rain
gauges. However, they could theoretically provide denser rainfall information than rain gauges.
Unexpected problems arise when investigating new techniques in practice. A summary of
analyzing acoustic disdrometer and microwave links for rainfall measurement is provided in
the following.

JONG (2010) proposed using acoustic disdrometer as a cheap alternative for rainfall measure-
ment. The device was meant to fulfill some of the following criteria: it (a) should not contain
moving parts, to prevent clogging, (b) should be inexpensive and long-lasting, and (c) should
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be easy to produce. The constraints considered for designing the device resulted in restrictions
in rain rate measurements and accuracy of the device. The acoustic disdrometer analyzes the
relationship between drop signals and drop diameters. Rainfall amount is estimated in a similar
way to the Z-R relationship used for ordinary disdrometers. The sensor cover vibrates when
a drop falls on it. A piezo detector converts the vibration into an electric pulse. The electric
pulse depends on the size of the rain drop. However, the produced signal is not a sudden
change and has a certain length. Consequently, he proposed an algorithm for peak detection.
The calibration of the disdrometer was carried out at Delft University of Technology, using a
reservoir at 12 m height and medical needles for producing drops. Assuming a constat drop
size for each specific setting, the drop size was determined by collecting the drops with a small
cup. Implementing the relationship between drop size distribution (DSD) and rain intensity,
he examined the technique during a rainfall event. Implementing the device in Singapore and
the Netherlands, he evaluated the disdrometer performance. A noticeable underestimation
of rainfall amount was observed in both study areas. However, the rainfall estimations were
synchronized with the reference. He concluded that the disdrometer encounters problems when
the rain intensity becomes higher than a certain threshold. He suggests further investigations
for a better rainfall estimation.

UPTON et al. (2005) pointed the fact that using microwave link could provide averaged
continuously measured estimates of rainfall along a path close to the surface. The intended
path, however, should be clear, i.e. not passing too close to any obstructions. They proposed
a relationship similar to Z-R relationship for estimating rainfall. They explained that the
coefficients of the proposed relationship depend on the frequency of the wave, the temperature
of the raindrops and the size and shape of the raindrops passing between two antennas. Due
to the difficulties when using single frequencies (the variation in coefficients), they suggest
implementing dual frequency approach. They suggested using the difference in the attenuations
at two frequencies resulting in a close to linear relation between rain rate and the difference
in the attenuations. However, rain drops are not the only factors causing attenuation. Slight
attenuations could be caused because of atmospheric absorption. Therefore, the strength of
the received signal is not constant even for no-rain days. Furthermore, the signal strength can
also vary during an event. The result of antenna-wetting, for example, results in change of the
attenuation before and after an event. Although relatively good results were presented, further
developments were suggested. A more recent investigation of the approach was carried out by
OVEREEM et al. (2013). They explained the benefit of using cellular communication networks
for rainfall measurements, in particular in urban areas because of high density. They proposed
a methodology to exclude unwanted signal fluctuations. They estimated the mean 15-min path-
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averaged rainfall intensities using the minimum and maximum attenuation. They evaluated
the work using a gauge-adjusted radar dataset. The rainfall map is, thereafter, produced
implementing OK. Even though they believed in the usefulness of the microwave links rainfall
estimation, they were aware of the deficiencies of such an approach. For example, the tropics
links, often working at lower frequencies, can have higher errors in rainfall estimates.

2.2 Rainfall interpolation techniques

Rainfall data, like other climate variables, is collected at certain locations by rain gauges rather
than continuous surfaces. As a result, interpolation techniques are required to estimate the
rainfall amount at points where no rain gauge is located. Several factors influence the quality
of rainfall estimation, such as the data availability, temporal resolution of data, availability of
additional information and the interpolation techniques used for rainfall estimation. There are
many methods used for rainfall estimation, such as nearest neighbor (ISAAKS and SRIVASTAVA,
1990), inverse distance weighting (SHEPARD, 1968) and univariate Kriging techniques, e.g.
Ordinary Kriging (OK). The principles of geostatistics is described by MATHERON (1963).
Most of the mentioned methods smoothen the areal rainfall distribution which may not represent
the actual structure. In order to overcome this deficiency, multivariate geostatistical approaches,
such as KED, are suggested. GOOVAERTS (2000) divided the methods into two categories:
(a) methods that use only rain gauge observations such as inverse square distance, Thiessen
polygon and OK, and (b) the techniques combining rainfall data with additional information, for
example elevation, such as KED. He compared different interpolation algorithms by evaluating
the cross-validation results. The methods in which no additional information, i.e. elevation, are
used failed compared with other techniques. High spatial rainfall variability could influence the
performance of interpolation techniques. However, this could be captured by using additional
information, such as elevation or weather radar. HABERLANDT (2007) proposed using radar
data as additional information in KED. He observed a clear improvement in comparison to
univariate interpolation techniques. SINCLAIR and PEGRAM (2005) proposed using CM for
merging radar and rain gauge data. Radar data is also used as additional information in this
method, but not in the same manner as KED. They concluded that using CM resulted in
reducing the bias and variance of error estimates, using an artificial simulation experiment.
Depending on the interpolation technique, the assumptions for additional information could
be; having a linear relationship with the observation data (e.g. KED), representing the spatial
variability of rainfall (e.g. radar in conditional merging: CM) and having different accuracy
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(e.g. in Kriging with uncertain data).

The copula-based interpolation techniques are proposed by BÁRDOSSY and LI (2008) for
interpolating observations of a large scale groundwater quality measurement network in Baden-
Württemberg, Germany. They compared the performance of four different interpolation
techniques: multivariate v-transformed normal copula, multivariate Gaussian Copula, OK and
Indicator Kriging (IK). The following advantages for copula-based approaches were mentioned:
1) illustrating the dependence structure without the influence of marginal distribution, 2)
suitable when encountering outliers and data transformations, and 3) using full distribution,
resulting in obtaining more information than a variogram. The copula based interpolator is
non-linear. The factors influencing the estimations are the configuration of the observation
and target points, and their values. However, the copula approaches are demanding in terms
of computational time when the number of observations is too big. They observed better
cross validation results using copula approaches comparing with OK or IK. BÁRDOSSY and
PEGRAM (2013) applied Gaussian copulas and unsymmetrical v-copulas for interpolating
precipitation data for several temporal resolutions from a day to a year. Instead of using
only traditional local elevation, a smoothed, shifted version is also considered to illustrate the
topography-precipitation relationship. For copula approaches, they assumed that marginal
distributions of precipitation at each site are unique for a chosen time step. Furthermore, they
treated zero values like censored values. They treat zeros such that within a vicinity of each dry
station all the values are zero. The results were compared with traditional methods, OK and
KED. Validation of different techniques is carried out by a split sampling approach in a way
that the stations are randomly separated into two groups with an equal size. By excluding one
group, rainfall estimations for the excluded group are compared with the observations when
implementing only the the existing group. They observed that the interpolation quality depends
on the temporal resolution of the data under study. They believe that the uncertainties derived
with copula approaches are more realistic than kriging methods. They concluded that Gaussian
Copulas, combined with directional smoothing of topography performs better than the other
techniques. For fine temporal resolution, the number of observations with zero values (censored
values) would become very large such that copula techniques with the current approaches may
face difficulties. The use of copula techniques for interpolating fine temporal resolution data
should be investigated comprehensively in another study.

A short description of the assumptions made for Kriging methods represents the inherent
difference of the techniques. From the second order stationarity or the intrinsic hypothesis,
the expected value of the random function is constant over the domain. The Kriging system is
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derived by minimizing the estimation variance with respect to the unbiasedness condition and
with the help of the Lagrange multiplier. The main assumption in KED is the presence of a
linear relationship between the additional information and the expectation of the observation
data. This results in an inconstant expected value which is in contrast to the constant expected
value over the domain (the assumption of OK). Dissatisfying the assumption in KED could
result in deterioration of performance compared with OK. Furthermore, numerical instabilities
can happen when using this method. In CM, first, interpolating radar values is carried out when
implementing OK on the extracted radar values from the cells corresponding to the rain gauges.
CM uses only the deviation between the interpolated radar values and observed radar values.
The rain field is estimated by adding this deviation to the rain gauge interpolation field using
OK (see Chapter 3).

Interpolation methods are also sensitive to network density and the temporal resolution of the
data under study. HOFSTRA et al. (2010) investigated the influence of station network density
on the distribution and trends in indices of two variables of area-average daily precipitation
and maximum and minimum temperature. They observed that sparse network density leads to
over-smoothing for both precipitation and temperature. The smoothing observed to be more
significant for high percentiles. The temporal resolution of the data under study also influences
the performance of interpolation techniques which is due to the larger spatial variability for
high temporal resolution data.

The third chapter discusses the influence of network density, temporal resolution and interpo-
lation technique on rainfall estimation by means of cross-validation. Consequently, temporal
resolutions from 10 min to 6 h and different network densities are investigated. The following
geostatistical approaches are applied to evaluate the advantages and disadvantages of using
different interpolation techniques: KED, Indicator KED (IKED) and CM. The benefit of using
radar data in geostatistical approaches, as additional information, is compared with the refer-
ence method, OK. A common problem regarding radar data is when encountering convective
rain events. Unrealistic values could be expected for such events. In order to consider a
non-linear relationship between the expectation of the observation data and the additional
information, IKED is implemented when considering a stepwise implicit application of KED
for different indicators. Additionally, implementing IKED might compensate the severe over-
or underestimation of rainfall by radar. The same as KED, numerical instabilities can also
occur using this technique. Furthermore, because of the problems associated with radar data, it
was also decided to investigate the effect of temporal and spatial smoothing on radar data.

Applying quantile-quantile (Q-Q) transformation is usually used for scaling and bias correction
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purposes in climate impact studies. INES and HANSEN (2006), for example, used this method
for correcting the daily General Circulation Models (GCM) rainfall for crop simulation studies.
A straight forward bias correction method is proposed to deal with the uncertainties of radar
data and in order to compensate for the common problems, e.g. over- and underestimation of
rainfall. Considering the fact that the rain gauges provide accurate data, radar data is assumed
to follow the statistical rainfall variability observed by the rain gauge network. This was carried
out by assimilating the cumulative distribution function (CDF) of radar data to the CDF derived
from the rain gauge network. This method is discussed further in detail in Chapter 4. Applying
the (Q-Q) transformation when considering the observation network data as the reference is the
main objective in this part of the study. Furthermore, it is worth noticing that in this method,
a direct relationship between the radar-point values and the corresponding observation data
is not the main focus. This is in contrast to the usual approaches, where the observations are
compared with the corresponding radar cell values for correcting radar data. This could result
in a better performance of the method even if the radar-point values are very unrealistic. The
radar data quality is investigated by comparing with the corresponding observation data before
and after implementing the correction method. Evaluating the correction method is also carried
out when implementing radar data in CM and KED interpolation techniques. Furthermore,
due to the fact that the number of non-recording rain gauges with daily temporal resolution is
usually higher than the recording rain gauges with finer temporal resolution, using radar data
for disaggregating daily rain gauges is also investigated. Chapter 4 discusses using radar data
for disaggregation purposes in more detail.

2.3 Moving cars for rainfall measurement purposes

As discussed previously, the need to map the spatial rainfall variability better is evident. In
addition to weather radar, several innovative methods such as microwave links (UPTON et al.,
2005) and acoustic rain gauges (JONG, 2010) are proposed to fulfill this demand.

The potential of using RainCars was addressed for the first time by HABERLANDT and SESTER

(2010). The initial intention was to investigate the use of RainCars because of an easy approach
for determining the coordinates by GPS and recording the required information on a small
memory chip. Furthermore, the information could be transmitted via mobile phones for online
access. This idea was justified due to the fact that the number of cars on streets in countries
like Germany is relatively high and a huge potential exists for using them as moving sensors
measuring rainfall. In that modeling study, the wiper speed was consider as an indication for
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rainfall intensity on the front windshield. The two sources of data (RainCars and rain gauges)
were extracted from the reference data source, radar data. The benefit of using RainCars was
evaluated when comparing the areal rainfall estimation by RainCars with the areal rainfall
estimation using only the rain gauge network in an event-based approach. Hypothetical errors
were assumed for rainfall estimation by RainCars. This means that each wiper movement
frequency was considered representing a certain range of rainfall intensities (classes). The
traffic model provided the RainCars’ locations and, according to the extracted point-rainfall
intensity from radar, the RainCars’ value would be then associated with a certain class of rainfall
intensity. Indicator Kriging was used to estimate the areal rainfall estimation by RainCars
and OK for rain gauge network. Although hypothetical inaccuracies were implemented in
that study, it was shown that a large number of inaccurate devices could provide a better areal
rainfall estimation than a couple of accurate rain gauges. This could be explained by the fact
that RainCars measuring the rainfall amount could gather more information than a couple
of accurate rain gauges. As a result, spatial rainfall variability could be captured in a better
manner.

In order to evaluate the potential of using RainCars for practical use, the possibility of using
RainCars for point-measurement purposes was first addressed. Consequently, laboratory
experiments were designed and conducted. The main objective of this part of the study was to
study the relationships between sensor readings (W) and rainfall intensity (R) by laboratory
experiments. Sensor readings refer to wiper speed (adjusted either manually by a driver or
automatically by optical sensors) and signals of optical sensors which are designed to be placed
on cars for automating wiper activity. Investigating the relevant sensor reading uncertainties is
the main purpose of this part of the study. A rainfall simulator with the ability of producing
a wide range of rain intensities is designed and constructed. In addition to producing a wide
range of rain intensities, homogeneous rainfall distribution over the desired area and replicating
the properties of natural rain were the points considered when designing the rainfall simulator.
A tipping bucket was considered as reference in order to analyze the sensor readings. The
performance of RainCars could be influenced by several factors such as car speed, wind speed,
wind direction, windshield angle, etc. Car speed, as an important factor influencing the rainfall
estimation, is investigated with the help of a special car speed simulation. Chapter 5 describes
the laboratory experiments from design to results in more detail.

It is worth mentioning that several factors could influence the performance of RainCars in
practice. In addition to the car speed which was investigated by a car speed simulator, fac-
tors such as wind speed, wind direction, road spray and tree coverage could deteriorate the
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performance of RainCars. Following approaches may be considered for compensating those
factors. The wind speed could be analyzed in a similar way to car speed, having the wind
direction. Statistical approaches such as those for detecting clutter in radar data may be used for
compensating the influence of road spray and tree coverage. Such approaches require relatively
large number of observations. It is worth noticing that some factors might be because of the car
type and shape. However, identifying all the factors influencing the RainCars performance is
difficult.

Figure 2.5: Schematic image of RainCars (Credit:iww.uni-hannover.de, Bastian Heinrich)

Figure 2.5 illustrates a schematic image of a RainCar. Optical sensors, such as the one shown
in Fig. 2.5, are designed for automating the wiper activity. The readings from such a sensor
could be considered as an indication of rainfall amount.

FITZNER et al. (2013) discussed the initial results of RainCars in field experiments. They
investigated robust models for rainfall estimation using sensor readings and possible model
for online calibration. They assumed that stationary rain gauges provide accurate information.
Furthermore, they considered the vulnerability of W-R relationship in terms of the current wind
direction and speed. Therefore, they proposed an exchange of information between RainCars,
and also among RainCars and rain gauges for re-calibrating the W-R relationship. Because
of that, not only the spatial distance was taken into consideration, but also the temporal lag
between the measured and expected variable. They analyzed the manually adjusted wiper
speeds of 6 cars and automatically adjusted wiper speeds of 4 cars with a sampling rate of 1 min.
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However, they were of the opinion that due to the low number of data points, the results might
not be reliable. Even though they limited the analyses to 4000 m distance to stations, relatively
weak results were obtained. Applying the inverse distance weighted (IDW) interpolation
technique for estimating the reference values for RainCars was given as an important issue for
analyzing the results. Furthermore, a restriction of using upper level wiper speeds after certain
car speeds was mentioned also as one of the deficiencies of such an approach.

2.4 RainCars for areal rainfall estimation as well as

discharge simulation

As mentioned previously, one of the advantages of using RainCars is that the number of obser-
vations is relatively high. This could result in a better illustration of spatial rainfall variability
and, consequently, better areal rainfall estimation. After analyzing the use of RainCars for
point-measurement purposes in Chapter 5, Chapter 6 addresses the measurement uncertainties
derived from laboratory experiments for (a) areal rainfall estimation and, afterwards, (b) dis-
charge simulation. It is worth noticing that the interactions in hydrological modeling are not
the focus of this part of the study. The hydrological model is used only as a tool simulating the
discharges for different sources of data. However, several factors can influence the performance
of a hydrological model. Some of the factors are summarized in the following.

Due to the low number of RainCars in field experiments and the lack of a reliable reference data
for them, a computer experiment is designed to investigate the benefit of using RainCars for
both areal rainfall estimation and discharge simulation. The wiper speed is not analyzed here
because of all the mentioned limitations for this approach (FITZNER et al., 2013; RABIEI et al.,
2013). The signal readings of an optical sensor is considered for further analyses. A continuous
analysis of implementing RainCars for areal rainfall estimation over a long period of time, as
well as using the data in a hydrological model, are the objectives addressed in this part of the
study. For a more general conclusion, in addition to the uncertainties previously derived in
laboratory experiments, higher and lower uncertainties are also taken into consideration. This
could obtain the minimum required accuracy for the RainCars.

The computer experiments are set up to meet different objectives. The primary objective is
to implement the uncertainties derived in laboratory experiments for areal rainfall estimation.
Reference data is required from which the other sources of data are to be extracted. It is decided
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that radar data covering a large area is a good source to be considered as the reference in
this part of the study. The rainfall data for both hypothetical RainCars and rain gauges are
extracted from the reference. The areal rainfall estimation determined by interpolating the
extracted point-data (using OK) over the study area is then compared with the reference. Before
interpolating RainCars’ values over the study area, the error derived from the laboratory is
randomly introduced into the data, whereas the extracted values for rain gauges are directly
used.

In order to investigate the advantages and disadvantages of using a new data source, the data
should be used directly as input in the analyses. The relationship between rainfall data and
discharge simulation is not linear. Therefore, an improvement in the interpolation performance
(e.g. by means of cross validation) should not necessarily result in an improvement of model
performance simulating discharges. In the following, some factors influencing the model
performance are summarized.

There are generally several factors influencing the model performance, such as calibration
strategy, the quality of input data, temporal resolution of the data under study and the complexity
of the model. GUPTA et al. (1999), for example, discussed the fact that using different automatic
calibration strategies might lead to different model parameter sets. KAVETSKI et al. (2011)
described the influence of temporal data resolution on parameter interference and model
identification in conceptual hydrological modeling. He is of the opinion that having high-
resolution data in more complex model structures results in a better overall performance both
in terms of aggregate measures of model performance (such as Nash-Sutcliffe representing
the goodness of fit) and reproducing important quantitative signatures. Spatial and temporal
resolution of data is also a factor influencing the quality of analyses. OUBEIDILLAH et al.
(2014) investigated the effect of four different datasets with different spatial and temporal
resolutions on the VIC hydrologic model. They observed that the dataset with the finest
resolution for high precipitation P95, annual 95% quantile, should report precipitation extremes
more accurately. PRICE et al. (2014) compared the accuracy of the SWAT model for four
spatial and five temporal scales using gauge data and radar data while keeping all other model
inputs constant. They found that different data sources result in different parameterizations.
They also concluded that the choice of whether to use radar, gauge, or other rainfall data
should be decided mainly according to the spatial and temporal scales of interest. JASPER

et al. (2002) investigated the use of two different datasets in the grid-based WaSiM-ETH
hydrological model: (1) observations from rain gauges and weather radar and (2) forecast
data from different numerical weather prediction (NWP) models. The runoff simulations by
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radar data had significant quality differences. This was justified by the fact that the watersheds
were located in very steep mountainous terrain. BIEMANS et al. (2009) quantified the global
distribution of the uncertainty in annual as well as seasonal precipitation estimation on a basin
scale and the resulting uncertainty in discharge simulations by the Lund-Potsdam-Jena managed
land (LPJmL) model. They compared the variations between seven global gridded precipitation
datasets of: the Climate Research Unit (CRU), CRU-Potsdam-Institut für Klimafolgenforschung
(CRU-PIK), the global precipitation dataset (MW), the GPCC global precipitation dataset,
the Global Precipitation Climatology Project (GPCP), the Climate Prediction Center Merged
Analysis of Precipitation (CMAP) and The global precipitation dataset developed by ADAM et
al. (2006) (ADAM) at a basin scale. Furthermore, they also evaluated the discharge simulations
using those datasets on a mean annual and a mean seasonal time scale with observations for 294
basins around the world. Precipitation estimates observed to suffer from larger measurement
errors. They also observed that areas with low precipitation uncertainty typically have simpler
topography, are not snow dominated, and have a dense precipitation network. Moreover,
the results showed that the uncertainty in precipitation has a significant impact on discharge
estimations. They are of the opinion that the range of uncertainty in input data affects the output
and may not be neglected in the communication of results. They believed that more accurate
precipitation datasets can satisfy this need.

Another objective of this part of the study is to analyze discharge simulations when different
rainfall data are used as inputs in a hydrological model. Therefore, all the other influencing
factors, e.g. model parameters, are kept constant. This means that a general setting for the
hydrological model is used for all the datasets. The HBV-IWW hydrological model simulates
the discharges for all the scenarios mentioned earlier, where the reference data is used for
simulating the reference discharge. The simulated discharges are then compared with the
reference discharge. The benefit of using RainCars could be observed when comparing the
results with when only rain gauges are used.

There are two main factors influencing the areal rainfall estimation quality using RainCars:
(1) the number of RainCars available on the streets, and (2) the accuracy of the measurements.
Different numbers of RainCars address their possible required number. Although using large
number of RainCars may result in improving the quality of areal rainfall estimation, the
minimum number of RainCars required for dominating rain gauges is very important. Higher
and lower uncertainties than the one derived in the laboratory are investigated to obtain a
threshold for the minimum requirements for the accuracy of the measurement devices. Higher
uncertainties account for possible factors deteriorating the performance of RainCars that could
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not be investigated in laboratory such as road spray, trees, wind, etc. This part of the study
would show the potential of using the data for areal rainfall estimation and discharge simulation.
Chapter 6 discusses the computer experiments and all the assumptions taken for this part of the
study in more detail.
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Chapter 3

Geostatistical merging of rain gauge and

radar data for high temporal resolutions

and various station density scenarios

S U M M A R Y

This study investigates the performance of merging radar and rain gauge data for different high
temporal resolutions and rain gauge network densities.

Three different geostatistical interpolation techniques: Kriging with external drift, indicator
kriging with external drift and conditional merging were compared and evaluated by cross
validation. Ordinary kriging was considered as the reference method without using radar data.
The study area is located in Lower Saxony, Germany, and covers the measuring range of the
radar station Hanover. The data used in this study comprise continuous time series from 90
rain gauges and the weather radar that is located near Hanover over the period from 2008 until
2010. Seven different temporal resolutions from 10 min to 6 h and five different rain gauge
network density scenarios were investigated regarding the interpolation performance of each
method. Additionally, the influence of several temporal and spatial smoothing-techniques on
radar data was evaluated and the effect of radar data quality on the interpolation performance
was analyzed for each method.

It was observed that smoothing of the gridded radar data improves the performance in merging
rain gauge and radar data significantly. Conditional merging outperformed kriging with an
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external drift and indicator kriging with an external drift for all combinations of station density
and temporal resolution, whereas kriging with an external drift performed similarly well for low
station densities and rather coarse temporal resolutions. The results of indicator kriging with an
external drift almost reached those of conditional merging for very high temporal resolutions.
Kriging with an external drift appeared to be more sensitive in regard to radar data quality than
the other two methods. Even for 10 min temporal resolutions, conditional merging performed
better than ordinary kriging without radar information. This illustrates the benefit of merging
rain gauge and radar data even for very high temporal resolutions.

3.1 Introduction

Rainfall data with a high resolution in space and time are of importance for the modeling of
hydrological and other environmental processes. Rainfall is usually measured at irregularly
spaced point locations with a certain density. The spatial density is often quite high for daily
measurements, but there is regularly a lack of stations delivering a more frequent recording
of precipitation. Radar data have a high resolution in space and time, but are in general
strongly biased (“Real-time estimation of mean field bias in radar rainfall data”). A radar
device does not measure the precipitation intensity directly, but rather the reflected energy
from hydrometeors at a certain height above the ground. Sources of errors include variations
in the relationship between reflected energy and rainfall intensity depending on rainfall type,
changes in the precipitation particles before reaching the ground, anomalous beam propagation
and attenuation (WILSON and BRANDES, 1979). Hence, it could be expected that the use of
uncorrected radar data is not acceptable for many hydrological applications.

Considering only station data to obtain rainfall estimates, various interpolation methods
have been applied (DUBOIS et al., 1998). A few examples include the nearest neighbor
method (ISAAKS and SRIVASTAVA, 1990), inverse distance weighting, spline fitting techniques
(HUTCHINSON, 1998a; HUTCHINSON, 1998b) and univariate kriging approaches like ordinary
kriging. Some of these methods create strongly smoothed areal rainfall distributions which
usually do not represent the actual spatial rainfall structure. Multivariate geostatistical meth-
ods, e.g. kriging with an external drift, were applied in several studies by using additional
information in order to improve the interpolation performance. For instance, GOOVAERTS

(2000) reported that implementing the elevation as a background information can improve the
interpolation performance on a monthly and yearly time scale.
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As a result of improved availability and higher accuracy of radar data, several methods for
merging rain gauge data and radar data were proposed over the years. Merging approaches
based on cokriging were applied in numerical experiments by KRAJEWSKI (1987) and AZIMI-
ZONOOZ et al. (1989). The incorporation of simulated radar information improved areal rainfall
estimations for simulated rainfall fields.

HABERLANDT (2007) used kriging with an external drift to interpolate hourly rain gauge data,
using radar as the drift information. A clear improvement of interpolation performance in
comparison to univariate interpolation methods was achieved. However, the usage of elevation
as further additional information did not improve the quality noticeably. Another study by
VERWORN and HABERLANDT (2011) showed the benefit of implementing radar data in kriging
as an external drift.

A further technique to combine radar and rain gauge data is the so called conditional merging
approach, which consists of combining an interpolated rain gauge field with rainfall variability
information derived from radar data. The method was reported first in EHRET (2002) and it is
referred as Conditional Merging in SINCLAIR and PEGRAM (2005).

GOUDENHOOFDT and DELOBBE (2009) evaluated several merging approaches with different
complexity for daily rainfall data and preferred geostatistical merging over univariate rain
gauge interpolation and radar data adjustment. Kriging with an external drift was the best
approach. However, conditional merging performed only slightly worse. VELASCO-FORERO

et al. (2009) evaluated ordinary kriging, kriging with an external drift and collocated cokriging
in combination with a non-parametric and automatic technique to obtain correlograms from
radar images. Kriging with an external drift performed best.

Statistical merging procedures were applied for combining rain gauge and satellite data as well.
For instance, LI and SHAO (2010) proposed a nonparametric kernel merging technique for
rain gauge and TRMM satellite data. An improvement in comparison to kriging methods was
detected for the Australian study area. WOLDEMESKEL et al. (2013) used a combination of
thin plate smoothed splines and inverse distance weighting to merge satellite and station data on
a monthly time scale. In particular for regions with a sparse station network, an improvement
of rainfall estimation was found out.

BÁRDOSSY and PEGRAM (2013) used copula techniques and kriging methods for the spatial
interpolation of rainfall sums for 1 day, 5 days, 1 month and 1 year, while taking into account
the elevation as the additional information. The best interpolation results were achieved by
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using a shifted and smoothed version of the digital elevation model which accounts for the
effects of directional advection. In general the copula-based techniques performed well for all
temporal resolutions and provided a better estimation of uncertainty.

There are several uncertainties in the estimation of rainfall intensity by weather radar, e.g.
variations of parameters in the Z-R-relationship in relation to rain type (GRIFFITH, 1995),
attenuation of the radar beam and increasing measuring altitude depending on the distance
from the radar station. The occurrence of these errors is crucial for high temporal resolutions
and becomes less important with increasing accumulation time. Due to this, it could be
expected that the advantage of incorporating radar data would be restricted to lower temporal
resolutions. Additionally, it is generally assumed that the benefit of using radar data would
increase by decreasing rain gauge network density. This assumption is supported by findings of
KRAJEWSKI (1987), GOUDENHOOFDT and DELOBBE (2009) and YOON et al. (2012), where
station density effects had been analyzed.

A different way of tackling the problem of the merging rain gauge with radar data is the assimila-
tion of radar information to rain gauge measurements. The error variance of various uncertainty
sources could be quantified and incorporated in the calibration procedures (CHUMCHEAN et al.,
2003; CHUMCHEAN et al., 2004).

The objective of this study is to compare the performance of certain merging techniques
between gauge and radar rainfall for a large and continuous data set. Most of the previous
studies, which included merging or other interpolation techniques, used daily or hourly data
for a specific area with a certain number of available rain gauges. This study evaluates a wide
range of high temporal resolutions from 10 min to 6 h and various station network densities. It
aims at providing information for different temporal resolutions and station densities, about
whether the combined use of rain gauge and radar data is advantageous compared to univariate
rain gauge interpolation. Inspired by BÁRDOSSY and PEGRAM (2013) it looks in particular
at spatial and temporal smoothing options of the radar variable to improve the interpolation
performance. In addition the effect of radar data quality on the merging result is investigated in
this study.

The paper is organized as follows. After the Introduction, the section “Methodology” contains
a description of all merging techniques that were applied for this study. Also, the general
evaluation procedure followed in this case study and the performance assessment are explained.
The study area and data are introduced in Section 3.3. In particular the radar data pre-processing
is described here. Next, Section 3.4 contains the results and a corresponding discussion. The
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findings are presented separately for the effect of radar data smoothing on the interpolation
performance and the influence of station density and temporal resolution. Moreover, radar data
quality aspects are discussed here. In the final section the conclusions are drawn and an outlook
is presented.

3.2 Methodology

3.2.1 Merging methods for radar and rain gauge data

The geostatistical approaches used in this study for merging rain gauge and radar data include
Kriging with External Drift (KED), Indicator Kriging with External Drift (IKED) and Condi-
tional Merging (CM). The univariate method Ordinary Kriging (OK) is used as a reference,
illustrating a possible benefit of radar data use. A detailed description of OK is provided in geo-
statistical textbooks (GOOVAERTS, 1997; ISAAKS and SRIVASTAVA, 1990). The Geostatistical
Software Library (DEUTSCH and JOURNEL, 1992) with some modifications for the successive
procession of time series was used for the computations in this study.

All kriging methods require the assumption of a theoretical semivariogram model that is to be
fitted to an experimental one.The semivariogram γ(h), which will be referred as variogram in
the following text, is a measure indicating the spatial variability of a regionalized variable Z.

γ(h) =
1

2 ·N(h)

N(h)

∑
i=1

(Z(ui)−Z(ui +h))2, (3.1)

where N(h) is number of data pairs, which are located a distance vector (h) apart. Previous
research of HABERLANDT (2007) and VERWORN and HABERLANDT (2011) showed that the
variogram model has only a small impact on the estimation performance of OK and KED,
though the distribution of rainfall can be highly dynamic in space and time. Similar results
regarding the variogram influence were obtained by EHRET (2002).

Accordingly, two isotropic variogram models were used. They were fitted to experimental
variograms, which were averaged separately over all summer and all winter time steps. This
separation into one summer and one winter variogram is considered because of the assumed
seasonal changes in rainfall type. Only radar data were used for the calculation of experimental
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variograms. GERMANN and JOSS (2001) also conducted variogram estimation using radar
data and reported that high resolution radar images provide good information about the spatial
continuity of precipitation. The section "Variogram inference" contains further details. The
main advantage of this procedure is that the visual fitting of the theoretical variogram model
has to be done only twice for each temporal resolution and not for each single time step. All
time steps with an average rain gauge rainfall exceeding a certain threshold were taken into
account for the calculation of the season-specific experimental variogram (Eq. (3.2)). Prior to
averaging, standardization by the variance was done for each time step:

γseason(h) =
1
n
·

n

∑
i=1

γ(h, i)
var(i)

. (3.2)

In this equation, n is the number of time steps, γ(h, i) is the variogram value for the distance
class h of time step i and var(i) is the variance of time step i. Next, an exponential variogram
model was fitted visually.

γh = c0 + c
[

1− exp
(
−h

a

)]
. (3.3)

Here, a is the range, c the sill and c0 the nugget effect.

In terms of objectivity, a visual fitting procedure is considered as adequate because the fitting
of the theoretical models was easy and obvious for the experimental variograms that were
computed from radar data (see Section 3.4.1)

3.2.1.1 Kriging with an external drift

Kriging with external drifts allows the incorporation of one or more additional variables that are
used as background information for the interpolation of the primary variable. Since the focus
of this study is merging rain gauge data with radar data, radar data has been considered as the
only additional information in this method. The basic assumption of KED is that the expected
value of the estimated variable Z(u) has a linear relationship with an additional variable Y(u):

E[Z(u)|Y (u)] = a+b ·Y (u) (3.4)
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So the intrinsic hypothesis (Eqs. (3.5 and 3.6) is relaxed:

E[Z(u+h)−Z(u)] = 0, (3.5)

E[(Z(x+h)−Z(x))2] = 2γ(h) (3.6)

It states that the expected value of the estimated variable is independent of the location u. In
consequence, the expected value is not constant within the interpolation area anymore,

E[Z(u+h)] 6= E[Z(u)]. (3.7)

In the same way as for OK, the KED estimator for an unknown point (u0) is defined as the
weighted sum of the observations at n neighboring points:

Z∗(u0) =
n

∑
i=1

λi ·Z(ui), (3.8)

where λis are the kriging weights that must be determined by solving the kriging system:

n

∑
i=1

λ · γ(ui−u j)+µ0 +m u ·Y (ui) = γ(ui−u0)i = 1, . . . ,n

n

∑
j=1

λ = 1

n

∑
j=1

λ j ·Y (u j) = Y (u0)

(3.9)

where n is the number of neighbors, Y the additional variable and µ are Lagrange multipliers.
For further information regarding KED, the reader is referred to geostatistical textbooks and
the manual of the Geostatistical Software Library (DEUTSCH and JOURNEL, 1992).

A considerable problem when applying kriging with an external drift for merging of station and
radar data with a high temporal resolution is the frequent occurrence of numerical instabilities
in the kriging system (Eq.3.9). According to DEUTSCH and JOURNEL (1992), this might
happen when the drift variable does not vary smoothly in space, e.g. if many stations have
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zero precipitation. The number of time steps having these instabilities could be reduced by
increasing the number of data points used for the kriging process.

In general, 16 neighboring stations were considered in KED for estimating each point value. If
the kriging system was ill-conditioned or singular, a next attempt was applied that took into
account all available stations. In case this was still not successful, the affected time step was
interpolated using OK.

3.2.1.2 Indicator kriging with external drift

Interpolating a continuous variable by indicator kriging with external drift (IKED) implies a
transformation of the observed variable Z(u) into a corresponding binary indicator variable
Iα(u), see (ISAAKS and SRIVASTAVA, 1990). Various thresholds αk with k = 1, . . . ,K; were
used to obtain a vector of rainfall indicator variables.

Iα(u) =

{
1 if Z(u)≥ x

0 otherwise
(3.10)

The interpolation using indicator kriging with an external drift (IKED) is carried out as follows:
first, the KED algorithms are applied for all indicators to get an estimate of the cumulative
probability density function (cdf) of Z(u). Thereafter, the estimate of the primary variable Z(u)

is obtained by using the so called E-type estimate, which approximates the mean of the cdf
(DEUTSCH and JOURNEL, 1992):

Z∗E(u) =
k+1

∑
k=1

αk +αk−1

2
· [I∗αk(u)− I∗αk−1(u)]. (3.11)

Here, αk,k = 1, . . . ,K are the specified thresholds and α0 = zmin,αk+1 = zmax are the minimum
and the maximum values of the Z-range. The experimental indicator variograms are calculated
in the same way as for OK and KED. Nevertheless, variograms have to be estimated separately
for all indicator variables. The absolute thresholds are calculated individually for each time
step based on the non-exceedance probabilities of certain predefined quantiles. Thus, a set
of average indicator variograms for a wide range of predefined absolute thresholds has to be
calculated prior to the application of IKED (see also Section 3.4.1). An important feature of
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IKED is the possibility to consider a quasi non-linear relationship between the expected value
of the primary variable E[Z(u)] and the additional information Y (u) by the stepwise implicit
application of KED for different indicators Iα . Another reason for applying IKED is the linkage
of the estimated value to the predefined quantiles. Due to this, severe over- or underestimation
which might be caused by poor radar data quality is limited. Numerical instabilities can also
occur in IKED. Concerned time steps were treated in the same way as in KED. For further
information on the application and the theory of IKED, the reader is referred to DEUTSCH and
JOURNEL (1992)

3.2.1.3 Conditional merging

Another method to combine rain gauge and radar data is the conditional merging (CM) approach
described by SINCLAIR and PEGRAM (2005). Fig. 3.1 shows a scheme of CM. The first step
of the conditional merging procedure is to apply OK to the gauge observations (a) to obtain
the best linear unbiased estimate of rainfall for all gridpoints (c). Next, radar rainfall values
of gauge locations (a) are extracted from the gridded radar data (b) and interpolated by OK
as well (d). This is followed by calculating the deviation between interpolated and observed
radar rainfall values for each gridpoint, whereby it gives the value 0 at rain gauge locations (e).
Finally, the deviation grid is added to the rain gauge interpolation field from the first step (f).
The result is a rainfall field that follows the mean field of the rain-gauge interpolation while
simultaneously preserving the rainfall pattern of the gridded radar information (g).

(a) (b) (d)

(e) (f) (g)

(c)

Figure 3.1: The conditional merging process. (a) Rain gauge observation at discrete points. (b) Radar observation
on a regular grid. (c) Interpolation of rain gauge observations by using ordinary kriging. (d)
Interpolation of corresponding radar pixel information. (e) Computation of deviation between
observed radar grid interpolated radar grid. (f) Addition of deviation grid to the grid of rain gauge
interpolation. (g) Resulting rainfall field (SINCLAIR and PEGRAM, 2005).
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A straightforward approach was used for variogram estimation. As mentioned before, vari-
ograms were computed as average variograms for summer time steps and for winter time steps
separately, i.e. the same variograms as estimated from radar data for KED and OK before were
used here for all interpolations (see Section 3.2.1.1).

Conditional merging is computationally efficient and robust. Since it only uses OK it is not
affected by numerical instabilities.

3.2.2 Performance assessment

The interpolation performance was assessed by applying the cross validation method. The so
called “leave-one-out” method is based on a simple principle: A successive estimation of all
sampled locations is done by using all other stations while always omitting the sample value at
the regarded location. The following performance measures were used to compare estimation
(Z∗) and observation (Z):

The simple bias criterion

Bias =
1
n
·

n

∑
i=1

[Z∗(ui)−Z(ui)], (3.12)

the root mean square error normalized with the average of the observations

RMSE =
1
Z
·

√
1
n
·

n

∑
i=1

[Z∗(ui)−Z(ui)]2 (3.13)

and the RVar coefficient, which indicates the preservation of variance of the observed informa-
tion

RVar =
Var[Z∗(ui)]

Var[Z(ui)]
. (3.14)

In context of the unwanted smoothing effect of rainfall interpolation, an RVar value close to 1
is preferable.
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3.2 Methodology

A slightly modified cross validation approach was used for all analyses regarding the rain gauge
density scenarios (see Section 3.3.1). In order to obtain comparable performance criteria for
different station densities, only the stations belonging to the scenario with the lowest station
density are considered in calculating the cross validation performance criteria. This approach
requires that the set of stations which is considered in the scenario with the lowest station
density is present in all other scenarios as well.

3.2.3 General steps for analysis

The previously explained geostatistical merging techniques have been applied for different
temporal resolutions and different station densities. In addition, the benefit of using radar data
for different interpolation techniques was investigated by comparing the results with OK, which
does not incorporate radar data.

According to BÁRDOSSY and PEGRAM (2013) there is no significant influence of the microto-
pography on the rainfall sums measured by gauges. However, the prevailing wind direction
affects the rainfall sums. Due to this, they used a smoothed and shifted transformation of the
elevation to improve the interpolation quality for daily up to yearly rainfall sums. Radar data
usually contain a space-time variable bias in comparison to rain gauge data. An important
source for bias between gauge and radar rainfall might be the spatial mismatch of the measuring
domains, i.e. rainfall usually is captured directly above the ground while the radar reflectivity
is measured in a certain height depending on the distance from the location of the radar device.
Considering the advection of precipitation fields this bias might be larger for higher temporal
and spatial resolutions. According to this, it is expected that spatial and temporal smoothing of
radar data can improve the interpolation performance of geostatistical merging.

In the first part of the analysis, seven different smoothing techniques were applied on hourly
radar grids and evaluated in terms of interpolation performance. For the second part, the
technique that gave the best result was used to smooth the radar grids for all temporal resolutions.
Then, cross validation was carried out for 10 min, 20 min, 30 min, 1 h, 2 h, 4 h and 6 h data. In
order to obtain findings for a wider range of station densities, five different scenarios which
took into account 100% , 80% , 60% , 40% and 20% of the available rain gauges were evaluated
(see Section 3.3.1). In addition, the effect of radar data quality was analyzed by defining two
cases for which the evaluations were done separately. In case A, all available time steps with
significant rain were taken into account. Case B considered only the time steps of case A with
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reasonable radar data quality (see Section 3.3.4).

The general procedure for the analyses conducted in this study is summarized as follows:

1. Aggregation of 10 min rain gauge data (highest avail. temp. resol.) to all required
temporal resolutions.

2. Pre-processing of 5 min radar data (provided temp. res.) (see Section 3.3.2).

3. Smoothing of 5 min radar data grids (see Section 3.3.3)

4. Aggregation of smoothed and non-smoothed radar data (5 min temporal resolution) to all
required temporal resolutions.

5. Estimation of variograms and indicator variograms for summer and winter season.

6. Cross validation of OK, KED, IKED and CM for hourly data and a scenario with
a medium station density for all smoothing techniques to find out which is the best
smoothing method.

7. Detection of time steps with poor radar data (see Section 3.3.4)

8. Cross validation for OK, KED, IKED and CM for all station density scenarios, temporal
resolutions and the two data quality cases by using the best smoothing technique from
step 6.

3.3 Study region and data

3.3.1 Study region and rain gauge data

The study region is located within the 128 km range of the radar station Hanover in Lower
Saxony, North Germany. Due to the recent increase of the number of rain gauges with a high
temporal resolution and the recent improvement in radar data quality, the 3-year time period
from January 2008 until December 2010 was selected for this study. Altogether 90 gauges with
a temporal resolution of 10 min were operated by the German Weather Service (DWD) during
the complete period in the study area. The data of rain gauges which do not cover the complete
study period were not considered. However, stations with time series that contained missing
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3.3 Study region and data

values for single time steps were taken into account.

Fig. 3.2 shows the location of the study area and the rain gauge network. The northern part
of the study area is to be characterized as flat. It is part of the North German Plain. In the
southern part, there are some smaller elevations and the Harz Mountains. Those are located in
the southeast of the study area and have a maximum elevation of 1141 m a.s.l. The average
annual precipitation varies between 500 mm/yr and 1700 mm/yr, whereas the highest rainfall
amounts occur in the Harz Mountains.
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Figure 3.2: Location of the study area and rain gauge network.

In order to analyze the impact of network density on the interpolation quality, five scenarios
were defined (Table 3.1). For each scenario a random selection of stations was done, where
scenario 1 (100%) represents the complete available dataset. The selection was carried out
in a way that the scenarios with higher station density always contain all stations of the 20%
scenario. This procedure allows an objective comparison by cross validation using only the
20% subset for calculating the performance measures (see Section 3.2.2). Fig. 3.3 shows the
randomly selected rain gauges for each station density scenario. Some cross validation tests
for different station selections were performed in order to evaluate the influence of the random
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Table 3.1: Rain gauge density scenarios.

No. Used gauges Percentage (%) Gauges per 10.000 km2 Scenario name
1 90 100 18.94 100% Scenario
2 70 78 14.73 80% Scenario
3 55 61 11.58 60% Scenario
4 37 41 7.79 40% Scenario
5 17 19 3.58 20% Scenario

selection on the interpolation performance. No significant influence was detected and therefore
this random selection is considered as acceptable.

3.3.2 Radar data pre-processing

Radar data of the C-band instrument at Hanover were provided as raw reflectivities with an
azimuth resolution of 1◦ and a time discretisation of 5 min (dx product of the German Weather
Service, DWD). Accordingly, the data of each time step contained the measurements of 360
radar beam positions whereas the spatial resolution along each beam was 1 km. The raw
reflectivities were transformed into rainfall intensities by using an average Z-R-relationship:

Z = a ·Rb (3.15)

Z is here the reflectivity in mm6m−3 and R is the rainfall intensity in mm/h. The parameters
were set to a = 256 and b = 1.42 according to the Standard-DWD-relationship (RIEDL, 1986;
SELTMANN, 1997). A simple clutter correction approach was applied as follows. A permitted
range of the rainfall sum Rsum over the 3-year period (upper limit Rmax and lower limit Rmin was
established according to the information in Table 3.2. Radar observation points with a higher
or lower rainfall sum were identified as clutter. Additionally, a permitted rainfall duration and
permitted dry spell duration is defined. Then, radar observation for a certain point is treated
as clutter if the proportion of time steps with rainfall intensity of at least 0.1 mm/h exceeds a
threshold of 70%, or if the percentage of time steps with rainfall intensity of lower than 0.01
mm/h exceeds a threshold of 98%. These empirically established thresholds were sufficient to
provide adequate correction of clutter while not removing to many radar observation points.
Blocked radar beams were identified visually and marked as clutter likewise.

Thereafter, a coordinate transformation of the radar data was performed. All non-clutter obser-

34



3.3 Study region and data
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Figure 3.3: Random selection of rainfall stations for different density scenarios. The filled black dots indicate
that the station is considered in the corresponding scenario.

Table 3.2: Clutter correction parameters. Rsum:rainfall sum 2008-2010; Rmax: maximal allowed rainfall sum; Rmin:
minimal allowed rainfall sum; R1lim: rainfall threshold for rain; R0lim: rainfall threshold for no rain;
R1dur: allowed rain duration; R0dur: allowed no rain duration, D: rainfall duration and no rainfall
duration, respectively.

No. Criterion Parameter
1 Rsum > Rmax Rmax(mm) 2800
2 Rsum > Rmix Rmin(mm) 500
3 D(Ri≥ R1lim)> R1dur R1lim(mm) 0.1

R1dur(%) 0.7
4 D(Ri < R0lim)> R0dur R0lim(mm/h) 0.01

R0dur(%) 0.98
5 Erroneous beams Visual inspection
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Table 3.3: Average correlation between radar and rain gauge data for each temporal data resolution.

10 min 20 min 30 min 1 h 2 h 4 h 6 h
0.37 0.46 0.51 0.57 0.60 0.62 0.62

Table 3.4: Smoothing techniques for gridded radar data.

Method Type Characterization
1 Spatial Slight (9 grid cells)
2 Spatial Stronger (25 grid cells)
3 Temporal Simple moving average over 5 time steps (central)
4 Temporal Weighted moving average over 5 time steps

(central, λ0 = 0.4,λ1 = 0.2,λ2 = 0.1)
5 Temporal Weighted moving average over 5 time steps

(central, λ0 = 0.7,λ1 = 0.1,λ2 = 0.05)
6 Temporal Weighted moving average over 3 time steps by only

using past data (central, λ0 = 0.7,λ1 = 0.2,λ2 = 0.1)
7 Spatio-temporal Simultaneous application of method 2 and method 3

vation points were interpolated on a 1 km× 1 km grid by using inverse distance weighting. The
gridded rainfall intensities in mm/h that were obtained by application of the Z-R-relationship
were converted into the corresponding 5 min rainfall depths. A spatial, temporal and spatiotem-
poral smoothing of the radar data was carried out afterwards (see Section 3.3.2). Radar grids
for all other temporal resolutions were produced by aggregating the 5 min grids.

To get a first impression of the linear relationship between rain gauge values and corresponding
radar data grid points, Pearson’s correlation coefficient was calculated and averaged over all
stations and time steps for each temporal resolution (Table 3.3). As assumed the correlation
coefficient decreases with increasing temporal resolution from 0.62 at 6 h resolution to 0.37
at 10 min resolution. This supports the assumption that the benefit of using radar data in
combination with rain gauge data might be restricted to lower temporal resolutions.

3.3.3 Smoothing techniques for radar data

In order to evaluate the value of radar data smoothing, seven different techniques were applied
on the 5 min radar grids. Afterwards, the data of all other temporal resolutions were produced
by aggregating the 5 min radar grids. Table 3.4 shows the utilized approaches for smoothing
the radar data.

Local spatial smoothing was applied with two different intensities, slight and strong spatial
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3.3 Study region and data

smoothing. For slight smoothing (method 1) the grid cell values were recalculated by averaging
the target cell value and the eight closest neighboring cells. The strong approach (method 2)
consisted of averaging over the 24 adjacent grid cells.

The temporal smoothing was carried out by using a moving average approach that considered
the data of 5 time steps and was applied on the 5 min gridded data.

Ps(t) = ω2P(t−2)+ω1P(t−1)+ω0P(t)+ω1P(t +1)+ω2P(t +2) (3.16)

Here, Ps(t) is the smoothed precipitation gridpoint value for the time step t. P(t) represents the
original precipitation grid point value and P(t± j), j =−2,−1, . . . ,2 are the rainfall values of
the adjacent time steps.

Different weights have been chosen, whereas the sum of all weights is 1. These temporal
smoothing techniques (methods 3, 4 and 5) do not allow merging of rain gauge and radar data
in real-time because future precipitation measurements would be required for this. In order to
take into account a scenario where realtime interpolation is theoretically possible, method 6
was applied. This incorporates only the data of past time steps.

Ps(t) = ω2P(t−2)+ω1P(t−1)+ω0P(t) (3.17)

The weights ω0,ω1,ω2 were selected to 0.7, 0.2 and 0.1, respectively.

Additionally, a spatio-temporal smoothing technique (method 7) was applied as a combination
of method 2 and method 3. The temporal smoothing was carried out prior to the spatial
smoothing.

High frequency signal is generally filtered out by the application of smoothing, i.e. some kind of
noise removal is carried out implicitly by these simple and practical approaches. Theoretically,
an existing noise could contribute to a possible over- and underestimation. PEGRAM et al.
(2011) worked on the separation of signal and noise to generate ensembles for uncertainty
analyses.
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3.3.4 Detection of time steps with poor radar data

Radar data quality is of high importance regarding the interpolation performance. A simple
approach using two criteria was applied here to filter out time steps with poor radar data quality.
First, the standard error between rain gauge values and corresponding radar point information
was computed for time steps in which rainfall was detected by rain gauges as well as by the
corresponding radar pixels:

SEPR(t) =

√
1
n

n

∑
i=1

(Ri(t)−Pi(t))2 ∀t with sumn
i=1(Pi)> 0 and sumn

i=1(Ri)> 0 (3.18)

Here, P is the gauge rainfall, R radar rainfall and n the number of stations. The time steps in
which the standard error exceeds the 98th percentile of the empirical distribution of the standard
errors were defined as outliers.

Radar data

   

OR

   

Filtering out time steps with poor radar data

Figure 3.4: Detection method for time steps with poor radar data.

In some time steps, an implausible estimation of rainfall by radar occurs, which could not
always be detected by the criterion described above. An additional criterion regarding the
maximum radar rainfall grid cell was used to detect these time steps. This means that the
maximum radar grid rainfall value is determined for each time step without a minimum rainfall
threshold:

Rmax(t) = max
i
[Ri(t)], (3.19)
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where i is the number of grid points. Here, the 99th percentile of the empirical distribution of
the maximum radar rainfall values is considered to detect those time steps with implausible
high rainfall values. The time steps that meet one of these two criteria are treated as poor radar
data time steps for further analysis. This detection procedure was applied separately to all
temporal resolutions. Table 3.5 gives an overview about the number of removed time steps for
each temporal resolution and Fig. 3.4 contains a scheme of the detection method. The 98th

percentile threshold and 99th percentile threshold were established by manual tests. By this
procedure, most time steps with poor radar data and hence a poor interpolation result could be
excluded.

Table 3.5: Detected poor radar data time steps.

Temp. No. of 98th per- No. of No. of 99th per- No. of Total no.
resolution time steps centile of detected time steps centile of max of
(min) (standard stand. time (maximum radar val. outlies

error errors steps value max. val. outl.
method) (mm) outliers) (mm)

10 49,032 0.65 981 143,329 15.18 1434 1956
20 27,596 1.03 552 71,814 26.79 719 1009
30 19,639 1.30 393 47,967 35.03 480 681
60 10,987 1.96 220 24,031 51.33 241 258
120 6162 2.89 124 12,051 69.54 121 190
240 3520 4.62 71 6048 102.03 61 103
360 2540 6.08 51 4045 119.13 41 73

3.4 Analyses and results

3.4.1 Variogram inference

Gridded radar data in different temporal resolutions were utilized for the inference of each
experimental variogram. One thousand cells of the 1 km × 1 km radar grid were selected
randomly to compute the variogram values for each time step. This number gave a sufficient
estimation of the spatial rainfall structure. After that, the experimental variogram values were
averaged for all winter time steps and all summer time steps separately. All time steps with
an average radar precipitation higher than 0.1 mm were considered for this estimation of
experimental variograms. By the use of this rather low threshold, it was ensured that a sufficient
number of time steps were taken into account for the estimation of high temporal resolution
variograms. Then, a fitting of the theoretical variogram model was carried out visually. Table
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Table 3.6: Parameters for theoretical variogram models used in KED, CM and OK (exponential model).

Season Temporal resolution (min)
10 20 30 60 120 240 360

Summer c0(−) 0.25 0.20 0.20 0.20 0.20 0.20 0.20
c(−) 0.75 0.82 0.80 0.80 0.80 0.85 0.90
ae f f (km) 30 45 45 60 75 96 99

Winter c0(−) 0.30 0.10 0.10 0.10 0.05 0.10 0.05
c(−) 0.80 1 1.10 1.10 1.1 1.10 1.15
ae f f (km) 48 60 75 90 28 105 105

3.6 contains the parameters of the variograms that were obtained for each temporal resolution
and later used for the cross validation. Fig. 3.5 contains experimental variograms and fitted
theoretical models for summer and winter season. Only 10 min, 60 min and 360 min variograms
are pictured.
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Figure 3.5: Selected experimental and theoretical variograms for OK, KED and CM.

In general, an increase of effective range (ae f f ) with increasing temporal resolution was
observed for both seasons. The nugget effect (c0) is in summer always higher than in winter.
This might result from the more frequent occurrence of convective rainfall events in summer.

The same procedure was used for the inference of indicator variograms. Again, only time
steps with significant rainfall are used for the calculation of seasonal averaged experimental
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variograms. The variograms were estimated separately for each temporal resolution and for
five absolute rainfall thresholds τ at 0.1, 0.5, 1.0, 4.0 and 8.0 mm. Altogether 70 indicator
variograms were fitted manually. Fig. 3.6 shows the season specific theoretical indicator
variogram models for selected temporal resolutions. Each panel contains the theoretical
variogram model for three different indicator thresholds. In general, a decrease in range (ae f f )

and an increase in relative nugget effect (c0/(c0+c)) can be observed with a growing threshold
for most temporal resolutions (see Table 3.7 and Fig. 3.6). This shows a weaker spatial
persistence of extreme values.
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Figure 3.6: Selected theoretical variogram models for IKED.

For the IKED interpolation, relative thresholds from 13 quantiles with non-exceedance prob-
abilities of p = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 are used to
calculate absolute thresholds αP for each time step. Thirteen different indicator variables are
then interpolated for each time step, based on the mentioned thresholds. For the interpola-
tion of each variable, the closest indicator variogram is chosen automatically from the five
previously inferred ones. This means that the indicator variogram is selected, for which the
lowest difference between interpolation threshold αP and inference threshold τ exists (see also
HABERLANDT, 2007).
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Table 3.7: Parameters of theoretical indicator variogram models used in IKED (exponential model).

Season α(mm) Par. Temporal resolution (min)
10 20 30 60 120 240 360

Summer 0.1 c0(−) 0.25 0.18 0.15 0.10 0.10 0.15 0.15
c(−) 0.73 0.80 0.80 0.85 0.85 0.75 0.75
ae f f (km) 48 54 54 60 75 64 66

Winter 0.1 c0(−) 0.20 0.15 0.15 0.15 0.10 0.10 0.10
c(−) 0.98 1.00 0.97 1.00 1.00 0.90 0.90
ae f f (km) 60 66 69 90 90 84 90

Summer 0.5 c0(−) 0.25 0.25 0.25 0.2 0.2 0.15 0.2
c(−) 0.66 0.68 0.68 0.75 0.75 0.7 0.7
ae f f (km) 24 12 39 48 60 42 54

Winter 0.5 c0(−) 0.3 0.25 0.2 0.2 0.2 0.2 0.2
c(−) 0.72 0.76 0.8 0.83 0.75 0.8 0.9
ae f f (km) 45 45 48 63 60 64 90

Summer 1 c0(−) 0.35 0.2 0.25 0.25 0.2 0.23 0.25
c(−) 0.48 0.65 0.6 0.6 0.65 0.62 0.6
ae f f (km) 24 24 30 42 45 48 48

Winter 1 c0(−) 0.25 0.2 0.16 0.2 0.2 0.18 0.2
c(−) 0.48 0.5 0.6 0.55 0.55 0.65 0.65
ae f f (km) 45 33 40.5 48 54 60 66

Summer 2 c0(−) 0.25 0.25 0.25 0.2 0.25 0.25 0.25
c(−) 0.43 0.43 0.45 0.55 0.5 0.55 0.55
ae f f (km) 19.5 24 30 30 39 48 45

Winter 2 c0(−) 0.13 0.15 0.1 0.1 0.13 0.15 0.2
c(−) 0.24 0.28 0.32 0.38 0.42 0.45 0.5
ae f f (km) 27 12 30 42 54 54 75

Summer 4 c0(−) 0.25 0.2 0.2 0.15 0.2 0.2 0.25
c(−) 0.25 0.3 0.31 0.43 0.4 0.45 0.45
ae f f (km) 22.5 19.5 24 30 30 36 45

Winter 4 c0(−) 0.05 0.05 0.05 0.075 0.12 0.1 0.15
c(−) 0.12 0.14 0.16 0.175 0.21 0.3 0.35
ae f f (km) 21 24 24 30 54 51 90

Summer 8 c0(−) 0.15 0.15 0.15 0.15 0.2 0.2 0.2
c(−) 0.19 0.21 0.21 0.23 0.25 0.3 0.35
ae f f (km) 21 21 22.5 30 30 36 30

Winter 8 c0(−) 0.01 0.02 0.02 0.03 0.05 0.1 0.08
c(−) 0.04 0.06 0.06 0.08 0.1 0.13 0.17
ae f f (km) 21 30 30 30 30 66 30
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Table 3.8: Interpolation performance from cross validation using KED for various smoothing techniques on hourly
data (314 considered time steps).

Smoothing method Bias(mm/h) RMSE(mm/h) RVar(−)
No radar data use (OK) 0.097 1.075 0.258
Original radar data 0.047 1.025 0.752
1 0.034 0.953 0.673
2 0.025 0.921 0.609
3 0.045 0.992 0.783
4 0.045 1.005 0.768
5 0.046 1.016 0.760
6 0.046 1.005 0.776
7 0.026 0.892 0.649

3.4.2 Effect of radar data smoothing on the interpolation quality

In order to evaluate the effect of radar data smoothing on the interpolation performance, cross
validation was carried out, using differently smoothed radar data in the merging process for a
temporal resolution of 1 h. Different methods (KED, CM and IKED) were used to assess the
effect of radar data smoothing on the merging performance, all of them showed similar results.
Therefore, only the outcome of KED is presented here in detail.

All of the time steps with an average observed station rainfall intensity higher than 1.0 mm/h
were considered in the calculation of the performance criteria. Bias, RMSE and RVar (Eqs.
(3.12, 3.13 and 3.14)) were averaged over all time steps. The results of cross validation are
presented for the complete period from 2008 until 2010 in Table 3.8.

Generally, smoothing of radar data improved the merging quality. At least a slight improvement
in merging performance can be observed for all of the proposed spatial and temporal techniques.
Using only spatial smoothing, the 25 cell approach (method 2) gave the best result, with an
RMSE of 0.921 mm/h. Method 3 (simple moving average) was the best temporal smoothing
approach with a RMSE value of 0.992 mm/h, which is only slightly lower than the RMSE value
for using the original radar data (1.025 mm/h). Temporal smoothing resulted in general in a
similar preservation of observation variance as when original radar data were used, whereas the
spatial techniques showed a decline in the preservation of variance RVar. Though the reduction
of observation variance for method 2 (RVar = 0.609) was higher than for method 1 (0.673),
method 2 is regarded here as superior, since the RMSE measure is considered more important
for the interpolation performance. Overall, the spatiotemporal smoothing approach, method 7,
shows the best results. It gives the lowest estimation errors, with a RMSE of 0.892 mm/h. So
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method 7 was applied for further investigations in this study.

In Fig. 3.7 the Bias and standard error are compared for the use of non-smoothed radar data
vs. the use of radar data that was smoothed by method 7. Each dot represents one hourly
time step here. It can be seen, that smoothing did not improve the merging performance
consistently for all time steps. In particular, an improvement was detected for steps that have a
high overestimation of rainfall by radar. It is assumed that this improvement is based on the
reduction of rainfall peaks in the gridded radar data. It is also plausible that the improvement
was higher for summer months than for winter months. The evaluations regarding the season
are not shown here.
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Fig. 7. Scatter plots of bias and standard error for best smoothing method vs. original radar data.

Figure 3.7: Scatter plots of bias and standard error for best smoothing method vs. original radar data.

3.4.3 Analysis of merging techniques regarding station density and

temporal resolution

Many case studies, in which geostatistical interpolation techniques have been applied, e.g.
GOUDENHOOFDT and DELOBBE (2009) and KRAJEWSKI (1987), conclude that the density of
the rain gauge network is of importance regarding the interpolation performance. Furthermore,
the spatial structure and dynamics of precipitation depend strongly on the temporal resolution,
for instance, the ascertained variogram parameters show an increase of range with reduction
of temporal resolution (see Section 3.4.1). Additionally, the correlation between rain gauge

44



3.4 Analyses and results

Table 3.9: Number of time steps considered in interpolation performance evaluation and corresponding 95th
percentile trimming limit (Case A: Considering all time steps for which rada rdata are available. Case
B: Considering all time steps excluding outliers.).

Temporal
resolution (min) Case A Case B

Number of 95th percentile Number of 95th percentile
time steps (mm) time steps (mm)

10 2884 0.139 2806 0.129
20 1562 0.263 1518 0.243
30 1091 0.385 1060 0.354
60 593 0.729 577 0.668
120 326 1.361 317 1.204
240 183 2.497 178 2.198
360 131 3.427 127 3.019

measurement and corresponding radar pixel was higher for low temporal resolutions (see
Section 3.3.2).

Generally, it is assumed that the relative errors of radar rainfall measurements would be lower
for coarser temporal resolutions. Advection effects and location mismatches between radar and
gauge observation domains would be reduced with a decrease in temporal resolution.

The analyses were carried out using all available time steps with radar data (case A) and using
only the time steps in which radar data provided a reasonable estimation of rainfall (case B). In
the latter case, time steps with poor radar data were identified by the approach described in
Section 3.3.4 and neglected in the calculations.

The cross validation results which are presented in the following consider only time steps with
a significant amount of rainfall. In order to decide whether a certain time step is taken into
account, the average rain gauge rainfall is calculated for all temporal resolutions, considering all
of the 90 stations which are available for the total time period from 2008 until 2010. Hereafter
all time steps with an average rainfall that is equal to zero were removed. Then, absolute
rainfall limits were calculated as the 95th percentile of the remaining time steps, whereas this
procedure is done separately for (A) and (B). In both cases only the 5% of time steps that
exceed these trimming limits were taken into account for the evaluations (see Table 3.9).

The RMSE values (Eq. 3.13) representing the interpolation performance are provided in Fig. 3.8.
Absolute values of the RMSE are plotted on the vertical axis while the horizontal axes contain
the information about temporal resolution and station density. In addition the improvement
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of interpolation quality relative to OK is illustrated by the surface color. An improvement of
merging performance was achieved for all combinations of temporal resolution and station
density that are colored in green, while a decline in performance is marked in red. All absolute
RMSE values and all relative differences between each merging method and OK are interpolated
linearly in the three-dimensional surface plots.

Fig. 8. RMSE interpolation performance of KED, IKED and CM using smoothed radar data for (A) – no removal of time steps with poor radar data quality and (B) – removal of

Figure 3.8: RMSE interpolation performance of KED, IKED and CM using smoothed radar data for (A) - no
removal of time steps with poor radar data quality and (B) - removal of time steps with poor radar
data quality. The colorbar indicates the relative improvement in comparison to OK.

Comparing the merging methods, it is clear that the CM approach performed best for almost all
pairs of temporal data resolution and station density scenario concerning the RMSE criterion.
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Table 3.10: Average interpolation performance (Bias, RMSE, RVar) over all station densities scenarios for each
temporal resolution. Time steps with radar data outliers excluded (case B).

Temp. res. (min) 10 20 30 60 120 240 360
OK Bias(mm) 0.006 0.012 0.017 0.028 0.049 0.066 0.055

RMSE(−) 1.350 1.218 1.128 0.981 0.811 0.703 0.625
RVar(−) 0.176 0.197 0.210 0.235 0.264 0.260 0.250

KED Bias(mm) 0.007 0.012 0.014 0.013 0.016 0.064 0.017
RMSE(−) 1.366 1.149 1.036 0.863 0.729 0.630 0.582
RVar(−) 0.498 0.527 0.528 0.502 0.482 0.486 0.452

IKED Bias(mm) -0.033 -0.038 -0.039 -0.047 -0.061 -0.071 -0.118
RMSE(−) 1.295 1.157 1.061 0.918 0.765 0.659 0.593
RVar(−) 0.126 0.153 0.171 0.197 0.217 0.221 0.216

CM Bias(mm) 0.003 0.005 0.008 0.005 -0.003 0.025 0.017
RMSE(−) 1.181 0.992 0.885 0.709 0.602 0.495 0.467
RVar(−) 0.432 0.510 0.548 0.585 0.577 0.696 0.690

As expected, the absolute values of RMSE are decreasing with decreasing temporal resolution
and increasing station density. Using CM, an improvement in comparison to OK is achieved
for the complete range of station densities and temporal resolutions.

KED performs significantly worse than OK for low station densities with high temporal
resolution data. Only for temporal resolutions greater than or equal to 60 min, a consistent
improvement over all station density scenarios was achieved considering all time steps including
radar data outliers for the evaluation (case A). After removing these outliers (case B), a
consistent advance in performance is observed for temporal resolutions greater than or equal to
20 min. For 360 min data and 100% station density, a slight decrease of merging performance
in comparison to OK is detected for KED. This might be explained by the high station density,
which allowed a good performance of OK in this case.

IKED performs relatively well for high temporal resolutions. The difference of RMSE in
relation to OK is similar for all combinations of temporal resolution and station density. For
combinations of small densities and low temporal resolutions, i.e. from 2 h to 6 h and the
corresponding 20-60% scenarios, the merging performance is considerably lower than for KED.
The relative improvement of the best approach (CM) in comparison to OK ranges from approx.
8% to approx. 30% for case A, and from approx. 10% to approx. 33% for case B.

In general, the benefit of incorporating radar data in the interpolation increases with decreasing
temporal resolution, as can be observed in Fig. 3.8. Especially for KED, there is also a growth
of radar data value with decreasing station density for temporal resolutions lower than 60
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Table 3.11: Average interpolation performance (Bias,RMSE,RVar) over all temporal resolutions for each station
density. Time steps with radar data outliers excluded (case B).

Station density 20% 40% 60% 80% 100%
OK Bias(mm) 0.032 0.020 0.043 0.036 0.035

RMSE(−) 1.125 0.998 0.958 0.913 0.875
RVar(−) 0.027 0.171 0.270 0.313 0.357

KED Bias(mm) 0.069 -0.010 0.024 0.018 0.002
RMSE(−) 1.046 0.897 0.881 0.864 0.851
RVar(−) 0.762 0.485 0.447 0.403 0.385

IKED Bias(mm) -0.160 -0.088 -0.033 -0.008 -0.002
RMSE(−) 1.075 0.943 0.894 0.861 0.833
RVar(−) 0.037 0.135 0.211 0.250 0.296

CM Bias(mm) 0.009 -0.004 0.007 0.016 0.015
RMSE(−) 0.856 0.787 0.746 0.717 0.701
RVar(−) 0.401 0.556 0.619 0.645 0.663

min.

Mean interpolation performances for all temporal resolutions and station density scenarios
are provided in Tables 3.10 and 3.11. The values of RMSE, RVar and Bias are averaged over
all station density scenarios (Table 3.10) and temporal resolutions (Table 3.11). The tables
contain only the results for case (B), i.e. time steps with poor radar data are excluded, since
the objective is to provide a comparison of methods which is not influenced that strongly by
radar data quality. The effect of radar data quality on the interpolation performance is discussed
separately in Section 3.4.4.

Furthermore, it appears that CM and IKED are less sensitive than KED regarding the influence
of the station density. In particular, the interpolation performance of KED for high temporal
resolutions decreases much more from 100% to 20% station density in comparison to CM and
IKED.

In terms of preservation of observation variance, CM outperforms all other interpolation
techniques for most temporal resolutions and station density scenarios as well. Only for the
lowest station density scenario and the highest temporal resolution KED outperforms CM.
The observation variance preservation of IKED and OK is much lower, whereas OK even
outperforms IKED in most cases. This means that rainfall fields interpolated by OK and IKED
show a much smoother distribution than those interpolated using KED and CM.

The Bias-criterion is used as control criterion to test the implicit unbiasedness of the geostatis-
tical methods. It is similarly low for all the merging methods.
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In terms of computation time, CM and KED are preferable compared to IKED. CM needs a
double application of OK as well as two simple arithmetical calculations. The KED calculations
required a similar amount of computation time. In this study the number of indicator variables
for IKED was selected to 13. Accordingly, the required computation time was 13 times higher
than those of KED.

station density, which allowed a good performance of OK in this
case.

IKED performs relatively well for high temporal resolutions. The
difference of RMSE in relation to OK is similar for all combinations
of temporal resolution and station density. For combinations of
small densities and low temporal resolutions, i.e. from 2 h to 6 h
and the corresponding 20–60% scenarios, the merging performance
is considerably lower than for KED. The relative improvement of
the best approach (CM) in comparison to OK ranges from approx.

8% to approx. 30% for case A, and from approx. 10% t
33% for case B.

In general, the benefit of incorporating radar data in
polation increases with decreasing temporal resolution,

Fig. 9. RMSE interpolation performance for CM using non-smoothed radar data for (A) – no removal of time steps with poor radar data quality and (B) – removal o
with poor radar data quality. The colorbar indicates the relative improvement in comparison to OK.

Temporal resolution [min]

Fig. 10. Difference between RMSE values from cross validation whe
time steps with poor radar data quality (case A) and excluding time ste
radar data quality (case B) for KED, IKED and CM.

Figure 3.9: RMSE interpolation performance for CM using non-smoothed radar data for (A) - no removal of time
steps with poor radar data quality and (B) - removal of time steps with poor radar data quality. The
colorbar indicates the relative improvement in comparison to OK.

In order to highlight the importance of radar data smoothing, the cross validation calculations for
CM were carried out using non-smoothed radar data as well. The results for different temporal
resolutions and station density scenarios are shown in Fig. 3.9. Again, case (A) and case (B)
are displayed. When comparing Figs. 3.9 and 3.8, it is obvious that CM performed significantly
worse when non-smoothed radar data were used. In particular especially a significant weaker
interpolation performance in comparison to OK for high temporal resolutions is evident. In
this case a benefit of using radar data as additional information can only be seen for temporal
resolutions lower than 30 min (A) and 10 min (B). Accordingly, radar data smoothing is in
particular important for the merging of high temporal resolution data.

3.4.4 Effect of radar data quality - sensitivity of merging methods

This section discusses the influence of radar data quality on the interpolation performance. In
general, high correlation between radar and rain gauge information is an important condition
for successful merging of these two data sources.
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Figure 3.10: Difference between RMSE values from cross validation when including time steps with poor radar
data quality (case A) and excluding time steps with poor radar data quality (case B) for KED, IKED
and CM.

Fig. 3.10 shows the difference between RMSE values for case A when including and for case
B when excluding time steps with radar data outliers for all merging methods:

DRMSE(i, j) = RMSE(A)(i, j)−RMSE(B)(i, j). (3.20)

Here, i is the temporal resolution and j the station density scenario. The color shading between
the sampled points is interpolated linearly. Positive values (red color) indicate that the merging
performance including the time steps with poor radar data is worse than those of excluding
those time steps.

In general, the difference between the RMSEs of (A) and (B) increases with increasing temporal
resolution. This shows that the detection and removal of radar data outliers is more important
for high-resolution data.
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For low temporal resolutions using KED and IKED, the RMSE values of case (B) are even a
little higher than those of case (A). Thus, the green area in Fig. 3.6 indicates situations where
the merging performance including all poor radar data time steps is slightly better than the
interpolation performance without poor radar data time steps. This shows that radar data can be
of value for the interpolation of low resolution rainfall although the rainfall estimation on a 5
min time scale is incorrect.

According to the difference in RMSE, i.e. the sensitivity regarding radar data quality, the
methods were ranked as follows: IKED (lowest), CM (middle) and KED (highest). The
sensitivity of KED in regard to radar data outliers was particularly high for some combinations
of high temporal resolution and low station densities.

3.5 Summary and conclusions

The main objective of this study was a comparison of geostatistical methods for merging
radar and rain gauge data considering different high temporal resolutions and station densities.
Smoothing techniques were applied to radar data, which were then used in the merging process.
Cross validation with these hourly data was carried out for KED, IKED and CM to evaluate the
benefit of radar data smoothing. additionally, the cross validation computations were carried
out with and without poor radar data time steps. Using this procedure, the effect of radar data
quality on the interpolation performance was analyzed. The main findings and conclusions can
be summarized as follows:

1. In case of hourly temporal resolution, smoothing improves the merging performance on
average. However, a consistent improvement for all hourly time steps is not achieved.
A spatio-temporal method is considered as the best approach to smooth the radar grids.
The interpolation performance improves with stronger smoothing, but the preservation of
the observation variance is reduced. Too strong smoothing is not recommended because
this results in a loss of information about the spatial rainfall structure.

2. Radar data smoothing is strongly recommended for the merging of radar and rain gauge
data with high temporal resolution. The application of CM with non-smoothed radar
data led to significantly worse results than when using smoothed data and shows even no
benefit of using radar data at all for the 10 min temporal resolution.

3. CM outperforms KED and IKED for all combinations of station density scenario and
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temporal resolution.

4. An improvement of interpolation performance in comparison to OK was achieved even
for radar and rain gauge data with the highest temporal resolution of 10 min. Although the
correlation between rain gauge values and the corresponding radar pixels is much lower
for these high temporal resolutions, the merging process benefitted from the incorporation
of those smoothed radar grids.

5. CM is more appropriate for the interpolation of continuous time series, since numerical
instabilities do not occur in contrast to the application of KED and IKED.

6. CM and IKED are not as sensitive as KED to poor radar data quality. Single time steps
with high deviations between rain gauge values and corresponding radar rainfall values
have a significantly higher impact on the KED interpolation performance.

7. Regarding computation time, CM performs slightly better than KED. IKED requires
much more computation time which depends on the number of indicator variables used
for the interpolation.

EHRET (2002) ranked CM as the best merging technique for rain gauge and radar data with
10 min temporal resolution, whereas different criteria were used to assess the interpolation
performance. However, in contrast to the finding of this present study, an improvement of
RMSE in comparison to OK was not achieved (EHRET (2002), p. 97). GOUDENHOOFDT and
DELOBBE (2009) preferred KED to CM for the merging of daily data. Here, the interpolation
performance of KED for 6 h was only a little weaker than those of CM. So, it might also be
possible for the dataset of this study that KED performs better than CM on a daily time scale.

Generally, it is assumed that the results of this paper are valid for regions with similar topography
as well. Nevertheless, a different behavior might be possible in regions which are predominantly
mountainous. Furthermore, the results of this study are related to the merging of continuous
time series. Combining radar and rain gauge data for a specific event may lead to different
findings. The interpolation performance of all methods was evaluated in terms of averaged
error statistics, i.e. the spatial distribution of the rainfall estimation error was not assessed.
For all methods, temporal resolutions and station density scenarios, it has to be assumed that
the spatial distribution of the prediction uncertainty is not constant within the study area. The
spatial interpolation uncertainty could be a topic for further investigation.

The results encourage further work on merging high temporal resolution rainfall, which is
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important for e.g. rainfall estimation in urban hydrology (BERNE et al., 2004). It is still a
matter of research how the improvement in areal rainfall estimation affects the modeling of
hydrological processes.
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Chapter 4

Applying bias correction for merging rain

gauge and radar data

S U M M A R Y

Weather radar provides areal rainfall information with very high temporal and spatial resolution.
Radar data has been implemented in several hydrological applications despite the fact that the
data suffers from varying sources of error. Several studies have attempted to propose methods
for solving these problems. Additionally, weather radar usually underestimates or overestimates
the rainfall amount. In this study, a new method is proposed for correcting radar data by
implementing the quantile mapping bias correction method. Then, the radar data is merged
with observed rainfall by conditional merging and kriging with external drift interpolation
techniques. The merging product is analysed regarding the sensitivity of the two investigated
methods to the radar data quality. After implementing bias correction, not only did the quality
of the radar data improve, but also the performance of the interpolation techniques using radar
data as additional information. In general, conditional merging showed greater sensitivity to
radar data quality, but performed better than all the other interpolation techniques when using
bias corrected radar data. Furthermore, a seasonal variation of interpolation performances has
in general been observed. A practical example of using radar data for disaggregating stations
from daily to hourly temporal resolution is also proposed in this study.
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4.1 Introduction

Advanced technologies like weather radar help to increase our knowledge regarding the spatial
structure of rainfall events. Although weather radar provides rainfall data with relatively high
spatial and temporal resolution, the data is subject to several sources of error. Beside common
problems associated with weather radar, e.g. existence of clutters and attenuation, the data
suffers from the fact that weather radar usually either overestimates or underestimates rainfall.
There are several physical factors affecting the accuracy of rainfall measurement which are not
all recognised quantitatively, but rather qualitatively. Errors related to weather radar data have
been investigated by several studies. AUSTIN (1987) studied the complexity of the relationship
between rain intensity derived from radar reflectivity and surface rainfall. She discussed the
influence of precipitation type, the existence of frozen particles and several other influential
factors on the relationship between radar reflectivity and rain intensity, or the Z-R relationship.
Others proposed methods trying to compensate common problems like detecting ground clutters
by analysing radar pixels, implementing sophisticated algorithms for transforming reflectivity
to intensity (ALFIERI et al., 2010), attenuation calibration (RAHIMI et al., 2006), etc. ALFIERI

et al. (2010) studied a simple procedure for using continuously updated Z-R relationships in
time to produce real time rainfall estimation.

Despite the difficulties that radar data has, several studies (e.g. QUIRMBACH and SCHULTZ,
2002) tried to use radar data directly as an input for water management purposes. In such
circumstances, the radar data quality plays a significant role considering the above mentioned
problems. On the other hand, merging radar data and rain gauge data is a traditional way to
describe rainfall fields when considering the rain gauge network as providing true information.
In order to combine the rainfall estimation from radar and the accurate point information from
stationary rain gauges, a variety of methods including co-kriging (KRAJEWSKI, 1987), kriging
with external drift (HABERLANDT, 2007; VERWORN and HABERLANDT, 2011), conditional
merging (EHRET, 2002), have been proposed. Most of the methods consider the radar data as
secondary information to estimate the rainfall field. In kriging with external drift, it is assumed
that the expected value of the primary variable is linearly related to the additional variable.
This assumption is not always fulfilled. Although EHRET (2002) did not assume linearity of
radar data to the primary variable in conditional merging, the quality of radar data is still an
important factor in this method. BERNDT et al. (2014) excluded time steps with poor radar
quality in order to take into account the influence of radar data quality for merging. They used
two criteria: (1) maximum radar rainfall values and (2) standard errors (between the gauge
rainfall values and the corresponding radar-pixel values) for detecting time steps with poor
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radar data. The poor radar data are detected when exceeding either the 99th percentile of
the empirical distribution of the maximum radar rainfall values or the 98th percentile of the
empirical distribution of the standard errors.

In addition to merging radar and station data, several studies attempt to adjust the radar image
according to rain gauge information. ERDIN et al. (2012) implemented a Box-Cox transforma-
tion of radar and station data to improve the compliance with model assumptions. However,
they recommend attention in implementing this method to avoid excessive transformation
which can introduce positive bias. CHUMCHEAN et al. (2006) corrected radar data for the
mean field bias which resulted in improving radar data quality. Besides, they used different
parameters in Z-R relationship for different types of rainfall which also improved the radar data
quality. VOGL et al. (2012) assimilated radar and gauge information to derive bias-corrected
precipitation fields implementing copulas. This method requires calibration and fitting of the
marginal distribution functions. THORNDAHL et al. (2014) investigated the use of mean field
bias adjustment for correcting radar data. They found that a larger bias exists during summer
periods compared to winter. This seasonal variation of error was justified by rainfall type,
where a larger bias belongs to convective storms and a smaller to stratiform events.

Quantile-quantile (Q-Q) transformation is usually employed in climate impact studies for
scaling and bias correction purposes. INES and HANSEN (2006) corrected the daily General
Circulation Models (GCM) rainfall for crop simulation studies. They fitted the data into
the gamma distribution function and corrected the daily GCM rainfall accordingly. JAKOB

THEMESSL et al. (2011) found quantile mapping to have the best performance, especially
at high quantiles, compared to seven other methods they implemented for reducing regional
climate model error characteristics. CHEN et al. (2013) compared the performance of six bias
correction methods for hydrological modelling over 10 North American river basins. They
conducted bias correction on a monthly basis and applied two quantile mapping methods based
on (a) an empirical distribution, and (b) a gamma distribution. BÁRDOSSY and PEGRAM

(2011) implemented this method for downscaling regional climate model precipitation to
observed values. Additionally, they used double Q-Q transformation for future scenarios. To
our knowledge, all of these studies consider a long time period of the observation and target
data, which is here radar data, for estimating the bias. The length of this considered time period
accordingly plays an important role. For points where no observation data is available, one
may use interpolation techniques which introduce uncertainty into the work. This means that
the final result depends not only upon the length of the time period, but also the performance
of the interpolation techniques. TEEGAVARAPU (2014) implemented two different quantile-

57



4. Applying bias correction for merging rain gauge and radar data

based bias-correction methods as well as an optimal single best estimator (SBE) method for
corrections of spatially interpolated missing precipitation data. They figured out that using
bias-correction methods overcomes the over and underestimation of low and high extremes.
Among them, the equi-distance quantile-matching performed the best. GYASI-AGYEI and
PEGRAM (2014) used Q-Q transform to normalise the daily rainfall data for later determination
of marginal frequency distribution of rainfall at all sites on the day.

Correcting radar data by applying a quantile mapping transformation and considering the
observation network data as the reference is the main objective in this study. In this paper, the
bias is defined as the difference between the radar-pixel values and the rain gauge corresponding
values.

This paper is organized as follows. After Section 4.1 the methodologies implemented in this
study, are described. Section 4.3 is then provided. Section four discusses the results. A short
summary of the work, comparison of different scenarios and possible use of the method in
practice is provider thereafter.

4.2 Methodology

Considering the value of each radar pixel representing its average rainfall amount occurring
over a certain time and space, a large deviation between radar-pixel data and the accurate
point-measurement devices like ordinary rain gauges can be detected. Because of this deviation,
merging these two data sources might not be optimal, especially for the time steps where this
deviation is highest. In the following, by implementing quantile mapping technique on the radar
data, the radar image for each time step is corrected assuming that the spatial bias in the radar
data dominates. In Section 4.3 part, the reasons for taking this assumption are discussed.

The methods, assumptions, and definitions used in this study are explained in this section.

4.2.1 Q-Q transformation

As described in several studies, the basic idea of this method is to correct one data source
considering another data source as true by comparing their probability distribution functions.
In this study, first theoretical distribution functions are fitted to the two data sources. Then, the
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quantile for each radar pixel value is estimated (the data source which will be corrected) from its
cumulative distribution function (CDF). Thereafter, by considering the estimated quantile and
using the inverse CDF of observed station data, the radar-pixel value is replaced. As mentioned
earlier the primary assumption is that the rain gauge network is providing true information. Eq.
(4.1) formulates the correction procedure:

Z
′
R(x, t) = F−1

obs,t(Frad,t(ZR(x, t))) (4.1)

where ZR(x, t) is the value of radar cell at position x and time t, Frad,t is the cumulative
distribution function estimated from radar data at time t, and F−1

obs,t is the inverse cumulative
distribution function derived from the rain gauge network at time t which converts the quantiles
estimated by Frad,t back to rain intensities, Z

′
R(x, t). The inverse cumulative distribution function

is estimated from observed rainfall data.

In contrast to conventional implementation of the quantile mapping method where a certain
time period from the two data sources is considered, in this study the radar image is corrected
for each time step separately. This means that each radar image is corrected independently.
There are two general ways to estimate the quantiles for each value in a data source, either
implementing an empirical distribution function or fitting a theoretical distribution function
to the data and estimating the quantiles accordingly. Using empirical distribution functions
introduces uncertainties when too few points from the data source exist. This problem could be
solved by applying an interpolation method, e.g. linear interpolation, but estimating quantiles
between the points which are located far from each other might be an unrealistic approach.
Instead of implementing empirical distribution functions with unknown uncertainties introduced
when an interpolation method is applied, it is decided to use a theoretical distribution function.
Fig. 4.1 illustrates the method visually.

The first step is to choose the time steps to correct. For this, different criteria need to be
considered. Since there is usually enough data from the radar data source, the time steps
chosen for correction depend on: (a) the number of available stations for each time step and
(b) the average rainfall recorded at the available stations. In order to increase the sample size
from the rain gauge network (to decrease the uncertainty in CDF curve fitting) several time
steps after and before the current time step will be considered. The number of time steps and
a detailed explanation about the way the number of time steps is estimated are provided in
Section 4.4. The second step is to fit a distribution function to the data. The method of moments
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a) b) 

c) 

d) 

Figure 4.1: Different steps in correcting the radar data by quantile mapping. (a) Selecting the target time step, (b)
fitting a cumulative distribution function to the data, (c) quantile mapping and (d) reproducing the
radar data.

is implemented in this study. After fitting the distribution function to the data, each radar cell
value is corrected by quantile mapping. The final step is to produce the radar image with the
corrected values. As is clear from the described method, the locations of the maxima remain,
however the values will change. In other words, the structure of the radar image does not
change after implementing quantile mapping.

In contrast to the approach explained above, another way for implementing quantile mapping is
when the distribution function is fitted for a certain time period. In this case, the distribution
function parameters would be estimated either for each station separately or pooling the data
of the stations i.e. a similar approach to THORNDAHL et al. (2014). Following this approach,
there is a need to estimate the distribution function parameters for the points where no station
is available from the observation points. Implementing interpolation techniques might be a
possible solution for estimating the distribution function parameters for these points, which
however introduces uncertainty to the work. This might lead to destruction of the radar image
due to the following two reasons. Firstly, the bias is not dependent on the location of the
stations (see Fig. 4.4).
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This means that the distance from the radar origin to the observation points, or in general
where the station is located, does not play an important role. Estimating the parameters from
neighbouring stations might then lead to an incorrect distribution parameter set. Secondly,
the radar cells are corrected independently. This means that the correction depends only
on the distribution function derived from the rain gauge network and the radar cell value.
This leads to increasing or decreasing radar cell values of a time step simultaneously which
might result in changing the structure of radar image. It has been observed by VERWORN

and HABERLANDT (2011) that applying a uniform non-linear attenuation correction does
not improve merging performance using kriging with external drift. This indicates that the
attenuation is not significant here. On the other hand, the latter point might result in changing
the location of the maxima in the adar image as well.

4.2.1.1 Distribution function

As discussed, it is decided to fit a theoretical distribution function to the data instead of using
an empirical distribution function. This decision is primarily based on the availability of the
data. Instead, one might implement suitable interpolation technique for the time steps with less
information, but this method introduces unpredictable uncertainties to the data. The gamma
distribution function is used in the following:

F(Z(x, t);r,λ ) =
λ rZ(x, t)r−1exp(−λZ(x, t))

Γ(α)
; Z(x,z)> 0 (4.2)

Z(x, t) is the value of radar cell at position xand time t. For the CDF from radar data, Frad,t in
Eq. (4.1), all the pixels of one time step are considered. On the other hand, for the rain gauge
data several time steps are considered when estimating the CDF, F−1

obs,t in Eq. (4.1). The two
parameters r and λ are determined using the Method of Moments.

All positive values are considered for fitting the theoretical distribution function and deriving
the quantiles afterwards. The resolution of the rainfall data from rain gauge network is 0.1
mm/h and from radar data 0.01 mm/h. Radar rainfall is estimated using constant parameters
for the reflectivity to rain intensity relationship. This relationship is explained in Section
4.3. In order to fit the CDFs to the rain gauge network data, all rainfall intensities larger
than 0 mm/h are considered. For the radar data, different thresholds are defined meaning that
values larger than the threshold are corrected and all values smaller than the threshold remain

61



4. Applying bias correction for merging rain gauge and radar data

unchanged. Five thresholds are considered: (a) 0.0 mm/h (b) 0.02 mm/h (c) 0.05 mm/h (d)
0.07 mm/h and (e) 0.1 mm/h. The reason for testing different thresholds is that the radar data
contains very small values, of 0.01 mm/h, which is one-tenth of the smallest value of rain
gauge network. Considering these below threshold values in quantile mapping would result in
an overestimation of areal rainfall when estimated by radar and an underestimation when not.
Under/over estimation of the applied method is investigated by comparing a radar cell with its
corresponding station.

4.2.1.2 Temporal dependency of the station data

Due to a lack of data from the rain gauge network for some time steps, these time steps would
not be corrected. This problem usually occurs when it rains strongly over a small area and the
rest of the radar circle remains almost dry. Thus, it is necessary to increase the information
from the rain gauge network by using more relevant time steps. As the main goal of this study is
to correct each radar image separately, it would be inappropriate to use the rain gauge network
information for longer periods of time. In order to investigate the temporal dependency, it is
decided to use a temporal variogram (KITANIDIS, 1997). The empirical variogram is defined
as follows:

γk(h) =
1
m

m

∑
k=1

[
1

2N(h) ∑
xi−x j=h

(Z(xi)−Z(x j))
2

]
(4.3)

where γk is the variogram averaged over all stations k = 1, ... , m, N(h) represents the number of
pairs separated by the vector h and Z the measured values at time x. As the temporal resolution
of the rain gauge network data in this study is 1 h the separating vector (h) starts from 1 h.

The number of additional time steps to increase the information from the rain gauge network is
estimated assuming that beyond the variogram range the data pairs become independent. In
other words, the time length shorter than the variogram range is more likely to be representing
time steps that could be considered for correcting a radar image. All calculations mentioned
above are carried out using rainfall data for radar and gauges with 1 h temporal resolution.
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4.2.2 Disaggregation of stations with daily data

BERNDT et al. (2014) showed that by increasing the rain gauge network density, the interpola-
tion performance improves. Several studies tried to increase the rain gauge network density
by combining the denser daily rain gauge network with the coarser hourly rain gauge network.
For example, WALLNER et al. (2013) combined the daily rain gauge network by implementing
a simple method of taking the nearest station and preserving its temporal pattern for disag-
gregating the daily stations. BÁRDOSSY and DAS (2008) analyzed the hydrological model
performance as a function of the rain gauge density. They observed that the number and spatial
distribution of rain gauges are influential in simulation results. In this study two methods are
proposed: (a) using original radar data and (b) using radar data after bias correction. A daily
time series from the radar-pixel corresponding to each station is extracted from the two sources
mentioned above for testing disaggregation of daily gauge observations conditioned on radar
data.

4.2.2.1 Disaggregation using radar data

Disaggregating daily rain gauge network data is carried out by using radar-pixel data. By
extracting time series for the radar cells belonging to each station, the stations can be disaggre-
gated:

Zh
dis(i, t) = w(i, t)×Zd

obs(i, t) where w(i, t) =
Zh

rad(i, t)

∑
24
t=1 Zh

rad(i, t)
(4.4)

where w is the weight used for each time step, Zh
dis(i, t) is the disaggregated hourly value for

time t and station i. Zd
obs(i, t) is the hourly rainfall intensity from the radar cell corresponding

to the rain gauge and Zd
obs(i, t) is the observed daily station rainfall for disaggregation. Since

the main objective of this paper is to investigate the influence of the bias correction method
for different applications, two different radar data sources are compared (a) original radar data
and (b) bias corrected radar data. Daily rain gauges are disaggregated by following the hourly
fluctuation of radar-pixel data. In order to test the disaggregation, the rain gauge stations with
hourly temporal resolutions are aggregated first to daily stations and then disaggregated back to
hourly time steps following radar-pixel fluctuation.
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4.2.3 Interpolation techniques

Accurate estimation of areal rainfall plays an important role in hydrological analyses. Areal
rainfall is mainly estimated through interpolation techniques. The influence of radar data and
bias correction methods on interpolation techniques is investigated by implementing radar
data in two different methods, (a) conditional merging and (b) kriging with external drift. By
comparing the results when using station data alone, the benefit of using radar data can be
estimated. The performance of each interpolation method is investigated by means of cross
validation.

Ordinary kriging (OK) is a standard interpolation method with the best linear unbiased estimator
property (BLUE). This method is widely used in different studies for several datasets like
temperature, wind, precipitation, soil properties etc. OK is considered as reference in this study
to investigate the importance of the additional information from radar data and the importance
of the radar data correction method. A detailed description of OK can be found in geostatistical
textbooks such as ISAAKS and SRIVASTAVA (1990).

As the pre-requirement for all kriging methods, a theoretical semivariogram model is fitted to an
experimental one using Eq. (4.3) N(h) is the number of data pairs and in contrast to the earlier
reference (in Section 4.2.1.2), h is the distance vector and x the location. Semivariograms are
estimated for each season separately due to the assumption of seasonal changes in rainfall type.
As a representative semivariogram for each season, the averaged semivariograms for all time
steps within each season are used. In this study the year is split into two seasons, from March
21st to September 21st is considered as the summer time and winter from September 22nd to
March 20th. Altogether, 11 semivariograms from January 2004 to January 2009 are estimated,
fitted and employed for the interpolation. Radar data is used to estimate the experimental
semivariograms. A set number of random radar-pixels (here 1000 points) for time steps with
an average rainfall above a defined threshold are considered for estimating the season-specific
experimental semivariogram. The average semivariograms are estimated by the following
equation:

γst(h) =
1
n

n

∑
i=1

γ(h, i)
var(i)

(4.5)

where n is the number of time steps within the season, γst(h) is the standardized variogram,
γ(h, i) is the calculated semivariogram for the distance vector of h and var(i) is the variance
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of time step i. The fitting procedure is carried out visually using an exponential theoretical
variogram:

γ(h) = c0 + c
[

1− exp(−h
a
)

]
(4.6)

where a, c, and c0 represent range, sill and nugget respectively. The objectivity of fitting
experimental variograms visually is discussed by BERNDT et al. (2014).

4.2.3.1 Kriging with external drift

A common method for implementing additional information in interpolation procedures is
kriging with external drift (KED). LIU et al. (2013) used a digital elevation model (DEM) as
additional information for areal rainfall estimation whereas ROGELIS and WERNER (2013)
used the effective elevation of a larger area. HABERLANDT (2007) proposed using radar data as
the additional information in KED. BERNDT et al. (2014) implemented radar data and smoothed
radar data as additional information which provided better results than using the original radar
data alone. However it was also noted that the method is quite sensitive to radar data quality.
By excluding time steps with poor radar data, the interpolation performance improved. Original
radar data and bias corrected radar data are used here as additional information in KED to
investigate the importance of bias in the correction method.

The fundamental principle of KED is the implementation of an additional variable Y (x),
assuming a linear relationship to the expected value of Z(x).

E [Z(x)|Y (x)] = a+b ·Y (x) (4.7)

As a result, the expected value is no longer constant over the study area. This is in contrast with
the assumption taken for OK.

An important point in KED is the assumption of a linear relationship between the additional
variable and expected value. This means that the performance depends more on how the two
variables are correlated than the value of drift. For instance, VERWORN and HABERLANDT

(2011) investigated the benefit of directly using radar reflectivity in KED and not derived
rainfall intensity. They concluded that implementing log-transformation for radar reflectivities
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improves the interpolation performance. More detailed information of the method could be
found in GOOVAERTS (1997) and HABERLANDT (2007).

An important decision influencing the estimation of areal precipitation for kriging methods
is the number of stations taken into account. The location of stations with available data also
plays an important role. Since the number of stations and hence the network density varies
between 2004 and 2008, it is decided to change the number of neighbours in the interpolation
accordingly. As mentioned earlier, 11 time periods are defined assuming seasonal changes
in rainfall type. Further information regarding the number of neighbours in interpolation for
different time periods is provided in Section 4.3.

It is worth mentioning that the interpolation using KED might face numerical instabilities
depending on the value of the additional information at the observation points. This problem
can be solved by utilizing more stations in the interpolation process. Thus, in this study, the
number of observations is first increased and if this is not possible, KED is replaced by OK for
those time steps with numerical instabilities.

4.2.3.2 Conditional merging

Conditional merging (CM) is another method implemented in this study. It was first proposed
by EHRET (2002) and later used by SINCLAIR and PEGRAM (2005) for rainfall field simulation.
BERNDT et al. (2014) compared its performance with KED and concluded that CM performs
better than KED for all station density scenarios and temporal resolutions used in their study.
In contrast to KED, with the assumption of a linear relationship between the additional variable
and expected value, no such assumption is necessary in CM. However the point-value in this
method plays an important role. The main objective in CM is to preserve the radar pattern
occurring between observation points. This is achieved by implementing OK on radar-pixel
values first and then on observation points separately. Afterwards, the deviation between radar
cells and interpolated values is applied on the rain gauge network OK result. Thus, these
steps should be performed: (1) rainfall interpolation of observation points (rain gauges) by
OK, (2) rainfall interpolation of radar-pixel data extracted for each station location by OK, (3)
calculation of the deviation between radar cell values (original radar values for each cell) and
rainfall interpolation of radar-pixel values on each radar cell and (4) applying the deviation
(step 3) on the interpolated rainfall from observation points by OK (step 1) to produce the
output image.
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All the properties, such as variogram values, implemented in CM are the same as the ones used
in OK.

4.2.4 Performance measures

4.2.4.1 Evaluation of radar data

Each station in the study area is located on a radar cell. In order to investigate the existence
of bias, rain gauge data is compared with the corresponding radar-pixel data. The difference
between the two sources illustrates the quality of radar data. As the sum of deviations might be
close to zero (when underestimation and overestimation compensate each other), the root mean
square error (RMSE) is considered as an appropriate measure of radar data quality. The RMSE
is estimated for two scenarios (a) spatially and (b) temporally.

As the deviation between the observed values and radar-pixel values may change between
stations, the RMSE value is estimated for each station separately and averaged over the number
of time steps, called the temporal (RMSEt) at station x (see Fig. 4.4):

RMSEt(x) =

√
∑

J
j=1(Z(x, t j)−ZR(x, t j))2

J
(4.8)

where J is the number of time steps and ZR(x, t) and Z(x, t) are the value of radar cell and
rain gauge data at station x, respectively. The missing data are not considered for RMSEt

estimation.

The spatial error is investigated by calculating the RMSE value for each time step over all
stations, called the spatial RMSE (RMSEt) (see Fig. 4.3). Here, n represents the number of
stations with available data for each time step:

RMSEs(t) =

√
∑

n
i=1(Z(xi, t)−ZR(xi, t))2

n
(4.9)

There are several factors like rain type and the existence of frozen particles (AUSTIN, 1987)
which influence the quality of estimating rainfall from radar data when using constant param-
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eters for transforming reflectivity to rain intensity (this relationship will be explained in the
Subsection 4.3.1). As the rain type, or in general the type of precipitation, changes usually
seasonally, investigation of RMSEs values for different time periods will illustrate the influence
of rain type on the performance of radar data. On the other hand, investigation of temporal
RMSE values (RMSEt) will indicate whether the location of stations plays an important role in
the bias magnitude.

The radar data quality before and after implementing bias correction is investigated by averaging
the spatial RMSEs over all time steps, RMSEs̄. Besides, the average bias (B̄) is also estimated:

B̄ =
1
J

J

∑
j=1

[
1
n
·

n

∑
i=1

[
Z(xi, t j)−ZR(xi, t j)

]]
(4.10)

The average correlation coefficient (R̄) is also estimated:

R̄ =
1
J

J

∑
j=1

[
∑

n
i=1(ZR(xi, t j)− Z̄R(xi, t j))(Z(xi, t j)− Z̄(xi, t j))√

∑
n
i=1(ZR(xi, t j)− Z̄R(xi, t j))2 ∑

n
i=1(Z(xi, t j)− Z̄(xi, t j))2

]
(4.11)

where n is the number of stations J is the number of time steps. Z and ZR are the rain gauge
data and the corresponding radar cell values, respectively.

More detailed information about the strength of temporal and spatial bias is provided in Section
4.3.

4.2.4.2 Evaluation of interpolation

The performance of the applied interpolation techniques is quantified by cross validation. The
main goal is to estimate rainfall values on the observation points neglecting the observation
value. Basically, one observation point is excluded from the dataset and the value for each time
step is estimated using other available observation points. This procedure is performed for all
the stations.The resemblance between the two time series, observed and estimated, is compared
measured by the following criteria.

The root mean square error is estimated by:
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RMSEI =
1
J

J

∑
j=1

[√
∑

n
i=1(Z(xi, t j)−Z∗(xi, t j))2

n

]
(4.12)

The bias is estimated by:

BI =
1
J

J

∑
j=1

[
1
n
·

n

∑
i=1

[
Z(xi, t j)−Z∗(xi, t j)

]]
. (4.13)

The preservation of variance is estimated by:

RVar =
Var [Z∗(x, t)]
Var [Z(x, t)]

. (4.14)

The correlation coefficient is estimated by:

R̄ =
1
J

J

∑
j=1

[
∑

n
i=1(Z

∗(xi, t j)− Z̄∗(xi, t j))(Z(xi, t j)− Z̄(xi, t j))√
∑

n
i=1(Z∗(xi, t j)− Z̄∗(xi, t j))2 ∑

n
i=1(Z(xi, t j)− Z̄(xi, t j))2

]
(4.15)

where Z∗ is the rainfall estimation and Z is the rainfall observation. J and n are the number of
time steps and number of stations considered in cross validation, respectively.

It is important to note that evaluating the performance of the bias correction method (see
Section 4.2.1) is not carried out by means of cross validation because of the negligible influence
of excluding a station on the final results.

4.3 Study area and data

The range of the weather radar located at Hannover airport describes the study area (Fig. 4.2),
which is here a circle of 128 km radius. ll data is provided by the German Weather Service
(DWD). Radar data has a temporal resolution of 5 min and rain gauge data are provided with
10 min temporal resolution. Both datasets are aggregated to an hourly temporal resolution. As
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the Z-R relationship converts reflectivity to rainfall intensity in mm/h, aggregation of radar
data is carried out by first dividing the values by 12 (as 12 time steps are considered) and then
summing up the values for each pixel.
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Figure 4.2: Study area and station network.

The number of stations and accordingly the density of rain gauge network for each time period
(TP) is provided in Table 4.1. The main reason that different numbers are considered in
crossvalidation is to avoid undesirable smoothening effect when stations are located with long
distances to the interpolation point. As mentioned, the time periods are created considering
seasonal variation of rainfall type.

Altogether, 105 stations with hourly temporal resolution are taken into consideration for this
study. The transparent blue circle shows the area being scanned by the Hannover weather
radar. In contrast to the flat northern part of the study area, the southern part contains the Harz
Mountains with elevations of up to 1141 m a.s.l. The average annual precipitation varies within
the study area, from around 500 mm/yr in the north-east part to around 1700 mm/yr in the Harz
Mountains.

As mentioned earlier, in contrast to most studies where the quantile mapping is applied over
a certain period of time, here Q-Q transformation is applied on each time step separately in
order to correct a radar image. Considering the spatial rain variability of precipitation (see
above), the benefit of applying quantile mapping on one time step instead of taking a certain

70



4.3 Study area and data

Table 4.1: Number of stations for each time period.

1 2 3 4 5 6
Time Start Jan.04 Mar.04 Sep.04 Mar.05 Sep.05 Mar.06
period End Mar.04 Sep.04 Mar.05 Sep.05 Mar.06 Sep.06
Av. St. 23 34 43 49 57 64
No. St. 4 6 7 8 9 10

7 8 9 10 11
Time Start Sep.06 Mar.07 Sep.07 Mar.08 Sep.08
period End Mar.07 Sep.07 Mar.08 Sep.08 Jan.09
Av. St. 74 80 88 91 93
No. St. 10 10 10 11 11

*Av. St and No. St represent the number of available observation points and the number of
stations used in cross-validation, respectively.

time period becomes evident. In other words, as the average annual precipitation varies in
the study area significantly, applying the Q-Q transformation temporally (separately for each
station) may result in destroying the structure of radar image. Additionally, there might be
some other technical difficulties when convective rainfall occurs as some stations may have no
rainfall recorded over a certain time. Further discussion on the benefits of implementing this
method on each time step separately is provided in Section 4.4.

Assuming the rainfall type changes seasonally, the entire time period is divided into 11 time
periods where each time period has its specific variogram properties. Table 4.1 provides the
number of stations with available data (Av. St.) and the number of stations used in cross-
validation (No. St.) for each defined time period with no constrains for the search radius. The
properties of variograms implemented in this study is provided in Section 4.4.

4.3.1 Radar data

The C-band radar instrument located in Hanover has a 5-min temporal resolution and an
azimuth resolution of 1◦. The spatial resolution along each beam is 1 km. In this study, the
dx-radar product provided by the German Weather Service (DWD) is used. Considering 128
km as the radius of the circle being scanned by the radar instrument, each radar image contains
46080 (128 × 360) cells. The reflectivity provided by DWD is transformed to rain intensity
using the following Z-R relationship:
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Zr = a ·Zb
R (4.16)

where Zr is the reflectivity in mm6m−3, and ZR is the corresponding rain intensity in mm/h. The
reflectivities are transformed using the standard DWD parameter set (RIEDL, 1986; SELTMANN,
1997), with a = 256 and b = 1.42. After estimating rainfall intensity, a clutter map for each
month is estimated following the principles proposed by BERNDT et al. (2014). Radar cells
with the rainfall sum outside of the defined acceptable range are considered as clutters. In
contrast to Berndt et al., here the clutters are detected for each month separately and a clutter
map is produced for each year accumulating all the cells detected in all months of the year.
Subsequently, an interpolation on rectangular grid is carried using inverse distance interpolation
to produce 1 km × 1 km grid cells.

4.3.2 Temporal and spatial bias in radar data

The temporal and spatial bias is analysed using Eqs. 4.8 and 4.9. As mentioned earlier, the
spatial bias is analysed by estimating the RMSE for each time step. This means that the
observation data from the rain gauge network is compared with the corresponding radar cell
for each time step. Figs. 4.3 and 4.4 illustrate the existence of spatial and temporal bias
respectively.

Black lines in Fig. 4.3 illustrate the hourly RMSEs value for each year and the average during
five years. Spatially averaged bias between the radar-pixel data and station data is estimated
considering time steps in which rain is recorded from either data source. The highest spatial
RMSEs values mostly occur in summer. The red line in Fig. 4.3 indicates the temporal variation
of average rainfall. Here, the average rainfall (arithmetic mean) is estimated by taking only
stations with recorded rainfall into consideration. This value increases in summer, showing
that intensive rainfall occurs mainly over a lower number of stations. Thus, this indirectly
indicates the rainfall type. Convective rain events or possible sudden storms can be easily
distinguished as they usually cover a smaller area with high intensity. The parts of red lines
with higher values indicate intense rain events covering lower number of stations. On the other
hand, rainfall events in winter are usually less intense and cover a larger area. Assuming the
values of average rainfall (red line in Fig. 4.3) are an indicator of rain type, the bias seems to
be strongly dependent on the rain type.
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Figure 4.3: Black line (the lower line): temporal distribution of spatial RMSEs over the study area, red line (the
upper line): temporal variation of average rainfall considering only stations with recorded rainfall for
2004, 2005, 2006, 2007, 2008 and averaged over five years.

Beside spatial bias, radar data are subject to temporal bias as well. In order to investigate the
existence of temporal bias, a similar method to the spatial bias investigation is considered. In
contrast to spatial bias where the RMSE was estimated for each time step separately, here
the RMSE value is estimated for each year and each station separately. Thus, each station
(observation point) receives a value for each year. Fig. 4.4 illustrates the spatial distribution of
the temporal bias over the study area where the Inverse Distance Weighted (IDW) method is
used for producing this figure.

Like spatial bias investigation, temporal bias is investigated considering the time steps in which
the rain amount from both of the sources is not missing. The points in Fig. 4.4 represent the
stations considered for each year. The darker cells illustrate higher RMSE values. Comparing
the spatial distribution of temporal RMSE among the years, the locations of high bias value
do not remain constant in space over different years. By comparing Figs. 4.3 and 4.4, it can
be concluded that although temporal bias exists, the spatial bias (magnitude and variation) is
much stronger and more straightforward to handle.
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Figure 4.4: Spatial distribution of yearly average temporal RMSEt over the study area, each year separately.

4.4 Results and discussion

The main objective of this study is to investigate the performance of interpolation techniques
using radar data before and after bias correction by means of cross validation. Before illustrating
the interpolation performance, the quality of the radar data is compared with observation points.
Finally, the use of radar data for disaggregation purposes is also investigated in this study.

4.4.1 Time window considered for bias correction

Some time steps cannot be corrected due to the lack of data from the rain gauge network. This
problem usually occurs when it rains strongly over a smaller area and the rest of the radar circle
stays almost dry. Thus, the goal in this part is to increase the information from the rain gauge
network by using adjacent time steps from the rain gauge network for the purpose of fitting the
distribution function. The number of required time steps is determined by assuming that the
variogram range represents the time length having independent data pairs. Fig. 4.5 illustrates
the estimated temporal variogram for each of the five years averaged over the stations.

Fitting the theoretical variogram to the empirical variogram is carried out visually. The ranges
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Figure 4.5: Temporal variogram estimated for each year separately.

estimated for the temporal variograms are between 4 and 9 h for the years 2004-2008. It is
assumed that the time steps within 6 h are likely to be dependent. Thus, besides the current
time step, 3 time steps before and 3 time steps after are considered to increase the number of
observation points from the rain gauge network.

4.4.2 Radar data analysis before and after bias correction

In order to analyse the radar data quality, observation points from the rain gauge network are
compared with the corresponding radar pixels. The quality of radar data is described by bias
(B̄), RMSE (RMSEs̄), and correlation coefficient (R̄) which are provided in Table 4.2. The
seasonal average value of each statistical measure is also provided in Table 4.2. Different
thresholds are considered for selecting the radar pixels for the bias correction process. For
instance, if the threshold is set to 0 all the radar cells having values greater than 0 will be
considered. Five classes, BC1-BC5, with different defined thresholds 0.00, 0.02, 0.05, 0.07 and
0.10 mm/h are considered.

For evaluating the rainfall estimation by radar no such thresholds are defined meaning that all
the time steps with available data from both data sources are considered in order to estimate the
statistical measures given in Table 4.2. As discussed earlier, the bias (B) is not necessarily a
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Table 4.2: Radar data quality before and after implementing bias correction, considering different thresholds 0.00,
0.02, 0.05, 0.07 and 0.10 mm/h, from BC1 to BC5.

Time period 1 Win. 2 Sum. 3 Win. 4 Sum. 5 Win. 6 Sum. 7 Win.
Original B̄ -0.06 -0.01 -0.05 0.00 -0.03 0.03 -0.01

radar RMSEs̄ 0.31 0.66 0.28 0.81 0.32 1.12 0.43
R̄ 0.64 0.67 0.61 0.65 0.62 0.64 0.68

B̄ 0.02 0.06 0.02 0.06 0.03 0.06 0.04
BC1 RMSEs̄ 0.28 0.46 0.24 0.40 0.23 0.51 0.30

R̄ 0.71 0.76 0.76 0.78 0.75 0.71 0.77

B̄ -0.02 0.02 -0.02 0.02 -0.01 0.03 0.01
BC2 RMSEs̄ 0.26 0.4 0.23 0.35 0.21 0.44 0.27

R̄ 0.72 0.78 0.74 0.79 0.75 0.74 0.78

B̄ -0.04 0 -0.04 0 -0.02 0.01 -0.01
BC3 RMSEs̄ 0.27 0.39 0.24 0.33 0.21 0.42 0.26

R̄ 0.7 0.78 0.71 0.8 0.74 0.74 0.78

B̄ -0.05 -0.01 -0.04 -0.01 -0.02 0 -0.02
BC4 RMSEs̄ 0.27 0.39 0.25 0.33 0.21 0.41 0.26

R̄ 0.68 0.77 0.69 0.79 0.74 0.74 0.77

B̄ -0.05 0 -0.04 0 -0.02 0.01 -0.01
BC5 RMSEs̄ 0.28 0.4 0.25 0.33 0.21 0.46 0.27

R̄ 0.67 0.77 0.67 0.8 0.73 0.73 0.77

Time period 8 Sum. 9 Win. 10 Sum. 11 Win. µ Sum. µ Win.
Original B̄ 0.02 -0.05 0.01 -0.04 -0.04 0.01

radar RMSEs̄ 1.48 0.33 0.94 0.26 0.32 1
R̄ 0.59 0.68 0.67 0.74 0.66 0.64

B̄ 0.08 0.03 0.06 0.03 0.03 0.06
BC1 RMSEs̄ 0.56 0.29 0.46 0.22 0.26 0.48

R̄ 0.79 0.77 0.78 0.83 0.77 0.76

B̄ 0.03 -0.01 0.02 -0.01 -0.01 0.02
BC2 RMSEs̄ 0.5 0.27 0.38 0.2 0.24 0.41

R̄ 0.8 0.78 0.81 0.82 0.77 0.78

B̄ 0.01 -0.02 0 -0.03 -0.03 0
BC3 RMSEs̄ 0.48 0.27 0.37 0.21 0.24 0.4

R̄ 0.8 0.77 0.81 0.79 0.75 0.79

B̄ 0 -0.03 0 -0.03 -0.03 0
BC4 RMSEs̄ 0.47 0.27 0.36 0.22 0.25 0.39

R̄ 0.8 0.76 0.81 0.78 0.74 0.78

B̄ 0.01 -0.03 0 -0.03 -0.03 0
BC5 RMSEs̄ 0.48 0.27 0.37 0.22 0.25 0.41

R̄ 0.8 0.75 0.81 0.77 0.73 0.78
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good criterion to represent the quality of the radar data. The main reason is that the rainfall over-
estimation and underestimation by radar may occur during the time period under investigation
which may have a cancelling effect. As can be seen, the B does not change significantly after
implementing bias correction while the other two criteria change considerably. The correlation
coefficient (R) measures the linear association between the two sources and becomes higher
for all defined time periods when bias correction is applied. This shows that the linearity
increases after implementing the bias correction method. As in KED where the linearity plays
an important role, it could be expected that implementing radar data after correction results in
improving the interpolation performances. Also, the RMSEs̄ improves after implementing bias
correction. In general, the quality of the radar data improved as the deviation between the two
sources decreased.

As the rain gauges have a measurement accuracy of 0.1 mm and the values derived from radar
have a 0.01 mm resolution, considering all radar cells in bias correction may lead to rainfall
overestimation. From the five defined thresholds, one threshold is selected for further analysis
according to its performance. Although in general the radar quality improves after implementing
bias correction, the results in Table 4.2 show a minor improvement when considering 0.05
mm/h as the threshold comparing with other examined thresholds. Therefore, bias correction
will be implemented in interpolation techniques (see Section 4.4.4) by considering 0.05 mm/h
as the threshold.

The improvement of radar data quality in summer is more noticeable than in winter. This could
be expected as the RMSE value before bias correction was higher in summer (see Section
4.3.2).

4.4.3 Interpolation performance

Before discussing the interpolation performance, the effect of implementing bias correction on
theoretical variogram parameters is first presented.

Table 4.3 illustrates the parameters of theoretical variogram before and after implementing
bias correction. Although there is a minor influence on the sill (cc) and nugget effect (c0),
the effect on the effective range (ae f f ) is greater. As expected, implementing bias-correction
results in smoothening radar data where the effective range gets larger after implementing bias
correction.
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Table 4.3: Theoretical variogram model parameters before and after implementing bias correction, ae f f is the
effective range, cc the sill and c0 the nugget effect.

Time period
1 2 3 4 5 6 7 8 9 10 11

Original c0(−) 0.05 0 0 0 0 0.1 0 0.05 0.05 0.05 0
radar data cc(−) 1.25 1.05 1.25 1.05 1.23 0.93 1.15 0.95 1.15 0.95 1.06

ae f f (km) 75 45 75 45 75 39 69 45 69 42 75

Bias-corrected c0(−) 0 0 0 0 0 0.05 0 0 0 0 0
radar data cc(−) 1.3 1.05 1.2 1.05 1.2 1 1.1 1 1.2 1 1.1

ae f f (km) 90 54 75 57 81 51 75 60 75 54 90

The performance of each interpolation technique is investigated by means of cross validation
considering only time steps with a significant amount of rainfall. Thus, after excluding time
steps with zero average value, only time steps having an average value higher than 95th
percentile of all time steps are considered in estimating the statistical measures resulting in
1055 time steps in total. As explained earlier, in order to analyse the performance of each
interpolation technique using different sources of data, 0.05 mm/h is considered as the threshold
for applying bias correction for radar data (see Section 4.4.2).

BERNDT et al. (2014) discovered that conditional merging performs better than KED. In this
study, the main objective is to analyze the sensitivity of the two methods to radar data quality.
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Figure 4.6: Cross validation results, averaged bias over all stations and all considered time steps. W: Winter,
S: Summer, OK: ordinary kriging, KED OR: kriging with external drift using original radar data,
KED BC: kriging with external drift using bias corrected radar data, CM OR: conditional merging
using original radar data and CM BC: conditional merging using bias corrected radar data. (The order
of the bars is as mentioned in this caption.)

Fig. 4.6 illustrates the BI criterion for all 11 defined time periods. As expected, OK performs
consistently well regardless of season. In contrast to OK, all the methods using radar data as the
additional information are strongly dependent on radar data quality. As can be clearly seen, the
radar data quality is more significant when implementing CM. It is also clearly visible that the
interpolation performance improved when using radar data after bias correction. On the other
hand, as the number of stations changes over time, the interpolation performance (each season
separately) is shown to improve when implementing more stations (the number of stations for
each time step is provided in Table 4.1).
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Figure 4.7: Cross validation results, averaged RMSE over all stations and all considered time steps. W: Winter,
S: Summer, OK: ordinary kriging, KED OR: kriging with external drift using original radar data,
KED BC: kriging with external drift using bias corrected radar data, CM OR: conditional merging
using original radar data and CM BC: conditional merging using bias corrected radar data. (The order
of the bars is as mentioned in this caption.)

Fig. 4.7 illustrates the estimated RMSEI for all 11 defined time periods and interpolation
techniques implemented in this study. The interpolation performance changes seasonally for all
the implemented techniques. In general, the interpolation performance is better in winter which
shows the dependency of the interpolation performance on rainfall type (see Section 4.3.2).

The RMSEI improves when using radar data after implementing bias correction as was for the
bias criterion in Fig. 4.6. VERWORN and HABERLANDT (2011) found that implementing radar
data in summer is more significant. The same can be concluded here, with KED using original
radar data performing better than OK in summer. On the other hand, KED after bias correction
performs better in winter than in summer, which again illustrates the importance of radar data
quality. Fig. 4.3 showed that radar data quality is better in winter time. The sensitivity of
CM to radar data quality is greater when comparing the results with KED. It is evident that
KED performs better than CM when implementing the original radar data. In contrast, the
performance of CM is superior to KED when implementing bias corrected radar data. BERNDT

et al. (2014) also concluded that CM performs better when excluding poor radar data quality.

Although the interpolation performance is better for winter, the use of radar data in summer is
more significant. Also, the improvement in radar data quality in summer is more noticeable than
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for winter. This illustrates the importance of applying bias correction, especially in summer.
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Figure 4.8: Cross validation results, averaged RVar over all stations and all considered time steps. W: Winter,
S: Summer, OK: ordinary kriging, KED OR: kriging with external drift using original radar data,
KED BC: kriging with external drift using bias corrected radar data, CM OR: conditional merging
using original radar data and CM BC: conditional merging using bias corrected radar data. (The order
of the bars is as mentioned in this caption.

Fig. 4.8 illustrates the RVar criterion representing the preservation of variance of the observa-
tions. The closer the value is to 1, the better the variance is preserved. Interpolation usually has
smoothening effect and often a value smaller than 1 is expected. A value larger than 1 indicates
more variability of rainfall estimation compared with nature. This can only happen when
outliers from radar influence the interpolation performance. This phenomenon is more obvious
when implementing CM representing the importance of radar data quality in this method.

As seen previously, CM fails when implementing original radar data compared with KED.
Although in some time periods KED is closer to 1, in general CM performs better when
implementing bias corrected radar data.
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Figure 4.9: Cross validation results, averaged correlation coefficient over all stations and all considered time steps.
W: Winter, S: Summer, OK: ordinary kriging, KED OR: kriging with external drift using original
radar data, KED BC: kriging with external drift using bias corrected radar data, CM OR: conditional
merging using original radar data and CM BC: conditional merging using bias corrected radar data.
(The order of the bars is as mentioned in this caption.)

Fig. 4.9 illustrates the correlation coefficient estimated for each interpolation technique. CM
using bias corrected radar data performs better than all the other interpolation techniques. RI

helps comparing the performance of interpolation techniques in which the RMSEI is similar.
The estimated RMSEI in winter time is similar for different interpolation techniques, especially
for the 1st, 3rd and 5th time period.

It could be concluded that CM is more sensitive toward the quality of radar data when comparing
the results before and after bias correction. On the other hand, the best performance was CM
after implementing bias correction of the radar data.
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4.4.4 Evaluation of disaggregated station data against radar data

Table 4.4: Disaggregating daily stations using radar data.

Time period 1 Win. 2 Sum. 3 Win. 4 Sum. 5 Win. 6 Sum.
Original Bias 0.00 0.00 0.00 0.00 0.00 0.00
Radar RMSE 0.24 0.29 0.22 0.24 0.19 0.26

R 0.79 0.88 0.81 0.89 0.83 0.87

BC3 Bias 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.26 0.26 0.24 0.23 0.18 0.25

R 0.76 0.88 0.78 0.89 0.82 0.87

Time period 7 Win. 8 Sum. 9 Win. 10 Sum. 11 Win.
Original Bias 0.00 0.00 0.00 0.00 0.00
Radar RMSE 0.23 0.35 0.25 0.27 0.20

R 0.85 0.89 0.83 0.90 0.85

BC3 Bias 0.00 0.00 0.00 0.00 0.00
RMSE 0.21 0.30 0.24 0.24 0.21

R 0.85 0.90 0.83 0.90 0.84

As discussed earlier, in addition to investigating the influence of bias correction on interpolation
performance, original radar data and bias-corrected radar data are used for disaggregating daily
stations. The disaggregation performances is investigated by first aggregating the hourly stations
to daily time steps and then disaggregating back to hourly time steps using original and bias-
corrected radar data. The main advantage of using rain gauges with hourly temporal resolution
is the availability of hourly fluctuation from rain gauges meaning that the disaggregated time
series would be evaluated by observed time series. Table 4.4 provides details on disaggregating
daily stations once by original radar data and once by radar data after implementing bias
correction. The statistical measures are estimated considering the observation data as true.

Disaggregating daily station rainfall with radar data shows a better performance when compared
against cross validation results from interpolation (comparing with Table 4.4 and Fig. 4.9).
For instance, the R is usually larger than 0.8 in Table 4.4 whereas it hardly reaches 0.8 in
Fig. 4.9. The same is valid for the RMSE where larger values were obtained by the cross
validation. In contrast to the radar data quality investigation for interpolation (Section 4.4.2)
where there exists a significant improvement after implementing the bias correction method, the
performance of disaggregating daily stations is not significantly influenced when implementing
radar data after bias correction. The main reason is that the disaggregation using different radar
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products does not change the daily rainfall amount but only the contribution for each hourly
time step. Thus, the final result is not significantly influenced by the quality of radar data
rainfall estimation, but more the correct temporal patterns of the radar data for each station. As
the lower values are also influence by the bias correction method, i.e. leading to higher weights
than needed, this might result in minor deterioration of the disaggregation results. In general, it
can be concluded that using radar data is an important source for disaggregating daily stations
as the density of non-recording stations is often higher than recording stations.

4.5 Summary and conclusion

The main objective of this study was to introduce a new method for correcting radar data. The
radar data quality is investigated seasonally by means of the spatial RMSE between radar and
station data. Implementing a simple quantile mapping method on each time step was proposed
for correcting radar images considering rain gauge data as true. Radar data is implemented
for areal rainfall estimation by two interpolation techniques, conditional merging and kriging

with external drift. The importance of using radar data in the interpolation is investigated by
comparing the performance when no radar data is considered, i.e. using the ordinary kriging

method. Additionally, radar data was also considered for disaggregation of daily stations.

The results and findings of this study are summarized as follows:

1. The quality of radar data is improved after implementing the bias correction method.
Since the method used in this study is applied on each time step separately, the number
of observation data points from the station network might be insufficient. As a result,
in order to correct a radar image, 3 time steps before and after the current time step are
taken into account for station data to create a meaningful Q-Q transform relationship (7
time steps altogether).

2. It has been shown that radar data is a useful source for disaggregation purposes, but the
influence of correcting radar data on disaggregation performance is insignificant.

3. The radar data quality changes seasonally. By comparing the radar-pixel data with
observation values, it has been observed that the radar data has a better quality in winter
compared to summer.

4. A seasonal variation in interpolation performances is also observed. All the interpolation
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techniques perform better in winter than in summer. It can be justified when considering
the fact that rainfall types change mostly seasonally.

5. In general using radar data improves the interpolation performance in summer, despite
better interpolation performance in winter. On the other hand, the improvement of radar
data quality after applying bias correction is more significant for summer rainfall events.
It can thus be concluded that applying the bias correction method is more important for
summer.

6. Beside the improvement of radar data quality after implementing bias correction, the
interpolation performance also improved when using bias corrected radar data compared
to using original radar data. Although CM showed greater sensitivity to radar data quality,
CM performed better than KED when implementing bias corrected radar data.

The seasonal variation observed in the results may be due to the seasonal variation of rainfall
type. Convective rain events occur mostly in summer and stratiform rain events in winter. In
general, CM using bias corrected radar data performed better than all the other implemented
interpolation techniques, although a seasonal variation in performance exists.

An important difference between the proposed method in this study and other similar studies
(e.g. the method proposed by THORNDAHL et al., 2014) is that this study corrects each radar
image, individually. Although THORNDAHL et al. (2014) have taken a constant mean field
bias to correct the radar data which conserves the radar data structure, the performance of
this correction is dependent on the time interval considered for the mean bias estimation.
This phenomenon is not evident when using the method proposed in this study since no such
time interval is considered for bias correction. It should be emphasized again that instead
of considering different parameter sets for different types of rainfall, e.g. in CHUMCHEAN

et al. (2006), the method presented in this study considers non-stationarity in radar-rainfall
relationships indirectly. This is due to the fact that radar data is being corrected for each
time step considering a new rain gauge data as true and under/over estimation of rainfall is
compensated accordingly.

The method presented in this study is an offline calibration considering the presumptions
explained earlier. This is due to the fact that in order to increase the sample size from the
station network, a couple of time steps before and after the current time step are considered.
Although depending on the number of time steps, one may consider the method as a close to
real-time approach. Further investigations might help for real-time assimilation approaches if,
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for example, similar CDFs could be observed for certain events.

Although this method is implemented in Lower Saxony, the same results might be derived in
other study areas. Further investigation is required for investigating the influence of implement-
ing bias correction for practical purposes such as hydrological modelling.
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Chapter 5

Rainfall estimation using moving cars as

rain gauges - laboratory experiments

Abstract

The spatial assessment of short time-step precipitation is a challenging task. Low density
of observation networks, as well as the bias in radar rainfall estimation motivated the new
idea of exploiting cars as moving rain gauges with windshield wipers or optical sensors
as measurement devices. In a preliminary study, this idea has been tested with computer
experiments (HABERLANDT and SESTER, 2010). The results have shown that a high number
of possibly inaccurate measurement devices (moving cars) provide more reliable areal rainfall
estimations than a lower number of precise measurement devices (stationary gauges). Instead
of assuming a relationship between wiper frequency (W) and rainfall intensity (R) with an
arbitrary error, the main objective of this study is to derive valid (W-R) relationships between
sensor readings and rainfall intensity by laboratory experiments. Sensor readings involve the
wiper speed, as well as optical sensors which can be placed on cars and are usually made for
automating wiper activities. A rain simulator with the capability of producing a wide range
of rainfall intensities is designed and constructed. The wiper speed and two optical sensors
are used in the laboratory to measure rainfall intensities, and compare it with tipping bucket
readings as reference. Furthermore, the effect of the car speed on the estimation of rainfall
using a car speed simulator device is investigated. The results show that the sensor readings,
which are observed from manual wiper speed adjustment according to the front visibility, can
be considered as a strong indicator for rainfall intensity, while the automatic wiper adjustment
show weaker performance. Also the sensor readings from optical sensors showed promising
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results toward measuring rainfall rate. It is observed that the car speed has a significant effect
on the rainfall measurement. This effect is highly dependent on the rain type as well as the
windshield angle.

5.1 Introduction

Accurate spatial precipitation assessment for short time steps has been of research interest
for some time. However, due to its high variability in time and space, rainfall observation is
still a challenging task. For instance, SCHILLING (1991) has discussed the need for higher
resolution data with 1 min time resolution and 1 km2 spatial resolution in urban hydrology.
Recent developments regarding modern instrumentation of recording gauges as well as the
implementation of weather radar revealed a bright prospect for estimation of areal precipitation
in short time steps. Recording gauges provide valuable point rainfall depths, but these are still
often poor in density. Weather radar has become an essential source for rainfall estimation. For
example, CHANDRASEKAR et al. (2012) showed the importance of high-resolution rainfall
data using a X-band radar network for urban flash flood application. Despite its high spatial
resolution, radar data has often a large space-time variable bias in rainfall estimation (JAVIER

et al., 2007). There are several innovative methods which discuss new measurement techniques
for rainfall intensity such as satellites (DIOP and GRIMES, 2003), microwave links (UPTON

et al., 2005), and acoustic rain gauges (JONG, 2010). LEIJNSE et al. (2007) and MESSER et al.
(2006) are the pioneers in using radio links from cellular communication networks for rainfall
measurement purposes. This is quite a new way of measuring rainfall and has been under study
by several researchers recently (OVEREEM et al., 2013; ZINEVICH et al., 2009). Most of the
mentioned methods seek to use alternative devices which were intended originally for other
purposes. JONG (2010) has also developed a low cost disdrometer to make measuring rainfall
affordable with a very high spatial and temporal resolution.

The combination of data from different sources can improve the estimation of areal rainfall. For
instance HABERLANDT (2007) and HABERLANDT and SESTER (2010) implemented kriging
with external drift in order to combine radar data with rain gauge network data. EHRET (2002)
applied another method for merging radar data with rain gauge data, called conditional merging.
Other approaches for merging radar data with rain gauge data were suggested by ERDIN et al.
(2012) and VOGL et al. (2012).

The idea of using moving cars as rainfall measurement devices was proposed for the first time
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by HABERLANDT and SESTER (2010). They use wiper speed (W) as an indication of rainfall
rate (R) by applying a hypothetical (W-R) relationship with an assumption about the rainfall
rate estimation error. A traffic model has been applied to generate car trajectories on roads
in a river basin. Radar data has been used as reference rainfall to evaluate the work. The
rain rate for rain gauges and moving cars has been extracted from the radar data. Afterwards,
the results of assessing areal rainfall by implementing ordinary kriging for rain gauges and
indicator kriging for moving cars have been compared. These results show that a large number
of inaccurate measurement devices would improve the spatial precipitation assessment in
comparison to a couple of accurate devices. Besides, this new rainfall information will provide
a good possibility to use this data for merging with other sources of data like radar or station
data.

The main objective of this study is to develop and analyze the relationships between sensor
readings (W) and rainfall intensity (R) by laboratory experiments. Sensor readings in this
paper involve wiper speed, which is controlled either manually by a driver or automatically
by optical sensors, as well as signals from optical sensors which can be placed on cars and
are designed to automate the wiper activity. Within an experimental setup the relevant sensor
reading uncertainties are to be investigated. For that reason a rainfall simulator with the ability
to produce a wide range of rain intensities is designed and constructed. Rain simulators are a
subject of different studies, for example, erosion (FIENER et al., 2011), agriculture, horticulture,
hydrology, etc. Soil erosion experiments mainly use rain simulators which aim to reproduce,
as near as possible, the properties of natural rain (SALLES and POESEN, 1999). The rain
simulator used in this study should have the capability of producing different rain intensities
with homogeneous distribution over the desired area as well as replicating the properties of
natural rain. Analyses of rainfall measured by car sensors are accomplished considering a
tipping bucket as reference device. There are many different environmental factors influencing
the estimation of rainfall by cars in nature like car speed, wind speed, wind direction, windshield
angle, etc. In this study, only the influence of the car speed on the estimation of rainfall is
investigated with the help of a special car speed simulator.

The paper is organized as follows. Section two describes the rainfall simulator and the way it
is designed. The description of the rainfall measurement devices and their functionality are
provided in the third section. Section four discusses the results including the analyses of the
produced rainfall and the derived (W-R) relationships. The last section presents a summary and
conclusion.
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5.2 Rainfall simulator - sprinkler irrigation system

Considering the addressed purposes of the study, a wide range of rainfall intensities needed to be
produced by a rainfall simulator. The points guiding the design of the system are (1) producing
homogeneous rainfall in the laboratory, and (2) the ability of testing cars with measurement
devices under different rain intensities. According to the design principles of the sprinkler
irrigation system, given in FAO (PHOCAIDES, 2000) or other handbooks, sprinkler spacing
depends on the wetted diameter produced by each specific nozzle. Figure 5.1 shows the design
of the rain simulator used for the laboratory experiments. It consists of two layers that have
the capacity of positioning eight nozzles in total. All the measurement devices as well as the
tested cars are placed under the rain simulator, which has a height of approximately 3 m from
the ground. “P” in Fig. 5.1 shows the pressure controller which controls each layer’s pressure.
Considering the specifications for each nozzle provided by the manufacturer, the design of the
rain simulator is based on a pressure of 2 bars and neglects head losses in pipes. To reproduce
a larger range of rain intensities, pressures of 1 bar and 2.5 bars are also applied.
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Figure 5.1: Rain simulator, two layers with 8 nozzles.

Producing different rain intensities is achieved by activating different sets of nozzles and
applying different pressures on the nozzles. Table 5.1 presents detailed information about the
three different nozzle models used in this study regarding their mean rainfall intensity and the
maximum wetted radius under different pressures. It should be pointed out that in contrast
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Table 5.1: Specification of the nozzles used in this study, given by the manufacturer.

Nozzle model Pressure [bar] Precipitation [mm h−1] Radius[m]
1.37 62.2 2.13

S-8A 2.06 50.8 2.43
2.41 52.1 2.43
1.37 15 4.57

S-16A 2.06 18.3 4.88
2.41 17.8 5.18
1.37 45.2 2.13

8A 2.06 42.9 2.43
2.41 36.8 2.74

to natural events, where the environmental factors influence the rain drops and fast rain rate
variations can occur in a short period of time, the rainfall produced in the laboratory is constant
over a certain time.

The numbers from I to IV in Fig. 5.1 shows the four spots available for placing the nozzles on
each layer. Considering the water distribution pattern of the nozzles and the goal to produce
homogeneous rainfall, the positions for the different nozzle types can be selected. Taking
into account the mentioned factors and principles for sprinkler irrigation design, Table 5.2
shows different combinations of the nozzles used in this study. Altogether 8 classes of nozzle
combinations are defined.

In Table 5.3 the Cartesian product of the set of pressures with the set of different nozzle
combinations is given, excluding duplicates, which results in 39 pairs. Due to the capacity of
the pump, only 32 pairs are applied. The stars in Table 5.3 show the sets where the demand is
higher than the pump capacity. The rainfall intensities given in Table 5.3 for the 32 cases are
measured with the tipping bucket reference device and cover a range between 9.2 and 98.1 mm
h−1. For instance, the lowest produced rainfall intensity of 9.2 mm h−1 belongs to the nozzle
combination class 1 applying a pressure of 1 bar using 2 nozzles of the type S-16A on positions
I and III on the 1st layer. The highest rainfall intensity of 98.1 mm h−1 belongs to the nozzle
combination class 5 with an application of 2.5 bar pressure using 8 nozzles of the type S-8A on
positions I, II, III and IV for both layers.

Most of the rain simulators are not able to generate low rainfall intensities, for example,
SHARPLEY and KLEINMAN (2003) were also able to produce rainfall intensities starting from
17.0 mm h−1. The generation of rainfall intensities lower than 9.2 mm h−1 in the laboratory is
hardly possible because available nozzles providing uniform rainfall distribution usually cannot

91



5. Rainfall estimation using moving cars as rain gauges - laboratory experiments

generate lower intensities. However, given that the application is intended primarily for flood
producing situations, this lower rainfall intensity limit is considered sufficient for this initial
study.

The following analyses are performed using a constant rainfall intensity produced by the
sprinklers in a time period of 15 min for all the possible 32 cases.

5.3 Rainfall measurement devices

Two kinds of measurement instruments are used in the laboratory, a reference gauge and devices
which are meant for rainfall measurement with cars. The reference gauge provides the reference
rainfall (R) in relation to the car sensor readings (W). The rainfall measurement devices are
explained in the following.

5.3.1 Reference gauge

Tipping bucket

One of the most common devices of measuring rainfall depths is the tipping bucket rain gauge.
Although the device is widely used for different purposes, it is subject to systematic and random
instrumental errors (CIACH, 2003). However, wind as the most important factor influencing
the measurement accuracy has no relevance in the laboratory. The tipping bucket used in
this study has a minimum measurement resolution of 0.1 mm rainfall. The size of the bucket
and rain intensity are the critical factors in estimating the rainfall for low intensities (LANZA

et al., 2006). Since, in this study, only higher and constant rainfall intensities are applied in
the laboratory, these uncertainties can be neglected. However, they are very critical for field
measurements with finer temporal resolutions. So, it is suggested to implement, instead, more
accurate rainfall measurement devices such as weighing rain gauges, as the reference for field
experiments.
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Table 5.2: Different nozzle combinations implemented in this study.

Class
1 2 3 4 5 6 7 8

1st I S-16A S-16A S-8A S-8A S-8A 8A 8A 8A
layer II – – S-8A S-8A S-8A 8A 8A 8A

III S-16A S-16A S-8A S-8A S-8A 8A 8A 8A
IV – – S-8A S-8A S-8A 8A 8A 8A

2st I – S-16A – S-16A S-8A – S-16A 8A
layer II – – – – S-8A – – 8A

III – S-16A – S-16A S-8A – S-16A 8A
IV – – – – S-8A – – 8A

5.3.2 Sensors considered for rainfall measurement by cars

5.3.2.1 Wiper frequency analysis

The initial idea was to use the windshield wiper frequency as an indicator for rainfall intensity.
The main goal here is to find a relationship between wiper speed (W) and rainfall intensity (R).
This relationship is determined with the help of a stationary car placed under the rain simulator.
Each car has a specific protocol for the wiper system, but the wiper systems are, in general,
similar. The results of one car as a representative are presented in the following.

Two different scenarios of adjusting the wiper speed have been investigated. In the first scenario,
the wiper activity is adjusted according to the visibility through the front screen, which is done
completely manually by a driver. The manual adjustment of the wiper activity is applied by a
person sitting in the driver’s seat and the front visibility is adjusted by the clear view of lamps
placed on the front wall, a similar condition to car’s rear lights on the streets. This means, an
individual person decides when to apply each single wipe, depending on the front visibility. In
the second scenario, an automatic wiper speed adjustment option is used that considers different
sensitivities. It’s worth mentioning that the sensitivity settings can change from one car to
another. This depends on the specific protocols implemented by the manufacturers. Different
sensitivities are mainly defined for drivers’ comfort in different precipitation conditions. In this
case, the wiper system controls the adjustment of the wiper activity. The analysis concerning
wiper frequency is solely carried out for one stationary car here which does not move under the
rainfall simulator. In reality, the wiper speed could change for the same rain intensity depending
on the car type, car speed, rain type, and windshield angle. It should be noted that different
car types have different dimensional characteristics which may influence the aerodynamics of
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Table 5.3: Applied pressures and corresponding produced rain intensities.

Class
1 2 3 4 5 6 7 8

P PCP PCP PCP PCP PCP PCP PCP PCP
layer [bar] [mmh−1] [mmh−1] [mmh−1] [mmh−1] [mmh−1] [mmh−1] [mmh−1] [mmh−1]

1st 1 9.2 – 12.8 – – 24.4 – –
1st 2 16.8 – 37.7 – – 34.4 – –
1st 2.5 20.4 – 55.2 – – 48.4 – –
1st 1 – 14.4 – 11.6 40.7 – 33.4 602nd 1

1st L. 1 – 15.2 – 20.4 42 – 39.2 ∗2nd L. 2
1st L. 1 – 17.6 – 20.4 59.2 – 43.7 ∗2nd L. 2.5
1st L. 2 – 23.1 – 45.2 66.4 – 45.9 ∗2nd L. 2
1st L. 2 – 22.7 – 49.7 84.6 – ∗ ∗2nd L. 2.5
1st L. 2 – 27.4 – 53.6 98.1 – ∗ ∗2nd L. 2.5

Stars indicate the sets where the demand is higher than the pump capacity.

the raindrops and, accordingly, the sensor readings. Besides, different cars have specific wiper
systems which lead to dissimilar classes of wiper frequency. According to the functionality of
the optical sensors measuring the rainfall (i.e., change in beam intensity), any foreign object
passing the optical sensor might have influence on the signals coming from the device. It is
thus important to mention that in automatic wiper systems, each time the wiper cleans off the
windshield it passes in front of the optical sensor, which may affect the signals coming from the
optical sensors controlling the wiper speed. However, in practice this noise could be filtered out
because of a similar effect on the signals every time the wiper blade passes the optical sensor.

5.3.2.2 Optical sensors

As alternative to the wipers, the utilization of optical sensors as measurement devices which
are available on modern cars for automating the wiper activities is investigated here. Two
optical sensors have been employed in this study for measuring rainfall intensity. The output
of the sensors is a function of the amount of water sensed on the surface of the device. The
functionality of the two devices is similar, but the output is different. The two optical sensors
are presented in Fig. 5.2.

The Hydreon sensor (HYDREON, 2012) is fully calibrated by the manufacturer and ready to
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Fig. 2.Optical sensors, left: Xanonex, and right: Hydreon (Hydreon,
2012; Xanonex, 2012).

Figure 5.2: Optical sensors, left: Xanonex, and right: Hydreon (HYDREON, 2012; XANONEX, 2012)

be used for different purposes, for example, measuring rainfall, wiper control on the vehicles,
irrigation control, etc. This device is capable for multipurpose use and is, according to the
specification, able to sense raindrops smaller than half a millimeter. The device bounces
infrared beams within its lens. The effect of drops on the surface allows some of the beams
to escape. This can be explained by the principles of light refraction. The change in beam
intensity is considered as an indication of rain amount on the surface. Here, each sensor reading
corresponds to 0.01 mm of rainfall. Figure 5.3 illustrates how the Hydreon works. As can be
seen, a raindrop on the surface results in escaping some beams and, accordingly, changing in
beam intensity.

d right: Hydreon (Hydreon,

ent dimensional charac-
erodynamics of the rain-
eadings. Besides, differ-
which lead to dissimilar

ding to the functionality
Fig. 3. The functionality of the Hydreon sensor (Hydreon, 2012).

Figure 5.3: The functionality of the Hydreon sensor (HYDREON, 2012).

The Xanonex sensor (HYDREON, 2012) is especially made to be used on cars for automating
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the wiper activities. For this purpose, it can be attached directly to the front windshield. This
device works in a similar way as the Hydreon. Eight LEDs placed in a circle and the sensor in
the center form the main parts of the device. The LEDs emit infrared beams out of the device.
Depending on the water amount on its surface, which acts as obstacles on the windshield, part
of the emitted beam is reflected back to the sensor. In principle, the sensor is implemented
in an electrical circuit where a direct current flows and the flow is blocked for a certain time.
This blockage appears as a signal length, which is a function of water amount. Here, the
accumulation of the signals over a minute [s min−1] is analyzed.

According to the sensing principles of the devices, it is postulated that the rainfall measured by
the optical sensors is solely a function of water amount on the sensors’ surfaces. As a result,
it is assumed here that the droplet size distribution of the artificial rainfall is not relevant for
measuring the correct rainfall intensity by the optical sensors.

5.3.3 Car speed simulator

One of the main influencing factors on the estimation of rainfall by a car is its speed. Analyzing
an object with a certain velocity under rain has been investigated by physicists and other
scientists. BOCCI (2012) has proven that the amount of water hitting an object under rain
depends on its shape, its orientation, wind direction and rain intensity. The main purpose of the
car speed simulator is to investigate this effect in the laboratory.

Fig. 4. Rotating machine used to simulate car speed, with two opti-
cal sensors placed on the device

Figure 5.4: Rotating machine used to simulate car speed, with two optical sensors placed on the devices.
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Figure 5.4 shows the rotating machine which has been used in the laboratory. The electrical
motor of the machine is able to work with different speeds and as a result simulate car speeds.
Two optical sensors are placed on a rotating machine. In order to simulate an average windshield
angle, the Xanonex is placed at an angle of 45◦. By changing the rotational speeds (ω) in the
car speed simulator, different tangential speeds (u) are produced:

u = rω (5.1)

where “r” is the radial distance, which is constant.

In order to measure the rotational speed of the device, a digital laser based tachometer with the
stated accuracy of ± 0.05 % + 1 digit is used.

It is necessary to mention that the devices used here are under the rain without being cleaned
off by the wiper system, unlike when implemented on cars with the wiper system cleaning off
the droplets on the sensors repeatedly.

The experiments with the car speed simulator are carried out separately from the experiments
for deriving the (W-R) relationships. For each individual run, the dynamic sensors are compared
with the static ones of the same type. Speeds of up to 45 km h−1 are reached and tested.

The estimation of rainfall is affected by different factors including (a) the horizontal angle of
the optical sensor which is representing the windshield angle, (b) the rain droplet velocity, and
(c) the car speed. The rain droplet velocity can be interpreted as an indicator for the rain type.
Considering the direction of the moving plane (car) as the (x) axis and the direction of the
falling rain drops as the (z) axis, the windshield angle affects the projected area corresponding
to both axes.

BOCCI (2012) introduced v = (vx,vy,vz) as the rain velocity where the vertical component,
vz, depends on the drop size. He called ρ the ratio between the mass of water drops that are
found within a given volume and the volume itself. Afterwards, he defined the rain density as
vector:

j0 = ρv (5.2)
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He then introduced a vector for the moving objects, considered as a plane, representing the
velocity u = (u,0,0). Subsequently, for the moving objects, an apparent rain density j, which
differs from j0 can be defined:

j(u) = ρ(v−u) = ρ(vx−u,vy,vz). (5.3)

He proposed the following equation representing the rain flux as the surface integral over the
rain density j:

Φ(u) =
∮

S
jdA. (5.4)

Restricting the integration to the “wet surface” of the object, the rain flux is defined as

Φ(u) =
∮

Sw

| jdA|. (5.5)

Assuming always vertical rainfall (no horizontal effect of the wind, vx = 0 and vy = 0) and θ as
the windshield angle, the ratio between the rain flux observed by the dynamic device and static
device becomes

η =
Φdynamic(u)
Φstatic(u)

=
ux ·A · sin(θ)+ vz ·A · cos(θ)

vz ·A
=

ux · sin(θ)
vz

+ cos(θ). (5.6)

This theoretically obtained ratio η will be compared later against the empirically obtained
results from the experiments with the rotating machine.

5.3.4 Data processing

The data from the dynamic optical sensors are transmitted using a wireless connection. Pro-
cessing of the data by a single PC requires no further synchronization. In order to process the
data from the tipping bucket and optical sensors, free data logger software (HTerm) has been
used (HAMMER, 2006).
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5.4 Analysis of the produced rainfall

5.4.1 Homogeneity of the produced rainfall

The measurement devices are placed under the rain simulator at different locations. Since the
rain amounts on these points are compared, the homogeneity of the produced rainfall needed to
be investigated. The homogeneity of the rainfall produced in the laboratory is verified with the
help of 48 beakers. They are symmetrically placed at a distance of 50 cm from each other. For
each individual setting of the rain simulator, the amount of water kept in each of the beakers
after each run is measured. Figure 5.5 shows an example of the water depth distribution for a
pressure of 2 bars and the nozzle combination class 6 in Table 5.2.
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Figure 5.5: Distribution of the accumulated rainfall depth over the sprinkler area for the case of nozzle combination
class 6 with 2 bar pressure and the permanent location of measurement devices.

It shows that the water amount kept in the beakers at the two locations, where tipping bucket and
the optical sensors are located, is not identical but very similar (48 and 50 mm, respectively).
However, the two optical sensors receive the same amount of water because of their proximity.
The water depth distribution varies between the different cases of nozzle combinations and
pressures. In order to assess the error resulting from non-homogeneous rainfall distribution the
relative deviation in water depth between the two points at the locations of the tipping bucket
and the optical sensors is calculated as follows:
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Table 5.4: Homogeneity statistics related to 21 cases of nozzle combination and pressures applied in the laboratory
experiments.

Class Pressure Mean Std dev CV RDev
[bar] [mm] [mm] [%] [%]

1 9.25 3.48 37.6 00.00
Class 1 2 13.42 6.85 51.0 21.10

2.5 17.46 7.82 44.7 35.00
1 16.58 5.87 35.4 45.00

Class 2 2 32.04 8.75 27.3 14.30
2.5 39.54 6.14 15.5 25.00
1 26.67 7.84 29.3 25.90

Class 3 2 35.79 8.80 24.5 25.00
2.5 46.04 12.72 27.6 6.70
1 31.04 5.09 16.3 11.40

Class 4 2 57.21 10.31 18.0 15.70
2.5 61.79 10.28 16.6 2.60
1 37.08 6.26 16.8 22.60

Class 5 2 65.13 8.27 12.6 31.10
2.5 65.42 9.66 14.7 4.80
1 31.21 6.93 22.2 20.00

Class 6 2 49.63 5.28 10.6 4.20
2.5 55.29 6.65 12.0 8.60
1 46.63 6.01 12.8 0.00

Class 7 2 61.88 9.89 15.9 10.30
2.5 – – – –
1 66.25 8.39 12.6 2.50

Class 8 2 – – – –
2.5 – – – –

RDev =
xtipp− xopt.sensors

xtipp
×100. (5.7)

Table 5.4 shows statistical information of the produced rainfall for a selection of 21 cases of
different pressures and nozzle combination classes. The rainfall amount at the points on the
edges of the sprinkler area is much higher than at the inner points because of the proximity of
these points to the nozzles and the wall. For this reason, the statistics in Table 5.4 are calculated
without considering these outer points, including only the 24 inner measurements.

Considering the total sprinkler area covered by those 24 beakers the rainfall distribution is still
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quite inhomogeneous as shown especially by the coefficient of variation (CV) in Table 5.4.
Although the design of the rain simulator is based on 2 bar pressure, a pressure of 2 bars does
not always provide the most homogeneous distribution. For example, a pressure of 1 bar in
class 1 provides a more even rainfall depth distribution, whereas a pressure of 2 bars in class 5
provides more homogeneous rainfall than the other two pressures.

However, in order to assess the influence of the rainfall distribution on the (W-R) relationships
the relative deviation RDev between the measurement points is relevant. Positive values of
the RDev illustrate the situations in which the water depths in beakers at the tipping bucket
location are larger than in beakers at the locations of the optical sensors, and vice versa. For
example, the relative deviation RDev for class 1 at a pressure of 1 bar is about 0.0 % meaning
that the amount of water kept in the beakers at the two points is identical,while at a pressure
of 2 bars RDev is 21.1 % meaning more water has been kept in the beaker where the tipping
bucket stands than in the beaker where the optical sensors are located. The average value of
all the estimated relative deviations is − 5.8 %. This average error is most relevant to assess
the influence of the non-homogeneous rainfall distribution on the estimation of the (W-R)
relationships. A mean relative deviation of about −6 % in rainfall depth between reference and
sensor locations is assumed to be acceptable and to have only little influence on estimation of
the (W-R) relationships.

5.4.2 W-R relationship

5.4.2.1 Wiper frequency

First, the initial idea of considering wiper speed as an indicator for the rain intensity is
investigated. Figure 5.6 shows the results of a linear regression for the (W-R) relationship of a
Ford SMAX automobile with automatic wiper system where a tipping bucket gauge is taken as
the reference device. Each point illustrates an individual run lasting between 10 and 15 min.
The wiper speed is adjusted either completely manually (Fig. 5.6, left panel) or automatically
(Fig. 5.6, right panel). The dashed lines illustrate the 95 % prediction limits for the prediction
of an individual observation. Because of technical constraints and restrictions in using all the
nozzles when placing the car, depending on its dimension, it was not possible to apply all the
cases. As a result, the number of points in Fig. 5.6 differs from the number of possible runs
provided in Table 5.3. The same is valid for the automatic wiper adjustment when the highest
wiper frequency (when not moving) is 60 w min−1 (“w” represents the number of wipes). Here,
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the experiment is stopped after reaching this threshold.E. Rabiei et al.: Rainfall estimation using moving cars as rain gauges – laboratory
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ationship between wiper frequency (W ) and rainfall intensity (R) using manually (left panel) and automaticall
per activities and the tipping bucket as the reference using a Ford SMAX as test car.Figure 5.6: Relationship between wiper frequency (W) and rainfall intensity (R) using manually (left panel) and

automatically (right panel) adjusted wiper activities and the tipping bucket as the reference using a
Ford SMAX as test car.

There are different sensitivities defined for the automatic wiper system in this car, only one of
the higher sensitivities is illustrated here.

Apparently, a relatively strong relationship exists between rainfall intensity and wiper speed
for the manual adjustment. The result of the wiper activity adjustment, according to front
visibility, supports the initial idea of considering wiper speed as an independent variable in
the (W-R) relationship. The relationship between automatic wiper frequency adjustment and
rainfall intensity shows much weaker correlation and higher uncertainty. Reasons for that may
be (a) too simple data processing of data readings from the optical sensor controlling the wiper
activity, and (b) the point measurement of the optical sensor which may not be representative
for the total water amount on the windshield.

Apart from the better suitability of the manual wiper adjustment for the establishment of a
(W-R) relationship, it may be concluded that the manual adjustment of the wiper speed is
superior for drivers when compared to the automatic wiper system. So, it may be expected
that advancements in the development of automatic wiper systems will provide better (W-R)
relationships in the future. With the current sensors, the driver has to adjust the sensitivity
manually for different conditions to have optimal front visibility. This should not be the case if
the automatic wiper control system works optimally.

Here, at first a linear (W-R) relationship is assumed for all the analyses. However, since the lines
do not pass the origin, the relationship between the two variables may be nonlinear especially
for small intensities.

102



5.4 Analysis of the produced rainfall

5.4.2.2 Optical sensors

Figure 5.7 shows the (W-R) relationships between the data readings from the optical sensors
and the rainfall intensity measured by the tipping bucket. Each point in this figure represents
one individual run lasting between 10 and 15 min; the dashed lines illustrate the 95% prediction
intervals. Although the Hydreon sensor was considered as calibrated, Fig. 5.7b shows an
underestimation of the rainfall by this device. However, the high coefficient of determination
(R2) shows that this underestimation could be interpreted as a systematic error which may
be corrected by recalibration. The relationship between the data readings from the Xanonex
optical sensor and the rainfall intensity from tipping bucket shows lower R2 value (Fig. 5.7a)
compared to the Hydreon. A possible reason for the lower R2 value and the concentration of
the data readings in the range between 20 and 40 [s min−1], Fig. 5.7c) might be the nonlinear
relationship between the signal lengths and measured rainfall intensities. The higher R2 value
for the Hydreon in comparison to Xanonex may also be due to a better calibration or a better
suitability of the device. The correlation between the data readings from the two optical sensors
(Fig. 5.7c) is not as strong as the former two. This shows the difference in the calibration
procedure of the devices as well as their sensitivities.

The similarity of the derived (W-R) relationships for the automatic wiper adjustment (Fig.
5.6, right panel) and the Xanonex (Fig. 5.7a) shows the likely comparable data processing
in both cases (i.e., a possible similar principle to the derived (W-R) relationship). It can be
concluded that a better calibration (e.g., considering nonlinear relationship) for the optical
sensors controlling the automatic wiper systems may improve the performance of the system
resulting in more convenient automatic wiper system for drivers.

5.4.3 Car speed simulator

Car speed is one of the important influential factors for the estimation of rainfall by moving
cars. Theoretically, there is a positive linear relationship between the velocity of an object with
a plane surface under rain and the water mass hitting the object (BOCCI, 2012). This means
when a car moves with higher speed the rainfall intensity measured by car sensors would be
overestimated compared to a stationary ground reference value, linearly proportional to its
speed.

Figure 5.8 illustrates the results of the car speed simulator in the laboratory. This does not
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Fig. 7. Comparison of the optical sensors with the reference device,

data readings from the two optical sensors (Fig. 7c) is not as
strong as the former two. This shows the difference in the cal-
ibration procedure of the devices as well as their sensitivities.
The similarity of the derived W–R relationships for the

automatic wiper adjustment (Fig. 6, right panel) and the
Xanonex (Fig. 7a) shows the likely comparable data pro-
cessing in both cases (i.e., a possible similar principle to the
derived W–R relationship). It can be concluded that a bet-
ter calibration (e.g., considering nonlinear relationship) for
the optical sensors controlling the automatic wiper systems
may improve the performance of the system resulting in more
convenient automatic wiper system for drivers.

4.3 Car speed simulator

Car speed is one of the important influential factors for the
estimation of rainfall by moving cars. Theoretically, there is
a positive linear relationship between the velocity of an ob-
ject with a plane surface under rain and the water mass hitting
the object (Bocci, 2012). This means when a car moves with
higher speed the rainfall intensity measured by car sensors
would be overestimated compared to a stationary ground ref-
erence value, linearly proportional to its speed.
Figure 8 illustrates the results of the car speed simulator

in the laboratory. This does not involve using a car but the
car speed simulator (see Fig. 3). The black line represents the
mean ratio of the sensor readings from the dynamic and static
device η (Eq. 6) versus the sensor speed in different rainfall
intensities. The gray area shows the range between the upper
and lower quartile considering 22 runs with different rainfall
intensities. Apparently, the ratios derived in the laboratory
are not linear and have a tendency to become constant af-
ter a certain speed. There may be three reasons explaining
this behavior: (a) the shielding effect of the remaining drops
after a certain speed, which introduces a hypothetical capac-
ity for the sensor’s surface (i.e., the accumulated drops may
prevent the incoming drops from affecting the sensor read-
ings); (b) the centrifugal force on the drops, which draws the
remaining drops from the center of rotation and may cause
noises in the sensor readings; and (c) the special aerodynam-

Figure 5.7: Comparison of the optical sensors with the reference device, tipping bucket, with 95 % prediction
limits
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involve using a car but the car speed simulator (see Fig. 5.3). The black line represents the
mean ratio of the sensor readings from the dynamic and static device η (Eq. 5.6) versus
the sensor speed in different rainfall intensities. The gray area shows the range between the
upper and lower quartile considering 22 runs with different rainfall intensities. Apparently, the
ratios derived in the laboratory are not linear and have a tendency to become constant after a
certain speed. There may be three reasons explaining this behavior: (a) the shielding effect
of the remaining drops after a certain speed, which introduces a hypothetical capacity for the
sensor’s surface (i.e., the accumulated drops may prevent the incoming drops from affecting
the sensor readings); (b) the centrifugal force on the drops, which draws the remaining drops
from the center of rotation and may cause noises in the sensor readings; and (c) the special
aerodynamics of the small plane carrying the optical sensor in the laboratory experiments (see
below). Assuming that the first linear part of the measurements (Fig. 5.8b up to 20 km h−1) is
correct; a linear extrapolation would provide the complete relationship which may be applied
also for higher speeds.4710 E. Rabiei et al.: Rainfall estimation using moving cars as rain gauges – laboratory experiments

a) b)

Fig. 8. Black line: experimental results of the car speed simulator with gray uncertainty boundaries. (a) theoretical ratios for assumed rainfall
velocity of 2 m s−1 (blue) and 5 m s−1 (red). (b) theoretical ratios for assumed windshield angle of 70◦ (green) and 45◦ (purple) at an
assumed raindrop velocity of 5 m s−1. The empirical relationship is derived by the car speed simulator and there is no car involved in this
experiment.

line and the red line in Fig. 8a show the theoretical ratios for
d i f ll l i f 2 d 1 i l

sensor readings in this study: wiper speed, and readings from
i l hi h b l d

Figure 5.8: Black line: experimental results of the car speed simulator with gray uncertainty boundaries. a)
Theoretical ratios for assumed rainfall velocity of 2 m s−1 (blue) and 5 m s−1 (red). b) Theoretical
ratios for assumed windshield angle of 70◦ (green) and 45◦ (purple) at an assumed raindrop velocity
of 5 m s−1. The empirical relationship is derived by the car speed simulator and there is no car
involved in this experiment.

It has been discussed that the ratio η (Eq. 5.6) between the dynamic device and the static device
dependents on (a) rainfall velocity (vz), (b) the horizontal angle (θ ), and (c) the object speed
(ux ). The rain drop velocity could be interpreted as the rain type. LULL (1959) has shown that
there is a strong relationship between rain type and fall velocity; usually the higher the fall
velocities, the heavier the rain. In his classification, velocities from 0.003 to 7.9 m s−1 cover
the rain types from fog to extreme rain. Using Eq. (5.6) with θ = 45◦, the blue line and the
red line in Fig. 5.8a show the theoretical ratios for assumed rainfall velocity of 2 and 5 m s−1,
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respectively.

Due to the fact that the rainfall produced in the laboratory is from the nozzles with a height
of 3 m only, the terminal velocity of the raindrops is lower than natural events. Knowing
this, the black line in Fig. 5.8 should have a steeper slope compared with red and blue lines
representing natural rain with higher velocities. This uncharacteristic behavior may be explained
by aerodynamic effects. That is the small plane used in the laboratory may not receive all drops
in the air volume in front, but several drops may be blown away.

The windshield angle is a factor which influences the rainfall estimation by the moving cars.
By assuming the raindrop velocity at 5 m s−1 in Eq. (5.6), the green line and the purple line
illustrate the effect of the angle on the ratio corresponding to an angle of 70◦ and an angle of
45◦ in Fig. 5.8b, respectively. Note that the black lines and the gray range in Fig. 5.8a and
b represent the same data; the only difference between the two figures is the scaling of the y

axis.

Figure 5.8 indicates also that the effect of rain type, in terms of rainfall velocity, on the
overestimation of rainfall is likely larger than the influence of the windshield angle.

5.5 Summary and conclusions

The feasibility of considering moving cars as rain gauges to estimate areal rainfall is discussed
in theory using computer experiments by HABERLANDT and SESTER (2010). The main
objective of this study was to develop a relationship between sensor readings (W) and rain rate
(R) based on laboratory experiments to quantify the errors. Therefore, a rainfall simulator with
the ability to produce a wide range of rain intensities is designed and constructed. Analyses of
the rainfall produced in the laboratory are accomplished using a tipping bucket as reference
device. Two variables were considered as sensor readings in this study: wiper speed, and
readings from two optical sensors which can be placed on cars to automate wiper activity.
The use of wiper speed as an indicator for the rain intensity is investigated by adjusting the
wiper speed either completely manually, which is executed by a person and might be subjective
depending on the person in charge, or automatically. Additionally, the influence of the car
speed on the estimation of the rainfall is investigated with the help of a car speed simulator.

The results of this investigation can be summarized as follows:
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1. The result of the manual wiper activity adjustment, according to front visibility, shows
a strong relationship between rainfall intensity and wiper speed. This supports the
initial idea of considering wiper speed as the main independent variable in the (W-R)
relationship.

2. The derived (W-R) relationship between automatic wiper frequency adjustment and
rainfall intensity shows weaker correlation and higher uncertainty. Possible reasons
for that include data processing of the readings from the optical sensor and the point
measurement of the optical sensors controlling the wiper activity.

3. In addition to wiper activity analyses, the (W-R) relationship has been derived for optical
sensors. The Hydreon sensor was considered as calibrated, but an underestimation of the
rainfall sensed by the device has been observed. This underestimation may be interpreted
as a systematic error considering a relatively strong (W-R) relationship for the Hydreon
and the low relative deviation between the sensor and the tipping bucket. The derived
(W-R) relationship for the Xanonex is weaker. Due to the narrow range of the data
readings and also a large (non-zero) intercept in the (W-R) relationship, better calibration
of the device may lead to better (W-R) relationships.

4. The similarity of the derived (W-R) relationship for automatic wiper adjustment and the
Xanonex optical sensor shows possible similarity in data processing for both cases. It can
be concluded that a better calibration of the optical sensor controlling the wiper activities
may improve the (W-R) relationship as well as the performance of the automatic wiper
system for drivers.

5. A positive relationship between the velocity of the optical sensor located on the car simu-
lator under rain and the water mass hitting the sensor has been observed. Theoretically,
a positive linear relationship exists between the two criteria, but in the laboratory the
results are only approximately linear up to a speed of about 20 km h−1 and become
almost constant after that. Assuming that the first part of the function is correct, a linear
extrapolation would provide the complete relationship which may also be applied for
higher speeds.

6. Interpreting the drop velocity as the rain type, it has been observed that the effect of
rain type on the overestimation of rainfall is larger than the influence of the windshield
angle. This means that by knowing the drop velocity, the rainfall overestimation could be
corrected more accurately.
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Altogether, the results of the laboratory experiments have shown that it is possible to derive
(W-R) relationships from the sensor readings. However, there are many influential factors
which need further investigation, for example, the aerodynamics of the plane in the car speed
simulator or the droplet size distribution in the laboratory.

One limitation of this study is producing rainfall intensities only in the range from 9 to 98 mm
h−1. This range starts from a quite high rain intensity, compared with natural rain events, but it
is quite wide for analyzing the sensor readings from optical sensors.

Equation (5.6) shows that by changing the windshield angle to 0◦, the derived ratio between
the dynamic optical sensor and static optical sensor becomes 1. This means that by placing
an optical sensor completely horizontal, there would be no relative influence of the car speed
on the sensor readings. Future work covers investigating an optical sensor when located
horizontally in the laboratory, the influence of the droplet size distributions, different car types
and other factors. Currently, field experiments are carried out to obtain (W-R) relationships
in natural conditions especially for lower rain intensities. Results of the field experiments
and comparisons with the laboratory derived (W-R) relationships will be reported elsewhere.
Preliminary results and possible theoretical methods of the field experiments are investigated
by FITZNER et al. (2013). The rainfall data obtained by car measurements might be used
separately or more likely to be combined with other sources of rainfall observations like radar
data and point measurements and need to be tested for different hydrological applications.
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Chapter 6

Areal rainfall estimation using moving

cars - computer experiments including

hydrological modeling

Abstract

The need for high temporal and spatial resolution precipitation data for hydrological analyses
has been discussed in several studies. Although rain gauges provide valuable information, a
very dense rain gauge network is costly. As a result, several new ideas have been emerged to
help estimating areal rainfall with higher temporal and spatial resolution. RABIEI et al. (2013)
observed that moving cars, called RainCars (RCs), can potentially be a new source of data
for measuring rain rate. The optical sensors used in that study are designed for operating the
windscreen wipers and showed promising results for rainfall measurement purposes. Their
measurement accuracy has been quantified in laboratory experiments. Considering explicitly
those errors, the main objective of this study is to investigate the benefit of using RCs for
estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is
considered as the reference and the other sources of data, i.e. RCs and rain gauges, are extracted
from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges
and reference data helps to investigate the benefit of the RCs. The value of this additional
source of data is not only assessed for areal rainfall estimation performance, but also for use in
hydrological modeling. The results show that the RCs considering measurement errors derived
from laboratory experiments provide useful additional information for areal rainfall estimation
as well as for hydrological modeling. Even assuming higher uncertainties for RCs as obtained
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from the laboratory up to a certain level is observed practical.

6.1 Introduction

Rainfall data is one of the most important information in hydrological analyses. The spatial and
temporal resolutions of the data are crucial for the quality of hydrological analyses. Different
modeling scales usually require different resolutions of input data. A relatively high spatial
and temporal resolution is required for smaller scale modeling such as in urban hydrology,
whereas data with coarser resolution could be sufficient for larger scale hydrological modeling.
Hypothetically, the performance of a model could be objectively judged when input data of a
high quality is provided. In particular, the spatial and temporal resolution of rainfall data over a
study area influences the model performance significantly. The quality of rainfall estimation
depends, on the one hand, on the data availability, i.e. rain gauge network density, the temporal
resolution of data and/or availability of additional information such as Digital Elevation Model
(DEM) or radar data, and, on the other hand, on the interpolation techniques used for areal
rainfall estimation.

Conventional rain gauges provide accurate point rainfall depth, but they are sparsely and
irregularly located over the study area. This results in missing rainfall information where no
rain gauge is available. On the other hand, a dense rain gauge network is costly. There are
several innovative ideas discussing new manners of measuring rainfall. Weather radar data with
relatively high spatial and temporal resolution are widely used for rainfall estimation purposes,
but the data are subject to several sources of error. Besides, weather radar is not available all
over the world. Estimating rainfall using satellite data has become of interest for practical
purposes, in particular for remote areas, because of good spatial coverage and being freely
available. The satellite data provide precipitation data globally, but they suffer from the intrinsic
weakness of the principle behind estimating rainfall, i.e. finding the relationship between
observable variables from space (e.g. cloud top temperature and the presence of frozen particles
aloft) and rain intensity. The satellite data are relatively coarse for local use. The TRMM
PR data, for example, is provided in 3-hour temporal resolution and a 0.25-degree by 0.25-
degree spatial resolution. PRAKASH et al. (2016) compared the new GPM-based multi-satellite
IMERG precipitation estimates with the TRMM Multi-satellite Precipitation Analysis (TMPA)
in capturing heavy rainfall over India for the southwest monsoon season. They observed notably
better estimation from the GPM data. KIDD and LEVIZZANI (2011) and KIDD and HUFFMAN

(2011) have summarized some of the efforts given to improve the accuracy of satellite rainfall
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estimation. Several studies investigated rainfall estimation using microwave links as another
potential source of data (OVEREEM et al., 2013; RAHIMI et al., 2006; UPTON et al., 2005;
ZINEVICH et al., 2009), where a line-averaged precipitation is estimated therefrom. Acoustic
rain gauges are an economical alternative which analyses the raindrops sound similar to when
one listens to rain in a tent (JONG, 2010). Most of the mentioned studies seek for alternatives
which either are not initially intended for rainfall estimation or have low operational costs.

HABERLANDT and SESTER (2010) hypothetically presented the potential of using moving
cars for rainfall measurement purposes, called RainCars (RCs). They pointed at the potential
of using RCs because of the widespread availability of cars especially in countries such as
Germany. They concluded that a large number of hypothetically inaccurate devices could help
in improving the estimation of rainfall compared with just a few of accurate devices. RABIEI

et al. (2013) investigated the possibility of using RCs for rainfall estimation with laboratory
experiments. A strong relationship between rainfall intensity and the wiper speed, adjusted with
front visibility, was observed. The rainfall estimation by the two optical sensors, HYDREON

(2015) and XANONEX (2015), implemented in that study showed also promising results.
Whether the derived accuracy of the sensors is sufficient for areal rainfall estimation or not is
a question which is addressed in this study. Because of the low number of real observations
with RCs available on roads, the investigations are carried out by computer experiments. A
continuous investigation using RCs with the derived uncertainties from laboratory experiments
for a long period of time as well as implementing the data in a hydrological model would
answer three important scientific questions: 1) Is the accuracy of optical sensors investigated
by RABIEI et al. (2013) sufficient for areal rainfall estimation as well as discharge simulation?
2) What is the minimum required accuracy of RCs measuring rain rate for estimation as well as
for discharge simulation? and 3) What is the influence of using RCs over a longer period of
time rather than just for certain events? These questions address the main objective of the study
which is a better assessment of the value of the RCs for areal rainfall estimation rather than
only for point measurement purposes.

The influence of input data quality on hydrological modeling performances has been under
investigation by several studies. For example, SHRESTHA et al. (2006) investigated the
influence of data resolution on the performance of a macro-scale distributed hydrological model
(MaScOD). They split the factors influencing the quality of model performance into three
categories: (1) the quality of the model, (2) the selected model parameters, and (3) the quality
of the input data. The advantages of using RCs are assumed to provide a denser measurment
network and additional information. XU et al. (2013) investigated the influence of rain gauge
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density and network distribution on the Xinanjiang River in China by the Xinanjiang Model.
They found that the probability of getting a poor model performance increases significantly
when the number of rain gauges falls below a certain threshold. They also concluded that the
number of rain gauges above a certain threshold does not improve the model performance
meaningfully. They realized that not only the number of stations is important, but also the
spatial configuration of rain gauges.

This paper is organized as follows. The methodologies implemented in this study are presented
after the “Introduction”. Chapter 3 provides detailed information regarding the study area and
data used in this study. The results and corresponding discussions are provided in chapter 4.
Thereafter, a summary of the work and comparison of the results is presented with a more
general conclusion.

6.2 Methods

Since there are not enough observed data from RCs, this study uses computer simulation. In
order to carry out the analyses, rainfall fields as reference data are required. The point data
from stations and RCs are extracted from the reference data and compared accordingly. There
are essentially two possibilities to obtain reference data: (1) simulating the rainfall field or (2)
using an available data source such as radar data. The latter choice has the advantage of being
closer to reality and avoiding additional rainfall modeling. As a result, it is decided to consider
radar data as reference and to extract the point data from the radar data. As radar data has its
deficiencies, the Mean Field Bias method is applied to correct the error in a straightforward
way. The positions of RCs are provided by a traffic model and rainfall data are extracted from
the reference data accordingly. The results are compared with what occurs in practice, i.e.
using only the rain gauge network. The uncertainties for the rainfall measurement by RCs are
taken from the results of the laboratory experiments (RABIEI et al., 2013). For a more general
conclusion, larger uncertainties are also investigated.

6.2.1 Mean Field Bias correction

The Mean Field Bias (MFB) correction adjusts the radar data with the observed rain gauge
data. Assuming that the rain gauge network provides accurate point precipitation data, the radar
images could be corrected by:
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B(t) =
∑

n
i=1 ∑

m
j=1 G(ti, j)

∑
n
i=1 ∑

m
j=1 R(ti, j)

R∗( j) = B(t)×R( j)

(6.1)

where G(ti, j) is the precipitation amount from rain gauge i. j is the time step within a time
interval t. R(ti, j) represents the precipitation amount on the radar pixel where rain gauge i is
located at the time j. In fact, the B coefficient represents the relationship between observation
data G(ti, j) and the corresponding extracted radar-point data R(ti, j). R and R∗ are the original
and corrected radar rainfall, respectively. In this study, a daily time interval is considered for
estimating the coefficient B for each time step, which results in having a constant correction
factor for each day, individually. This means that m is 288 as the data are provided at a 5 minute
temporal resolution. For the days on which Eq. 6.1 has an indeterminate form, i.e. when no
rainfall is recorded by the rain gauge network, the B coefficient is set to 1.

Applying MFB does not have any smoothing effect, or, in other words, the structure of images
after using MFB is very similar to that in the original radar data. Applying MFB to radar
data was considered here to prevent unrealistic radar data values, whereas using radar data
directly would also be possible since the relative errors obtained in the end would not change
significantly.

6.2.2 Traffic model

The traffic model used in this study is similar to the one used by HABERLANDT and SESTER

(2010). It is based on the road data derived from the Open Street Map (OSM). The traffic
density is estimated using the data from the Federal Highway Research Institute (BASt) which
provides the number of cars per day for certain points along federal roads and highways.
For each particular catchment, those traffic count points within and close to the catchment,
concerning federal roads (corresponding to the OSM road type “primary”), are selected. The
traffic count number per catchment is estimated therefrom. Based on this number, cars are
generated applying the methodology described in the following. The assumptions underlying
the traffic model are always conservative assumptions concerning the number and distribution
of cars. This means that the number and spatial distribution of the cars is considered lower and
less dense in the model than in reality:
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(a) Only larger roads on/and surrounding the study area are considered which includes
the “primary” and “secondary” OSM road types (corresponding to the German “Bun-

desstraßen” and “Landstraßen” road types). Because of the relatively high practical
uncertainties related to the RCs on highways, these road types are excluded. Smaller
roads are also neglected due to the low traffic.

(b) An average speed of 80 km/h is considered to calculate the number of cars for each
catchment. The assumed average speed is higher than in practice, which results in a lower
number of cars than in reality (see Eq. 6.2). This follows the conservative assumption
mentioned earlier.

(c) Due to the lack of traffic count data for the “secondary” OSM road type, the traffic count
for this road type is calculated using half the “federal roads” (OSM “primary” roads)
traffic count data. This also follows the conservative considerations for the traffic model
assumptions.

In order to estimate the number of cars driving simultaneously within and around a catchment,
the following equation is used for each catchment and each of the two road types separately:

t =
X
h

z = t−1× v̄

n =
l
z

(6.2)

where X is the number of cars from the traffic data over a certain time period h, v̄ is the
assumed average car speed and z is the space between two cars. The number of cars driving
simultaneously in and around the catchment area n is then estimated using the total roads
length l on a catchment. Due to the long period of time considered in this study, the day-night
variation in traffic count is considered insignificant. However, different RC density scenarios
address the possible change in the number of RCs. Therefore, the daily average number is used
in this study. This number is subsequently used for generating cars randomly on the OSM road
network at each time step. This means that the points representing RCs are not dependent in
successive time steps, i.e. no car identities are modeled.

It is important to notice that car speed, wind speed and wind direction influence the performance
of RainCars in practice. RABIEI et al. (2013) proposed using a linear relationship for taking the
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effect of the car speed for RainCars into consideration. A similar approach could be applied for
compensating the effect of wind speed, knowing the wind direction.

6.2.3 Network density of rain stations

In order to compare the network densities for rain gauges and RC scenarios, the network
density of each subcatchment for each scenario is calculated in a similar way to that used by
(HABERLANDT and SESTER, 2010). The network density is calculated using the kernel density
estimator (SILVERMAN, 1986):

Di =
1

πr2

n

∑
j=1

k j with k j =

3
(

1−
(d

r

)2
)2

for d ≤ r

0 for d > r
(6.3)

where n is the number of observation points (either stations or RCs) within the search radius r

= 20000 m and d is the distance to subcatchment cells (the ones for which the density is being
calculated). Di is calculated for each subcatchment cell and averaged over all subcatchment cells.
The kernel density estimator considers not only the observation points in the subcatchment, but
also the ones within the search radius.

6.2.4 Uncertainties for RainCars

In order to consider the uncertainties in rainfall measurement using RCs, the results of laboratory
experiments (RABIEI et al., 2013) are utilized. The relationship between sensor reading (W)
and rainfall intensity (R) is named W-R relationship. Signal lengths from the optical sensors
are considered as sensor readings.

R̂ = a+bW + ε (6.4)

where R̂ is the rainfall intensity, W is the sensor reading, a and b are the linear regression
coefficients and ε represents the random error. The assumption behind the linear regression
model is that the error is normally distributed, with mean = 0 and variance = σ2. This provides
a simple error model for the measured uncertainties from RCs.
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Three different linear W-R relationships between sensor readings and rain rate are discussed
by RABIEI et al. (2013). The first relationship considers wiper frequency as sensor. As wiper
activity is influenced by several factors, such as driver preferences, car speed, number of wiper
speed levels defined for each car type, etc, this alternative is considered as impractical. The two
other remaining alternatives are the W-R relationships derived from the optical sensors. Two
optical sensors, Hydreon and Xanonex, with promising results were investigated by RABIEI

et al. (2013) and suggested for further use. The two sensors performed similarly, whereas the
Hydreon performed slightly better. Because of the Xanonex shape and its ease of installation
on cars, it is decided to investigate the Xanonex W-R relationship. The device bounces infrared
beams within its lens. Rain drops escape some of the beams, and consequently, drops could
be sensed when there is a change in beam intensity. This change could represent the rain rate
observed by the sensor. More detailed information about the functionality of the device could
be found in RABIEI et al. (2013).

Although a relatively strong relationship between the two variables exists, one encounters
difficulties for smaller rain rates. According to the estimated regression line, negative rainfall
could be obtained using Eq. 6.4, which is not possible. By neglecting the negative values, a
systematic positive bias would enter the data. In addition, the uncertainties of the devices on the
market are usually expressed as a percentage, which illustrates a smaller absolute error when
smaller values are measured. Considering Eq. 6.4 does not account for those two problems.
Therefore, in order to investigate the uncertainties for the sensor readings, a power regression
model is used to describe the W-R relationship:

R̂ = a×W b× ε (6.5)

where R̂ is the rainfall intensity, W is the sensor reading, a and b are the regression coefficients
and ε is the random error. Taking the logarithm of both sides of Eq. 6.5 gives:

log(R̂) = log(a)+b× log(W )+ log(ε) (6.6)

As is assumed for simple linear regression, a constant random error, here log(ε), is considered.
It should be noticed that the error variance is constant in log transformed space and variable in
original space. The parameters of the linear regression in the Eq. 6.6 are optimal in the log
space, nut not after back transformation, i.e. the original space.
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Negative rain rates can no longer be estimated because of the log-log transformation to the data.
Implementing this data transformation also leads to a more accurate performance for smaller
rainfall values, which is different to the constant value considered by RABIEI et al. (2013).

The traffic model provides coordinates of the RCs for each time step. The rain rate for each RC
is extracted from the reference data set, i.e. radar data. The device outputs are signal lengths
related to rain intensities (RABIEI et al., 2013). In order to consider the uncertainties for RCs,
the corresponding signal length of each extracted value would be estimated using the W-R
relationship. A normally distributed error log(ε) with mean = 0 and variance = σ2 is randomly
selected and added to log(R) before re-transformation.

6.2.5 Areal rainfall estimation

Ordinary Kriging (OK) is an interpolation method which is widely used for several hydrological
variables such as temperature, rainfall, wind etc. OK is implemented here for interpolating
data from both RCs and rain gauges. It is worth noticing the fact that OK is only optimal when
the data are Gaussian. However, the benefit of using RCs can be explored by comparing the
quality of areal rainfall estimated by rain gauges with when only RCs are used instead. A
relative comparison is carried out, resulting in trivializing the non-Gaussianity of the data. For
a detailed description of the method, please refer to geostatistical text books such as ISAAKS

and SRIVASTAVA (1990).

The experimental variogram is estimated using the following equation:

γk(h) =

[
1

2×N(h)

N(h)

∑
i=1

(Z(xi)−Z(xi +h))2

]
(6.7)

where N(h) represents the number of data pairs, h is the separating vector, x the location and.
Similar as in RABIEI and HABERLANDT (2015), a seasonal average variogram is used here.
The experimental variogram is estimated using radar data when 1000 random radar cells are
taken. Only the time steps with an average rainfall above a defined threshold are selected for
variogram estimation. The following equation is used for estimating climatological variograms
over n time steps:
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γst(h) =
1
n

n

∑
i=1

γ(h, i)
var(i)

(6.8)

where γ(h, i) is the variogram for the h distance class and var(i) represents the variance in time
step i. An exponential variogram is considered as the theoretical variogram model:

γh = c0 + c
[

1− exp
(
−h

a

)]
(6.9)

where a, c and c0 are the range, the sill and the nugget effect, respectively.

The variograms are fitted using radar data with 5 min temporal resolution as the goal is to
interpolate rain gauges as well as RCs on 5 min temporal resolution.

6.2.6 The HBV hydrological model

The hydrological model used in this study, HBV-IWW, is a modified semi-distributed version of
the HBV model (LINDSTRÖM et al., 1997). The model has a horizontal spatial discretization in
subcatchments, which are linked to each other by river reaches. For each of the subcatchments
a snow routine, a soil routine, a response routine and a transformation routine is applied.
The snow routine classifies precipitation as rainfall or snowfall and also takes snow melt into
account. After that, the sum of the rainfall and snowmelt passes the soil routine which consists
of two modules. The first module calculates the actual evapotranspiration, while the second
module calculates the contributing runoff depending on precipitation and actual soil water
content. The contributing runoff is then directly linked to the upper groundwater layer of the
response routine, where surface runoff, interflow, percolation and the actual water content of the
upper groundwater layer are calculated. Percolation contributes to the lower groundwater layer
wherefrom the base flow is calculated. Surface runoff, interflow and base flow are finally added
together and transformed with a simple triangular unit hydrograph. If more subcatchments are
connected to each other, the Muskingum method is used for river routing.

The model is calibrated using the Simulated Annealing algorithm (KIRKPATRICK, 1984) for
which 1000 iterations are considered. The objective function is:
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OF = (1−NSE)+(1−NSELog)→ min (6.10)

where NSE is the Nash-Sutcliffe coefficient after NASH and SUTCLIFFE (1970), and NSELog is
the NSE with logarithm of discharges. A more detailed description of the parameter calibration
procedure as well as further details of the HBV-IWW model can be found in WALLNER

and HABERLANDT (2015). Unlike the common procedure of calibrating the parameters of a
hydrological model and validating them afterwards, when two separate time periods are defined,
in this study the whole time period is considered for calibrating the model parameters. The
HBV parameters are calibrated lumped as only the rainfall data are to be investigated. This
means that all the subcatchments of each catchment have the same model parameter set. For all
the scenarios in the following, the same parameter sets are used for an explicit comparison of
the results. As the main purpose of the study is to investigate the influence of different means
of rainfall measurement, the model calibration is less important than in studies dealing with
observation data.

6.2.7 Performance measures

A common way to evaluate the performance of interpolation is cross-validation, i.e. the leave-
one-out approach. The resemblance of the estimations to the observations illustrates the quality
of the interpolation technique. Since reference radar data are considered as the truth in this
study, the areal rainfall estimated by each scenario is directly compared with the reference areal
rainfall. The following criteria are used for evaluation.

The Root Mean Square Error is estimated by:

RMSE(i) =

√∑
J
j=1(Z

∗
i, j−Zi, j)2

J

 , (6.11)

the Nash-Sutcliffe coefficient by:
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NSE(i) = 1−
∑

J
j=1(Z

∗
i, j−Zi, j)

2

∑
J
j=1(Zi, j− Z̄)2

(6.12)

and the Percent Bias (Pbias) is estimated by:

Pbias(i) = 100×
∑

J
j=1(Z

∗
i, j−Zi, j)

∑
J
j=1(Zi, j)

(6.13)

where Z∗ is the estimated areal rainfall and Z is the corresponding reference areal rainfall. j

is the number of time steps considered for the subcatchment i. These statistical measures are
used also for evaluating the performance of the hydrological model where Z∗ and Z are then
the simulated discharges and reference discharges, respectively.

A positive Pbias indicates overestimation, whereas a negative value indicates underestima-
tion.

6.3 Study area and data

A part of the state of Lower Saxony covered by the weather radar located at Hanover airport
and the three catchments in Fig. 6.1 encompass the study area. As mentioned, the benefit of
RCs is investigated by comparing with what occurs in practice, i.e. when only rain gauges are
considered. In this study, it is assumed that the coordinates of rain gauges and the coordinates
of 53 rain stations provided by the German Weather Service (DWD) are identical.

The transparent blue circle in Fig. 6.1 with a 128 km radius is the area being scanned by the
Hanover weather radar, whereas the points represent the 53 rain gauges considered in this study.
The Digital Elevation Model shows that the northern part of the study area is relatively flat and
a region with mountainous characteristics is in the south-eastern part. The precipitation amount
also varies within the study area from around 500 mm/yr in the north to 1700 mm/yr in the
mountains (BERNDT et al., 2014). The mean annual rainfall in Fig. 6.1 for each subcatchment
shows also the spatial rainfall variation over the study area. Those values are derived from radar
data, from 2006 to 2010. This is more evident for the Nette catchment as the south-eastern
subcatchment receives a larger amount of rainfall than the other subcatchments. Although the
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Figure 6.1: Study area, catchments, station network and mean annual precipitation (MAP) from 2006 to 2010
from radar data. From north to south: Böhme, Nette and Sieber catchments.

Sieber catchment is located in the mountainous area, the mean annual rainfall is relatively low.
This could be explained by the fact that the catchment is located at the leeward side of the
mountains considering the usual west-to-east weather front moving direction.

6.3.1 Catchments

Three catchments of the Aller-Leine river basin, which have different characteristics, are
considered in this study, Fig. 6.1. Not only are the characteristics of the catchments important,
but also are the locations of the rain gauges. The Böhme catchment located in the northern part,
with a relatively flat terrain, contains eight subcatchments and covers 285 km2. This catchment
varies between 50 m and 150 m in elevation and contains one rainfall station. The Nette
catchment has 10 subcatchments covering 309 km2 and is partly located in the mountainous
area, where the elevation reaches up to 550 m. In contrast, the northern part of this catchment
is mostly flat. An important point worth mentioning here is that the only station available in
this catchment is located in front of the hillside in the southern part. The Sieber catchment
is located completely in the mountainous area and has two subcatchments covering 45 km2.
There are some stations close to the catchment, but no stations are available within it.
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6.3.2 Radar rainfall

The C-band Hannover weather radar provides radar data with a 5-min temporal resolution and
an azimuth resolution of 1◦. The spatial resolution along each beam is 1 km. The time period
from 2006 to 2010 is considered in this study. The dx-radar product provided by the DWD is
used and processed as following. First, the reflectivity (Z in mm6m−3) is transformed to rain
intensity (R in mm/hr) by the following relationship:

Z = a×Rb. (6.14)

Standard DWD parameters (RIEDL, 1986; SELTMANN, 1997) are used, where a = 256 and b

= 1.42. A straightforward clutter detection similar to that of BERNDT et al. (2014) is applied
thereafter. The final step is to interpolate the rain intensities on rectangular grids using the
Inverse Distance Weighted (IDW) technique. This produces rainfall of 1 km × 1 km spatial
resolution. Afterwards, the Mean Field Bias method (see section 6.2.1) is implemented to
adjust radar data with the observed rain gauge data.

As the observed data are not used directly for the objectives of this study, it is decided not to
describe them here to avoid any confusion.

6.3.3 W-R relationship

RABIEI et al. (2013) used a linear regression model to describe the W-R relationship between the
Xanonex sensor readings and rain intensity. Fig. 6.2 illustrates this linear relationship with a =
0.2408 and b = -5.4915 (Eq. 6.4). The dots represent the observations in the laboratory whereas
the dashed lines show the 95% prediction limits. A detailed description of the laboratory
experiments is provided in RABIEI et al. (2013). The main disadvantage is when facing small
rainfall values. As mentioned, by considering this relationship and the error distribution for
linear regression, negative rain rates can be estimated.
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Figure 6.2: Xanonex W-R relationship (RABIEI et al., 2013)

Table 6.1: Number of cars driving at the same time for each RCs scenario on each catchment

5% 4% 3% 2% 1%
Böhme 38 30 23 15 8
Nette 138 110 83 55 28
Sieber 14 11 8 6 3

6.4 Results and discussion

In the following, the results of the steps taken for investigating the benefit of using RCs for
areal rainfall estimation as well as discharge simulation are presented and discussed.

6.4.1 Traffic model

The number of cars is estimated using Eq. 6.2. It is assumed that only a small portion of cars is
equipped with sensors measuring rainfall. In this study, from 1% to 5% of all cars on the roads
are considered to measure rainfall which describes all the RC scenarios. For each 5-minute time
step, the number of cars is calculated for the 5% scenario. The other scenarios are generated
therefrom. Table 6.1 depicts different RCs’ scenarios considered in this study.

Fig. 6.3 shows the road network considered for the three catchments. As seen in Table 6.1, a
denser network than for the other catchments is available for the Nette catchment. As the Nette
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catchment is partly located in mountainous area, even this denser network might not provide
enough information. This is due to the fact that the RCs are not available overall because of the
road network. For that reason, in subcatchments such as the south-eastern subcatchment, the
number of available RCs is lower than in the other subcatchments.

Figure 6.3: The road network on which the RCs are modeled.

6.4.2 Network density

Before illustrating the results of the simulations, i.e. areal rainfall as well as runoff simulation
comparison, the network densities using Eq. 6.3 for different scenarios are presented. This
helps to determine whether the network density influences the results.

Fig. 6.4 shows the network densities estimated for the scenarios being investigated in this
study. Although the density varies among the catchments, Fig. 6.4 shows that all the RC
scenarios have a higher density than the rain gauge network. Depending on the accuracy of the
measurement devices, i.e. RCs or rain gauges, the network density has a variable influence. A
more detailed investigation is provided in subsection 6.4.6.2.
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Figure 6.4: Network density of the catchments for different scenarios

6.4.3 RainCars Uncertainty

The uncertainty related to rain rate by RCs is described by Eq. 6.4 to Eq. 6.6 where ε represents
the random error. The normal distribution that defines the random error for each signal reading
(signal length) corresponding to each rainfall amount has the residual variance estimated by the
vertical distances between the observations and the regression line. The random error, log(ε),
is then simulated using the normal distribution. As discussed earlier, a power regression model
describes the W-R relationship in this study.

Fig. 6.5 (a) shows the W-R relationship after log-log transformation. The same assumption
as before is valid, namely that the random error is normally distributed and derived from the
deviation between observation points and the linear regression model. Fig. 6.5 (b) illustrates
the W-R relationship implemented in this study. It is derived using the following steps: 1)
applying log-log transformation on both axes, 2) applying linear regression on the transformed
data (Fig. 6.5 (a)), 3) estimating the residual variance for the normal distribution describing the
random error for the linear regression model and 4) transferring the data back for practical use
(Fig. 6.5 (b)).

The data transformation has, in general, two important effects on the W-R relationship: 1)
preventing the estimation of unrealistic rain rates and 2) skewing the distribution of random
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Fig. 5. (a) Xanonex log transformed W-R relationship (b) Xanonex W-R relationship after Eq. 5; the red l
illustrate the 95% prediction limits 

a) b) 

Figure 6.5: (a) Xanonex log transformed W-R relationship after Eq. 6.6 (b) Xanonex W-R relationship after Eq.
6.5; the red lines illustrate the 95% prediction limits

error. The latter aspect affects also the prediction limit in Fig 6.5. As can be seen in Fig. 6.5b,
the upper and lower limits bend when further from the origin which results in larger inaccuracy
for the rain rate estimated by RCs for higher rainfall intensities. On the other hand, the positive
skewness introduces a positive bias that causes overestimation when estimating rain rate by
RCs. This can be seen when comparing the distances from the model line to the upper and
lower prediction limits. Although the W-R relationship has this deficiency, a larger number of
RCs and more accurate optical sensors can help compensate this problem. These two aspects
are addressed in section 6.4.6.2 and 6.4.6.3, respectively.

6.4.4 Variogram properties used in this study

The properties of the variograms used in this study are provided in Table 6.2.

The variograms are fitted using radar data with 5 min temporal resolution as the goal is to
interpolate rain gauges as well as rainfall from RCs on a 5 min temporal resolution. A relative
large range is estimated in winter time which illustrates different seasonal rainfall patterns. It
supports the seasonal separation for interpolating the data which was discussed earlier. As can
be seen, the properties of the variograms change even among the same seasons in different
years. Therefore, it is decided to use the variable variograms provided in Table 6.2.
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Table 6.2: Theoretical variogram model parameters used in this study, ae f f is the effective range, cc the sill and
c0 the nugget effect

Time 2006 2006 2006-07 2007 2007-08 2008
period: (01-03) (04-09) (10-03) (04-09) (10-03) (04-09)
c0 (-) 0.2 0.1 0.17 0.1 0.13 0.3
cc (-) 1 0.9 0.9 0.85 1 0.7

ae f f (m) 60000 24000 42000 24000 42000 36000

Time 2008-09 2009 2009-10 2010 2010
period: (10-03) (04-09) (10-03) (04-09) (10-12)
c0 (-) 0.1 0.1 0.1 0.1 0.1
cc (-) 1 0.85 1 0.87 1

ae f f (m) 48000 22500 45000 27000 48000

6.4.5 Reference discharge

As mentioned earlier, the simulated discharge for different scenarios will be compared with
the reference discharge. The reference discharge, the benchmark, is simulated using radar data
after applying Mean Field Bias correction (creating the reference rainfall data) as input to the
HBV-IWW model using pre-calibrated model parameters. Because of the lumped approach for
calibrating the model parameters and the subcatchments with relatively small size, the rainfall
characteristics, especially its spatial pattern, are the highest influencing factor in discharge
simulation.

The performance of the HBV-IWW model is evaluated on an hourly temporal resolution.
Therefore, an aggregation of 5 min interpolation data to hourly data is carried out before using
it in the hydrological model.

6.4.6 Areal rainfall and simulated discharge for different sources

The value of the RCs in comparison to the rain gauge network is assessed by comparing areal
rainfall estimations as well as the simulated discharges using these data. First, the results of
using only the rain gauge network are presented. Thereafter, the results of using RCs for rainfall
observations are provided and compared with when only the rain gauge network is used.
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6.4.6.1 Rain gauge network

Areal rainfall estimation

Figure 6.6: Areal rainfall estimation using rain gauges compared with the reference data in, from left to right, the
Böhme, Nette and Sieber catchments. The polygons toward green colour present better results than
the ones toward red colour.

The areal rainfall estimations corresponding to the three catchments shown in Fig. 6.1 are
compared with the reference data. It should be noticed again that the comparison is carried out
after interpolating the data with 5 min temporal resolution and aggregating the data to hourly
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temporal resolution because of the required temporal resolution for the hydrological model.

Fig. 6.6 provides the statistical measures for the three catchments under study when evaluating
the quality of areal rainfall estimation using only rain gauges. This is carried out by comparing
the estimated areal rainfall using rain gauges and implementing OK with the reference data.

For the Böhme catchment having one station in the catchment and one close by provides
sufficient rainfall information. As expected, the closer the subcatchments to the stations, the
better the quality of areal rainfall estimation. The areal rainfall estimated for the northernmost
subcatchment is not as good as for the other subcatchments because there is no station nearby.
Although the potential for improving RMSE and NSE values exists, the Pbias criterion is in
general relatively low. This means that the total water volume is estimated relatively well, and
therefore for purposes such as hydrological modelling the quality of areal rainfall estimation
might be sufficient.

Studying the Nette catchment, the subcatchment that includes a station has, as expected, a
superior rainfall estimation quality to the other subcatchments. Unpredictably, the quality of
areal rainfall estimation for the other subcatchments close to the station is weak. For example,
although the two southern subcatchments are in the vicinity of a station, the statistical measures
are relatively poor. A rapid change in elevation is evident when considering the DEM map in
Fig. 6.1. Assuming that rainfall characteristics change along the elevation gradient, a change in
the spatial rainfall pattern is expected. The single station is no longer able to provide the actual
rainfall even for the surrounding subcatchments. This is in contrast to the Böhme catchment
where the DEM map shows a flat catchment and the only station on the Böhme catchment is
sufficient for areal rainfall estimation.

Although the Sieber catchment is smaller than the other two catchments and is expected to be
more easily modelled, the catchment is located in a mountainous region and suffers from the
fact that no rain gauge is available directly within the catchment. Owing these facts, the areal
rainfall estimation is rather poor, especially when the Pbias is of concern. For such conditions,
additional means of rainfall measurement would be beneficial.

Discharge simulation

The same statistical measures are used for evaluating the performance of the hydrological
model. Depending on the location of stations, catchment characteristics and spatial rainfall
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Table 6.3: Simulated discharge by rain gauges compared with the reference data

Böhme Nette Sieber
RMSE (m3/s) 0.98 2.8 0.51

NSE (−) 0.95 0.76 0.86
Pbias (%) -6.2 -22.5 -15.8

pattern, each catchment responds differently when only rain gauges are used. The reference
discharge, the benchmark, is simulated using reference areal rainfall, i.e. radar data after MFB,
and the pre-calibrated model parameters.

Table 6.3 provides the statistical measures of simulated discharges when only rain gauges are
implemented. Although both the Böhme and Nette catchments benefit from having a station
in the catchment, the two catchments responded differently. The Böhme catchment performs
better than the other two catchments. From Fig. 6.7, it can be seen that the quality of the
areal rainfall estimation for the Böhme catchment is the best. As discussed in the study area

and data section (Fig. 6.1), the mountainous area receives more rainfall than the other parts
of the catchment. The mountainous part of the catchment can cause a change in the spatial
rainfall pattern. In other words, a fast elevation change (when the contour lines are tightly
spaced together) can draw the isohyetal lines close together. This can explain the reason that
the model performance in the Nette catchment is relatively poor. From the mean annual rainfall
for each subcatchment provided in Fig. 6.1, it may also be concluded that the two southern
subcatchments in the mountainous area produce a big share of the discharge. It is observed that
one station can be sufficient for areal rainfall estimation for a flat catchment such as the Böhme
catchment and would not be sufficient for a catchment such as the Nette catchment, which is
partly located in the mountainous area. There is no station located in the Sieber catchment,
which explains the poor Pbias in Table 6.3, although the other two criteria are rather good. In
the Sieber catchment, not only the characteristics of the two subcatchments are similar, but also
the spatial rainfall pattern over the two subcatchments which could explain the relatively good
NSE values.

6.4.6.2 RCs against rain gauges using errors from laboratory experiments

Areal rainfall estimation

A similar strategy is pursued for the moving cars measuring rainfall. As before, the evaluation
involves two parts. First, the areal rainfall estimation by implementing RCs is compared with
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the reference rainfall. Thereafter, the simulated discharges are compared after using the data in
the HBV-IWW hydrological model.

The benefit of using RCs for areal rainfall estimation can be assessed when their performance
is compared with the standard approach, i.e. using only the rain gauges. To this end, after
estimating the statistical measures by comparing with reference data, the difference between the
statistical measures is addressed. This means that for example for the Root Mean Square Error
RMSEdi f f = RMSERCs − RMSESt . As a result, negative RMSEdi f f values as well as positive
NSEdi f f values represent better areal rainfall estimation when using RCs compared to stations.
For Pbias, the specific values are compared without building differences.

i

1% 2% 3% 4% 5%All_Catch_All_Stat
RMSE_diff [mm/h]

-0,36 - -0,29
-0,28 - -0,22
-0,21 - -0,14
-0,13 - -0,07
-0,06 - 0,00
0,01 - 0,07
0,08 - 0,14
0,15 - 0,22
0,23 - 0,29
0,30 - 0,36All_Catch_All_Stat

NSE_diff [-]
-0,56 - -0,45
-0,44 - -0,34
-0,33 - -0,22
-0,21 - -0,11
-0,10 - 0,00
0,01 - 0,11
0,12 - 0,22
0,23 - 0,34
0,35 - 0,45
0,46 - 0,56All_Catch_All_Stat

Pbias [%]
-17,00 - -13,60
-13,59 - -10,20
-10,19 - -6,80
-6,79 - -3,40
-3,39 - 0,00
0,01 - 3,40
3,41 - 6,80
6,81 - 10,20
10,21 - 13,60
13,61 - 17,00

Figure 6.7: Areal rainfall estimation evaluation using RCs for the Böhme catchment. The blue colour for
RMSEdi f f and NSEdi f f illustrates the improvement of the areal rainfall estimation quality when RCs
are used compared with when only rain gauges are considered.

Fig. 6.7 illustrates the statistical measures for the Böhme catchment when the RCs are used for
areal rainfall estimation. Implementing RCs in general results in better areal rainfall estimation.
As expected, the improvement in subcatchments away from the stations is more significant
than the ones close to them. Also, the number of cars plays an important role. If the number
of RCs increases, the quality of areal rainfall estimation improves. Considering only the two
mentioned criteria, using RCs for areal rainfall estimation is always superior to using stations
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in this catchment. The improvement for each subcatchment varies depending on the number
of RCs as well as the location of the station. PbiasRCs values show an overestimation of areal
rainfall because of the positive skew of the error distribution as explained earlier (see Fig.
6.5b).

i

1% 2% 3% 4% 5%All_Catch_All_Stat
RMSE_diff [mm/h]

-0,36 - -0,29
-0,28 - -0,22
-0,21 - -0,14
-0,13 - -0,07
-0,06 - 0,00
0,01 - 0,07
0,08 - 0,14
0,15 - 0,22
0,23 - 0,29
0,30 - 0,36All_Catch_All_Stat

NSE_diff [-]
-0,56 - -0,45
-0,44 - -0,34
-0,33 - -0,22
-0,21 - -0,11
-0,10 - 0,00
0,01 - 0,11
0,12 - 0,22
0,23 - 0,34
0,35 - 0,45
0,46 - 0,56All_Catch_All_Stat

Pbias [%]
-17,00 - -13,60
-13,59 - -10,20
-10,19 - -6,80
-6,79 - -3,40
-3,39 - 0,00
0,01 - 3,40
3,41 - 6,80
6,81 - 10,20
10,21 - 13,60
13,61 - 17,00

Figure 6.8: Areal rainfall estimation evaluation using RCs for the Nette and Sieber catchment. The blue colour
for RMSEdi f f and NSEdi f f illustrates the improvement of the areal rainfall estimation quality when
RCs are used compared with when only rain gauges are considered.

Fig. 6.8 illustrates the statistical measures for different RC scenarios in the Nette and Sieber
catchments.

The use of RCs for rainfall estimation in the Nette catchment has similar advantages as for the
Böhme catchment. In contrast to that, RCs are not always beneficiary in the Nette catchment.
A detailed investigation shows that the rainfall estimation for the subcatchment in which the
station is located is hard to beat by using RCs. In contrast to all the subcatchments where an
overestimation is observed, for the Nette basin, the subcatchment with red colour in Pbias

responds differently. This can be explained by the RC network density. This part of the
catchment suffers from the fact that RCs are rarely available because there are fewer roads as it
is located in the mountainous part.

For the Sieber catchment using RCs also results in better areal rainfall estimation. Increasing
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the number of RCs has again advantages. The improvement in areal rainfall estimation is
not as strong as in the other catchments because of the existing stations in the vicinity of the
catchment. Although RMSE and NSE do not vary significantly, comparing with Fig. 6.6, the
Pbias criterion improves meaningfully.

It should be noted that although the Nette catchment benefits from a denser RC network (Fig.
6.4), because of the spatial rainfall pattern, the need for a higher number of RCs or a better
location for the only station is evident.

Discharge simulation

Table 6.4: Simulated discharge by RCs compared with the reference data

Catchment St. 1%RCs 2%RCs 3%RCs 4%RCs 5%RCs
RMSE (m3/s) 0.98 0.66 0.6 0.61 0.6 0.57

Böhme NSE (−) 0.95 0.98 0.98 0.98 0.98 0.98
Pbias (%) -6.2 6.4 6.1 7.4 7.6 7.4

RMSE (m3/s) 2.8 1.01 0.84 0.67 0.73 0.76
Nette NSE (−) 0.76 0.97 0.98 0.99 0.98 0.98

Pbias (%) -22.5 4.8 6.8 5 6.7 7.2
RMSE (m3/s) 0.51 0.55 0.58 0.53 0.48 0.37

Sieber NSE (−) 0.86 0.83 0.81 0.84 0.88 0.92
Pbias (%) -15.8 7.5 6 4.7 3.2 2.6

Table 6.4 provides the statistical measures of simulated discharges when RCs are implemented.
The first column, titled “St.”, refers to when only rain gauges are considered, which is included
here again to facilitate easy comparison.

Although the Böhme catchment performs the best among the three catchments when only rain
gauges are considered, using RCs is still useful. Fig. 6.8 shows that the areal rainfall estimation
improves slightly when using RCs. For analyses requiring fine temporal and spatial resolution
data, e.g. urban hydrology, using RCs may improve the simulation results more evident. Due
to the fact that the improvement in discharge simulation is not very strong in this catchment,
with the given temporal and spatial resolution, for such studies the need for using RCs can be
considered inessential.

As discussed earlier, because of the characteristics of the Nette catchment, this catchment has
the highest potential for improvement by RCs. Implementing even a small number of RCs
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improves the results significantly. As seen in Fig. 6.4, the Nette catchment has the highest
RC network density among the three catchments. This explains the better performance in this
catchment. As expected, positive Pbias in the simulated discharge indicates overestimation,
which follows the areal rainfall overestimation observed earlier.

Unlike the other catchments, the Sieber catchment is located in the mountainous area. The NSE

and RMSE criteria do not improve significantly when using RCs. Taking a deeper look at the
traffic model data, from 1% scenario to 5% scenario, the number of cars measuring rainfall is 3,
6, 8, 11 and 14, respectively (see Table 6.1). Only two scenarios can result in better discharge
simulation, 4% and 5% indicating the least required RC network density for this catchment. As
with the other two catchments, using RCs results in the overestimation of the discharge.

The network density of the 1% RCs scenario for the Nette catchment is similar to those of the
Böhme and Sieber with 2% RCs scenarios (Fig. 6.4). Taking the similarity of the network
densities into account, the improvement of the hydrological model performance in the Nette
catchment is more evident than for the other two catchments. It shows that the RCs are more
valuable in the catchments such as the Nette when the spatial rainfall pattern varies within
the study area (see section 6.3). Improving the discharge simulation performance for bigger
catchments such as the Nette and Böhme seems to be easier achievable with less density of
RCs than for smaller catchments such as the Sieber. Additionally, even a small number of RCs
can improve the discharge simulation significantly. Depending on the quality of the required
hydrological analyses, the need for the use of RCs is open to discussion. Basically, a higher
number of equipped cars are needed for mountainous catchments in this study area than for flat
catchments. In other words, the need for increasing the number of observations is evident when
the spatio-temporal variation of rainfall is high.

6.4.6.3 RCs against rain gauges using hypothetical errors

Areal rainfall estimation

The minimum rainfall measurement accuracy required for the RCs to be useful is investigated in
this section. All the different accuracies are addressed for the 5% RCs scenario specifically.

The error for the linear model is estimated on the log-log transformed data, Fig. 6.5. The normal
distribution was defined by the variance (σ2), equal to 0.021, from laboratory experiment results.
In order to investigate the importance of the error on the results, four other variances of 0.0,
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Table 6.5: Uncertainties for RCs when estimating areal rainfall and averaging over all subcatchments; 5% traffic
model is considered

σ2= 0.0 σ2= 0.01 σ2= 0.04 σ2 = 0.09 σ2= 0.021 St.
RMSE (mm/h) 0.27 0.27 0.30 0.38 0.28 0.44

Böhme NSE (−) 0.85 0.85 0.81 0.70 0.84 0.58
Pbias (%) -0.49 2.19 10.56 26.26 5.19 -3.22

RMSE (mm/h) 0.28 0.29 0.32 0.42 0.30 0.53
Nette NSE (−) 0.84 0.83 0.80 0.65 0.82 0.43

Pbias (%) -2.8 0.09 8.5 24.07 3.11 -10.21
RMSE (mm/h) 0.37 0.37 0.38 0.43 0.37 0.46

Sieber NSE (−) 0.69 0.69 0.68 0.6 0.69 0.53
Pbias (%) -4.55 -1.7 6.4 21.5 1.2 -14.45

0.01, 0.04 and 0.09 are considered. At the end, the areal rainfall estimation quality as well
as the performance of the hydrological model was compared with that of using the original
variance from the laboratory.

Table 6.5 provides the averaged statistical measures for each catchment. The areal rainfall
estimation considering different errors for RCs is compared with the reference data. The same
assumptions as earlier (see section 6.4.3) are taken with different variances for the distribution
function representing the error range. St. represents the areal rainfall estimation performance
when only the rain gauges are implemented.

The rainfall overestimation by implementing higher σ2 values is evident. For all catchments
even assuming a relatively large uncertainty of σ2 = 0.09, NSE and RMSE values improve
compared with when only rain gauges are considered. As the Pbias is quite large for σ2 = 0.04
and σ2 = 0.09, the use of RCs for areal rainfall estimation is questionable. In fact, for such
cases, rainfall data observed by RCs could be considered as additional information for areal
rainfall estimation, e.g. in External Drift Kriging or Kriging with Uncertain Data.

Assuming no inaccuracy for the measurement devices, i.e. St. and σ = 0.0, a negative Pbias

still exists representing an underestimation of areal rainfall. Although OK is an unbiased
interpolation technique, its performance is strongly dependent on the measurement locations.
In an ideal situation, measurements should take place in regard to the variation in spatial rainfall
patterns. This can not be fulfilled in practice due to the dynamic nature of rainfall. Missing
the minima and maxima over the study area can lead to overestimation and underestimation,
respectively. It is more probable to miss maxima than minima due to the fact that high rainfall
intensities may occur in places where no RCs or rain gauge observations are available. Minima
can be captured easier than maxima as it covers a larger area, illustrating the positive skewness
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of the rain rate distribution. This might explain the minor negative Pbias derived by RCs even
if when σ = 0.0.

Discharge simulation

Table 6.6 provides the averaged statistical measures of the simulated discharges for each
catchment when the 5% RC scenario is considered. As expected, the best performance belongs
to the RCs scenario for which the measurement error is assumed to be zero (σ2 = 0.0). The
quality of the simulated discharge lowers by increasing the error of the measurement devices
(RCs). A similar trend can be found as that for areal rainfall estimation, in that the discharge
overestimation becomes meaningful by increasing the uncertainty of the RCs. Implementing
RCs with large uncertainty for the measurement values leads to a relatively weak discharge
simulation. On the other hand, even though using RCs results in discharge overestimation (Pbias

criterion), the quality of simulated discharges for variances (σ2) smaller than 0.04 improves
in terms of RMSE and NSE, compared with when only rain gauges are considered (St.). As
discussed before, in order to overcome the overestimation caused by RCs, one may consider
RCs as additional information in interpolation techniques. RCs could be corrected in practice
by implementing quantile mapping like the one introduced by RABIEI and HABERLANDT

(2015).

Table 6.6: Investigating different uncertainties for RCs when simulating discharge compared with the reference
discharge; 5% traffic model is considered

σ2= 0.0 σ2= 0.01 σ2= 0.04 σ2 = 0.09 σ2= 0.021 St.
RMSE (m3/s) 0.34 0.38 1.05 2.64 0.57 0.98

Böhme NSE (−) 0.99 0.99 0.94 0.65 0.98 0.95
Pbias (%) -1 2.9 15.5 40 7.4 -6.2

RMSE (m3/s) 0.65 0.52 1.56 4.19 0.76 2.8
Nette NSE (−) 0.99 0.99 0.92 0.45 0.98 0.76

Pbias (%) -4.9 0.9 18.6 52.6 7.2 -22.5
RMSE (m3/s) 0.37 0.36 0.43 0.71 0.37 0.51

Sieber NSE (−) 0.93 0.93 0.9 0.72 0.92 0.86
Pbias (%) -4.5 -1 9.1 28 2.6 -15.8
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Figure 6.9: Discharge simulation using different sources of data for the Nette catchment. For RCs only 5%
scenario is considered.

As observed, the improvement of model performance in the Nette catchment when using RCs
is more evident than for the other two catchments. Therefore, it is decided to investigate the
Nette catchment in more detail by analysing the hydrographs for all the scenarios given in
Table 6.6.

Fig. 6.9 shows the simulated discharge between November 2006 and March 2007. It can be
observed that when only rain gauges (St.) are used, the model misses some peaks and performs
poorly. This illustrates that the local rainfall is often not captured. The model performance
improves significantly when using RCs. By increasing the uncertainties, i.e. enlarging σ2, the
overestimation of rainfall affects the model performance as well. Considering the uncertainties
larger than the uncertainty derived from laboratory experiments could in fact illustrate situations
that we may encounter in practice and we did not take into account here.
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6.5 Summary and conclusion

The value of using moving cars for rainfall measurement purposes (RCs) was investigated with
laboratory experiments by RABIEI et al. (2013). They analysed the Hydreon and Xanonex
optical sensors against different rainfall intensities. The optical sensors showed promising
results when used for point rainfall measurement. Because of the low number of real RCs
available on roads, the main objective of this study was to implement and investigate the errors
derived from the laboratory experiments for areal rainfall estimation in a computer simulation.
The errors were considered for the theoretical RCs, provided by a traffic model, and Ordinary
Kriging (OK) is implemented for areal rainfall estimation. Thereafter, the data are also used
for discharge simulations in the HBV hydrological model. The value of the RCs is compared
with when only rain gauges are implemented. Radar data was considered as the reference data
to directly evaluate the areal rainfall estimation rather than following the common approach
for evaluating an interpolation technique, i.e. cross-validation. The other sources of data, i.e.
RCs and rain gauges, were extracted from the reference data source, accordingly. A period of
5 years from 2006 to 2010 and three catchments with different characteristics are considered.
The results of the study are as follows:

1. Implementing RCs with the uncertainties derived from the laboratory experiments im-
proves the quality of modelled areal rainfall estimation compared with when only rain
gauges are used. The same is valid for discharge simulation when the estimated areal
rainfall is implemented in hydrological modeling. However, the improvement is observed
to be strongly dependent on the catchment characteristics, RC network density and spatial
rain variability.

2. Because of the positive bias of the error distribution when using a log-transformed W-R
relationship, areal rainfall overestimation is, in general, observed which resulted in an
overestimation of discharges as well. This can be compensated by either increasing the
RC network density or implementing more accurate optical sensors.

3. By increasing the rainfall measurement uncertainty by RCs, i.e. assuming larger variances
for the random error, rainfall overestimation increases significantly. Implementing errors
up to a certain level is observed beneficiary whereas larger uncertainties resulted in
deterioration of results. Although the RCs with large errors should not be considered
directly for rainfall measurement, relatively good NSE values show the potential of RCs
to be regarded as additional information in interpolation techniques.
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4. It is observed that applying OK for areal rainfall estimation results in underestimation of
rainfall. This was seen when no uncertainty was considered for RCs as well as for the
case when only rain gauges were involved. Missing the rainfall maxima over the study
area explains this phenomenon.

The hydrological simulations are carried out on hourly temporal resolution data with a lumped
model parameter approach where the areal rainfall for each subcatchment is estimated separately.
The conclusion of this study may not be valid for other cases when, for example, a distributed
model or a different temporal resolution is being investigated. Depending on the target of each
study, higher levels of data quality may be required. For instance, following the conclusions by
SCHILLING (1991), in which he discussed implementing high spatial (1 km2) and temporal (1
min) resolution data for urban hydrology, the quality of rainfall measurement by RCs might be
insufficient. Furthermore, BERNE et al. (2004) also concluded that a temporal resolution of
5 min and a spatial resolution of about 3 km are required for urban catchments with an area
about 1000 ha. They also stated that for smaller catchments with an area about 100 ha, higher
resolution of about 3 min and 2 km are needed.

This study only shows the required accuracy that could be considered for RainCars as a future
potential of crowdsourcing. Environmental factors such as road spray, car speed, wind direction,
snow, night/day variation, etc. can influence the performance of RCs in practice. Although this
study showed that the RCs are beneficiary, field experiments are necessary to better assess the
measurement uncertainty.
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Chapter 7

Summary and outlook

Improving rainfall estimation was the main objective of this study. Therefore, investigating
the current means of measuring rainfall, on the one hand, and the need for using RainCars
(RCs), on the other hand, are the topics discussed in this dissertation. The objectives of this
dissertation were addressed separately in Chapters 3 to 6. Therefore, the summary and outlook
of the work is also provided in a similar way.

Rainfall measurement and interpolation techniques

Considering the fact that the temporal resolution of data and the number of rain gauges play
a crucial role in the quality of areal rainfall estimation, Chapter 3 discussed those factors in
relation to using radar data as additional information in interpolation techniques. Three different
geostatistical interpolation methods of (1) KED, (2) IKED and (3) CM were implemented to
use radar data as additional information. The results were then compared with the reference
technique, OK. Temporal resolutions from 10 min to 6 h and five different rain gauge network
densities were addressed investigating the sensitivity of each method. Temporal and spatial
smoothing of radar data is also addressed in order to investigate a possible improvement in
interpolation performances when using radar data as additional information. The methods were
evaluated by means of cross validation.

A spatio-temporal smoothing on radar data improved the merging performance the best among
other smoothing techniques. However, a consistent improvement was not observed. It was
concluded that too much smoothing can result in reduction of the preservation of the observation
variance and is not recommended. Furthermore, too much smoothing might also result in a loss
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of information. As the correlation between rain gauge values and the corresponding radar-pixels
declines for high temporal resolution data, smoothing radar data was observed to be more
important for such resolutions. The CM was observed to outperform the KED and IKED in all
the scenarios under study. Considering relatively low performance of CM when using original
radar data, smoothing radar data was strongly recommended when using CM. Investigating the
performance of interpolation techniques in high temporal resolution, it was observed that CM
using original radar data performed poorer than OK whereas CM using smoothed radar data
outperformed OK. Using radar in CM was generally observed to be more appropriate than other
approaches. The numerical instabilities are not expected when implementing CM, whereas they
can cause problems in KED. The CM and IKED were observed to be less sensitive to radar data
quality than KED, especially when the number of stations is relatively low. In addition to the
facts that KED is more time consuming and might face numerical instabilities, if the assumption
of having a linear relationship between observation and additional information is not met, the
performance of the method can deteriorate. Because of the difficulties radar data has, this
could be more dominant for high resolution data, where the additional information might even
have an inverse relationship with the observation values. For such conditions, CM is more
suitable. Although this might be a problem for high resolution data, KED in coarse temporal
resolution data could outperform CM, as a strong linear relationship between the observation
values and radar data is expected and problems such as attenuation are more observable. It is
worth noticing that all the conclusions are for continuous time series and a similar conclusion
might not be valid for single events.

Weather radar is an important source of data with very high temporal and spatial resolution.
The data could be considered either directly as input in hydrological analyses or as additional
information in interpolation techniques. Although using radar data directly for hydrological
analyses was pointed out in several studies, radar data has problems. Smoothing radar data
was observed advantageous and resulted in a better performance of geostatistical interpolation
techniques. This illustrates the need for correcting radar data even when they are considered as
additional information. Several studies have tried to propose methods correcting radar data.
Most of the studies try to find a relationship between observations and the corresponding
radar-point values. As mentioned earlier, relating these two sources of data might be improper,
in particular for high temporal resolutions. This could be explained by the principles describing
rainfall estimation by radar, such as the fact that measurements take place at a certain height
from the ground.

The method proposed in Chapter 4 assimilates the CDF derived from radar data to the CFD
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derived from rain gauges. Applying quantile-quantile (Q-Q) transformation, used usually for
scaling and bias correction purposes in climate impact studies, was implemented for correcting
radar data. The main assumption is that the spatial statistical variability derived by the CDF
from rain gauges is more realistic than the one from radar data. An important advantage of
this method is that the observation values are not directly compared with the corresponding
radar points for correcting radar data. This makes the method more suitable for high temporal
resolution. It is worth mentioning that a specific Q-Q transformation is carried out for each
time step, separately. In addition to comparing the rain gauge values with the corresponding
radar-pixels for evaluating the method, the performance of CM and KED are also investigated
after applying the correction method. The two interpolation techniques were evaluated by
means of cross validation. Using radar data for disaggregating non-recording rain gauges is
another possible application which is addressed also in this study. The findings of this part of
the study are as follows.

It was observed that the radar data quality improved after implementing the quantile mapping
correction technique. Furthermore, a better Q-Q transformation was observed when adding 3
time steps before and after the current time step (7 time steps in total) for creating the CDF
from rain gauge network. This is more significant for fine temporal resolution when a high
number of observations at each time step could have zero values over the study area. However,
if too many time steps are taken into consideration, unrealistic CDFs may be set. The seasonal
variation observed in interpolation performance in general (using radar data or not) followed
the assumption of seasonal changes in types of rainfall events and radar data quality. A better
performance was observed in winter time than in summer. This was explained by the fact that
the majority of convective events occur in summer. Implementing radar data in interpolation
techniques in summer was observed to be useful and correcting radar data was observed to
be more important for summer rainfall events. The CM performed better than KED after
implementing bias correction. The CM was observed to be more sensitive towards radar data
quality compared to EDK, especially when the number of observations is large. Although radar
data was observed to be a useful source of data for disaggregating non-recording rain gauges,
the correction method was not seen as essential for such purposes.

In general, using bias corrected radar data in CM is recommended when comparing with the
other techniques used in this study. This conclusion is only valid for the temporal resolutions
considered in this study. GOUDENHOOFDT and DELOBBE (2009), for example, observed
that KED performed better than CM for daily temporal resolution. It should be noticed that
implementing bias corrected radar data might result in losing information. This could become
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more evident for fine temporal resolution and sparse rain gauge network where the rain gauge
network is not able to capture events properly.

RAFIEEINASAB et al. (2015) also investigated different merging techniques for improving
high resolution quantitative precipitation estimation. They implemented four different methods
based on Fisher estimation and its conditional bias-penalized variant for merging available
sources of data in north Texas, USA. Although some improvements were observed, the high
temporal resolution was 15-min. The DWD weather radar network provides data with 5-min
temporal resolution. The data are not accurate and could be improved when merging with rain
gauges. It is important to notice that merging rain gauge data with radar data becomes very
difficult for fine temporal resolution data. Implementing quantile mapping technique could also
result in deteriorating the quality of rainfall estimation if a rain event is not observed by rain
gauge network. In this case, applying quantile mapping results in rainfall underestimation. The
latter aspect could become less significant by either building a denser rain gauge network or
optimizing rain gauge locations for better capturing rain events. The estimated rainfall amounts
should always be verified with reliable sources such as rain gauges. It is recommended to
verify each time step even separately when it comes to sensitive analyses and fine temporal
resolutions.

Some new studies also pointed to the importance of disaggregating daily rain gauge network
for increasing rain gauge network density, such as in BÁRDOSSY and PEGRAM (2016). They
proposed recently a method for disaggregating the daily rainfall data via simulation. The
method is proposed for disaggregating daily records to 1.5 h and hourly amount. They used a
Gaussian copula-based model when the temporal information of the records are used to define
the marginal distributions and censored values representing the dry periods. They point the
fact that although high spatial precipitation variability is a known problem, a strong temporal
coherence exists. They assumed that a specific distribution of precipitation could be determined
for each time step using all recording rain gauges. They compared the method with Rescaled
Ordinary kriging (ROK) and Rescaled Nearest Neighbors (RNN). They believe that their
approach is superior to any of previously known methods.

CM is also used recently for merging rain gauge data with satellite data, for example, JONGJIN

et al. (2016) tried to merge satellite-based and ground-based data using CM, Geographic
Differential Analysis (GDA), and Geographic Ratio Analysis (GRA) methods. They also
recommend implementing CM for merging the two sources, in particular for regions with
sparse rain gauges. However, the finest temporal resolution investigated in that study was 1
hour. By accumulating the temporal resolution to daily, OK outperformed the other methods.
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Moving cars measuring rainfall

After hypothetically investigating the potential of using RainCars by HABERLANDT and SES-
TER (2010), the main objective of Chapter 5 was to investigate RainCars for point measurement
purposes. Consequently, wiper activity and signals coming from optical sensors indicating rain-
fall intensity are analyzed. The relationship between sensor readings (W) and rain intensity (R)
is derived by laboratory experiments. Two readings of (1) wiper speed adjusted both manually
and by optical sensors and (2) optical sensors designed for automating wiper activities were
considered to indicate rainfall intensity. The sensor readings were analyzed considering tipping
bucket readings as reference. Another important factor influencing the readings in practice is
the car speed. This issue was also addressed using a car speed simulator.

It was observed that manual adjustment of wiper activity, according to front visibility, has a
stronger relationship than when the wiper activity is adjusted by the optical sensor installed
in the car. This was explained by the relatively inaccurate data processing of the readings
from the optical sensor and point measurement of the optical sensor adjusting wiper activity.
Therefore, it was concluded that a better calibration of the optical sensor when adjusting wiper
speed may result in better efficiency of the sensor, and therefore, a better W-R relationship.
On the other hand, the two extra optical sensors (Hydreon and Xanonex) showed promising
results. Although the hydreon sensor is a calibrated optical sensor, an underestimation of
rainfall amount was observed. The device observed also to have a systematic error in the
derived W-R relationship. The other optical sensor, the Xanonex, was observed to be useful for
rainfall measurement, but less accurate than Hydreon. The influence of the car speed on sensor
readings could be explained by a linear regression model, whereas the empirical relationship
followed the theoretical relationship up to a certain speed. The theoretical relationship was
observed to be strongly dependent upon two important factors of drop velocity and windshield
angle. However, the drop velocity was observed to be more influential. The drop velocity can
be interpreted as representing rain type. This means that the W-R relationship may vary for
different rain events similar to the Z-R relationship for radar data.

The measurement uncertainty of RainCars was investigated in Chapter 5. Due to the difficulties
that wiper adjustment had, it was decided to investigate the benefit of using optical sensors
when installed in RainCars for rainfall estimation. As the number of RainCars available on
streets is not sufficient to be investigated directly for rainfall estimation, computer experiments
are set up to investigate the uncertainties observed earlier in the laboratory for both areal rainfall
estimation and discharge simulation. This was described in more detail in Chapter 6. Although
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both optical sensors showed promising results, the Xanonex optical sensor was selected for
further investigation. This decision was made because of the ease of installing the device in
cars. The benefit of using RainCars could be observed when comparing the results with when
only rain gauges are implemented for both areal rainfall estimation and discharge simulation.
The discharge is simulated by the HBV-IWW hydrological model, using a constant parameter
set for all the sources. Rather than investigating the interpolation performances by means of
cross-validation, radar data (as the reference) was compared with the areal rainfall estimation
using the other sources, i.e. RainCars and rain gauges, where RainCars and values for rain
gauges were extracted from radar data. A random error was introduced into the RainCars’
values on the log-transformed W-R relationship. On the contrary, the extracted values for
rain gauges were used directly. OK was applied for areal rainfall estimation. In a similar
way, discharge simulations by RainCars and rain gauges were compared with the reference
discharge simulated by radar. Higher and lower uncertainties for RainCars were also addressed
in addition to investigating the uncertainties derived in laboratory experiments in order to make
a more general conclusion. Furthermore, due to the fact that the number of RainCars is an
influencing factor, different scenarios addressed different hypothetical numbers of RainCars
in the streets. A period of five years from 2006 to 2010 and three catchments with different
characteristics were considered in this part of the study.

It was observed that using RainCars with uncertainties derived from laboratory experiments
resulted in a better areal rainfall estimation compared with when only rain gauges are used.
A similar conclusion is valid for discharge simulation when using the data in the HBV-IWW
hydrological model. However, factors such as the number of RainCars, spatial rainfall variability
and catchment characteristics were observed to be influential on the improvement of discharge
simulation. An overestimation of rainfall was observed when using RainCars, which was
explained by the W-R relationship used for transforming signal readings to rain intensities.
By increasing the uncertainty for RainCars (larger σ in random error), rainfall overestimation
increased significantly. RainCars up to a certain uncertainty were observed to be still beneficial
for using directly for areal rainfall estimation, whereas larger uncertainties deteriorated the
results. However, because of the relatively good NSE values, RainCars with large errors
could still be suggested to be considered as additional information in interpolation techniques.
Applying OK was observed to underestimate the rainfall amount. Missing the rainfall maxima
over the study area could justify this phenomenon.

Although RainCars were observed to be useful in this study, the results might not be valid for
other study areas, temporal resolutions or model structures. It is worth mentioning again that
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all the results were under certain conditions in computer experiments. Not only several factors,
such as road spray, car speed and wind direction could influence the performance of RainCars,
but also some soft issues, such as hydrological model interactions. Some investigations for
analyzing the RainCars data from field experiments were provided by FITZNER et al. (2013).
However, wiper frequency, used in that study, was not observed to be a strong rainfall intensity
indicator.

RainCars could be a very important potential for crowdsourcing. MULLER et al. (2015)
described the current status and future potential of crowdsourcing for climate and atmospheric
sciences. They pointed at the benefits of using such data sources as they are cost-effective.
However, they are of the opinion that more research is required for evaluation. ALLAMANO

et al. (2015) introduce a technique for satisfying the need for larger number of observations
by estimating instantaneous rain rates using pictures of rainy scenes. They pointed to the
fact that even defining a region of influence with a 5 km radius for each rain gauge could be
insufficient for short rainfall events. They described the image processing steps as follows: (1)
drop detection, (2) blur effect removal, (3) estimation of the drop velocity, (4) drop positioning
in the control volume, and (5) rain rate estimation. However, they realised that the quality of
the results is strongly dependent on the setting of the camera during the shooting. BERNE et al.
(2004) concluded that the region of influence becomes larger for longer aggregation intervals.
MULLER et al. (2015) stated also the fact that depending on the scale of analyses different
scales are required. Five min resolution, for example, for urban hydrology and hourly data for
other regional hydrological applications. It can be concluded that RainCars could improve the
analyses under certain conditions. The number of observations becomes more important when
spatio-temporal variation of rainfall is large. For fine temporal analyses and/or convective rain
events, a denser network of observations is required. For such analyses, in fact, RainCars may
improve the quality of the analyses.

A higher number of RainCars and more attention need to be given to the field experiments for
a better conclusion. One of the problems in the field experiments when evaluating RainCars
is finding a reliable reference data source. Radar data can not be considered as the reference
for real RainCars due to all the deficiencies related to this data source. On the other hand,
increasing the number of rain gauges is not feasible. By increasing the number of RainCars,
evaluating the moving sensors would be more plausible as it is more likely that a RainCar
is in the vicinity of a station. This is also less costly comparing with increasing the number
of rain gauges. In such a way, similar approaches to FITZNER et al. (2013) could be more
useful. Furthermore, considering a certain study area (a city) for evaluating different approaches
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similar to RainCars (such as acoustic rain gauges) could help to compare their performances.
Consequently, the number of reliable observations, e.g. rain gauges, for such a study area
should be large enough, so that they could act as the reference.

In general, it could be concluded that the need for better rainfall data quality, in particular
for fine temporal resolution, is evident. This might not be fulfilled using available sources
of data, whereas using new ideas such as RainCars could help for better estimating areal
rainfall. This need could also be satisfied using X-Band radar devices scanning with very high
temporal and spatial resolution. CLEMENS (2013), for example, described the X-Band radar
devices investigated in the University of Hamburg. The temporal resolution of 30 s and spatial
resolution of 60 m along each beam (with azimuth resolution of 1◦) provides a unique data
source. However, the data are subject to several errors. Merging such a high resolution data
source with RainCars (and if possible with rain gauges) might help to better estimate rainfall
amount over certain areas.
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