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Kurzfassung 
Daten der maximalen Scheitelabflüsse  (Instantaneous peak flows IPF) sind die Grundlage für 

die Bemessung  von Wasserbauwerken und für die  Hochwasserstatistik. Die langen 

Abflussdatensätze, welche durch hydrologische Messanlagen  aufgezeichnet werden, 

enthalten jedoch häufig nur mittlere  tägliche Abflüsse, welche nur von beschränktem  Wert 

für die Bemessung in kleinen Einzugsgebieten sind. 

 

Prognosen und Vorhersagen von IPF können durchgeführt werden durch: (i) den Aufbau einer  

Beziehung zwischen Scheitelabflüssen  und maximalen Tagesabflüssen, welche auf einer 

statistischen Analyse der verfügbaren, aufgezeichneten Tagesabflussdaten basiert oder (ii) die 

Verwendung  eines Niederschlag-Abfluss-Modells mit hochauflösenden synthetischen 

Niederschlagsdaten. Da die konzeptionelle Struktur der hydrologischen Modelle eine 

Kalibrierung der Parameter benötigt, kann eine Regionalisierung  von „IPF“ in 

unbeobachteten Gebieten durch (iii) eine vorgegebene Übertragungsfunktion zwischen den 

Modellparametern und den Eigenschaften des Einzugsgebiets erreicht  werden. Die Arbeit ist 

nach den oben genannten Zielen wie folgt aufgebaut. 

 

Im ersten Teil werden drei verschiedene Methoden verglichen, um Scheitelabflüsse  (IPF) aus 

dem entsprechenden Tagesmaximum des Abflusses (MDF) zu schätzen. Im ersten Ansatz wird 

eine einfache lineare Regression angewendet um IPF aus MDF zu berechnen unter 

Verwendung wahrscheinlichkeitsgewichteter Momente (PWM) und Quantilwerten. Im 

zweiten Verfahren ermöglicht die Verwendung von schrittweiser multipler linearer 

Regressionsanalyse die wichtigsten Eigenschaften des Einzugsgebiets zu identifizieren. Die 

resultierende Gleichung kann angewendet werden, um MPF in IPF zu übertragen. Die dritte 

Methode untersucht die zeitlichen Skalierungseigenschaften der Zeitreihe des jährlichen 

maximalen Durchflusses auf Grundlage der Hypothese der stückweisen einfachen Skalierung 

kombiniert mit der generalisierten Extremwertverteilung (GEV). Die Ergebnisse aus diesem 

Teil zeigen: (1) die Skalierungsformeln, welche aus drei  15 Minuten Stationen entwickelt 

wurden, können auf alle Tagesstationen übertragen werden, um die IPF abzuschätzen, (2) das 

Verfahren der schrittweisen multiplen linearen Regression, liefert das beste Ergebnis im 



 

 

Vergleich zu den beiden anderen Verfahren , (3) die lineare Einfachregression  ist bei 

ausreichenden Daten am einfachsten anzuwenden, während die Skalierungsmethode die 

effizienteste Methode im Hinblick auf die Datennutzung ist. 

 

Im zweiten Teil der Arbeit wird der Vergleich verschiedener Strategien um 

Häufigkeitsverteilungen der IPF abzuleiten mit einem hydrologischen Modell untersucht. Das 

hydrologische Modell wird mit  täglichen und stündlichen Zeitschritten betrieben. 

Anschließend werden die GEV-Verteilungen auf die simulierten jährlichen Serien von 

täglichen und stündlichen extremen Abflüssen angepasst. Die resultierenden MDF Quantile 

der täglichen Simulationen werden unter Verwendung eines multiplen Regressionsmodells in 

IPF Quantile transferiert, sodass ein direkter Vergleich mit den stündlich simulierten 

Quantilen möglich ist. Solange keine Klimaaufzeichnungen mit hoher zeitlicher Auflösung 

zur Verfügung stehen, erfordern die stündlichen Simulationen eine Disaggregierung der 

Tagesniederschlagsmenge. Zusätzlich werden zwei Kalibrierungsstrategien angewandt: (a) 

Kalibrierung auf Abflussstatistiken; (b) Kalibrierung auf Ganglinien. Die Ergebnisse aus 

diesem Teil zeigen, dass: (1) das multiple Regressionsmodell in der Lage ist die IPFs mit den 

simulierten MDFs vorherzusagen; (2) sowohl die  tägliche Simulation mit nachfolgender 

Korrektur der Abflüsse als auch  die stündliche Simulation mit vorheriger Disaggregation  des 

Niederschlags eine vernünftige Schätzung des IPFs ermöglichen, (3) die besten Ergebnisse 

mit Hilfe von disaggregierten Niederschlägen für die stündliche Modellierung mit einer  

Kalibrierung auf Abflussstatistiken erzielt werden kann, (4) wenn die IPF Beobachtungen 

nicht ausreichen um das hydrologische Modell anhand von  Abflussstatistiken zu kalibrieren,  

die Korrektur  von MDFs über die multiple Regression eine gute Alternative darstellt um die 

IPFs zu schätzen. 

 

Im dritten Teil, wird die Abschätzung des Scheitelabflusses  aus Tageshöchstwerten mit 

regionalisierten Parametern untersucht. Das hydrologische Modell wird  anhand von  

täglichen Abflussstatistiken kalibriert und die Parameter werden unter Verwendung einer 

Übertragungsfunktion den Einzugsgebietseigenschaften zugeordnet. Es erfolgt eine simultane  

Modellkalibrierung  für alle betrachteten  Teileinzugsgebiete mit Hilfe der entsprechenden 



 

 

Gebietseigenschaften . Anschließend erfolgt eine Nachkorrektur der simulierten MDFs unter 

Verwendung des multiplen Regressionsmodells . Die Ergebnisse dieses Teils zeigen: (1) die 

regionalisierten Parameter erhöhen den Schätzfehler der IPFs, während die multiple 

Regression in der Lage ist, diesen Fehler zu reduzieren; (2) zukünftige Untersuchungen zur  

Klassifizierung von Einzugsgebieten ist erforderlich  um die Schätzfehler zu reduzieren. 

 

Alle diese drei verschiedenen Untersuchungen  wurden für das  Aller-Leine Einzugsgebiet, 

Deutschland, durchgeführt. Der erste Teil der Forschung berücksichtigt 50 Pegel in diesem 

Bereich und die restlichen beiden Teile jeweils  18 Teileinzugsgebiete. 

 

Schlagworte: der maximalen Scheitelabflüsse (IPF); Tagesmaximum des Abflusses (MDF); 

Aller-Leine Einzugsgebiet, Deutschland 

  



 

 

Abstract 

Instantaneous peak flow (IPF) data are the foundation of the design of hydraulic structures 

and flood frequency analysis. However, the long discharge records published by hydrological 

agencies contain usually only average daily flows which are of little value for design in small 

catchments. Prognoses and forecasts of IPFs can be carried out by: (i) building the 

relationship between instantaneous peak flow and maximum daily flow regarding the flood 

frequency analysis based on available flow data, (ii) operating the rainfall-runoff models 

using synthetic high resolution precipitation data, such as 1h as input. Since the conceptual 

structure of hydrological models needs a parameter calibration procedure, estimation of IPFs 

in ungauged areas can be derived by (iii) a predefined transfer functions between model 

parameters and catchment descriptors. According to the above three targets this thesis 

therefore is organized as follows. 

 

In the first part, three different methods are compared to estimate the instantaneous peak flow 

(IPF) from the corresponding maximum daily flow (MDF). In the first approach, simple linear 

regression is applied to calculate IPF from MDF values using probability weighted moments 

(PWM) and quantile values. In the second method, the use of stepwise multiple linear 

regression analysis allows to identify the most important catchment descriptors of the study 

basin. The resulting equation can be applied to transfer MDF into IPF. With the third method, 

the temporal scaling properties of annual maximum flow series are investigated based on the 

hypothesis of piece wise simple scaling combined with the generalized extreme value (GEV) 

distribution. The results from this part show: (1) the scaling formulas developed from three 

15_minute stations can be transferred to all daily stations to estimate the IPF, (2) the method 

based on stepwise multiple linear regression gives the best results compared with the other 

two methods, (3) the simple regression method is the easiest to apply given sufficient peak 

flow data, while the scaling method is the most efficient method with regard to data use.  

 

In the second part, comparison of different strategies to derive frequency distributions of IPFs 

using the hydrologic model is investigated. The model is operated on a daily and an hourly 

time step. Subsequently, GEV distributions are fitted to the simulated annual series of daily 



 

 

and hourly extreme flows. The resulting MDF quantils from daily simulations are transferred 

into IPF quantiles using a multiple regression model which enables a direct comparison with 

the simulated hourly quantiles. As long climate records with a high temporal resolution are 

not available, the hourly simulations require a disaggregation of the daily rainfall. 

Additionally, two calibrations strategies are applied: (a) calibration on flow statistics; (b) 

calibration on hydrographs. The results from this part show that: (1) the multiple regression 

model is capable to predict IPFs with the simulated MDFs; (2) both daily simulations with 

post-correction of flows and hourly simulations with pre-processing of precipitation enable a 

reasonable estimation of IPFs; (3) the best results are achieved using disaggregated rainfall for 

hourly modeling with calibration on flow statistics; (4) if the IPF observations are not 

sufficient for model calibration on flow statistics, the transfer of MDFs via multiple 

regressions is good alternative to estimate IPFs.  

 

In the third part, estimation of the instantaneous peak flow from maximum daily flow using 

regionalized parameters is investigated. The model is calibrated on flow statistics on a daily 

time step and its parameter values are initially associated with the catchment descriptors using 

a transfer function. A simultaneous model calibration is performed for a number of sub 

catchments with these contrasting catchment characteristics. Post-correcting the simulated 

MDFs using multiple regression model is also involved. The results of this part show: (1) the 

regionalized parameters increase the estimation error of IPF while multiple regression is 

capable to deduce this error efficiently; (2) further work about classification may be needed to 

reduce the estimation error. 

 

All these three different tests are carried out in Aller-Leine catchment, Germany. The first 

part of research takes into account 50 flow stations among this area and the rest two tests are 

investigated in 18 sub catchments of this area. 
 

Keywords: instantaneous peak flow (IPF); maximum daily flow (MDF); Aller-Leine 

catchment, Germany 
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Chapter 1 
 

1 Introduction 

 
1.1 Flood risk and flood consequences 
 

Floods are one of the most damaging natural hazards in the world while the evolution of 
human society always depended on the dynamics of water. The catastrophic floods occurred 
during the last decades caused several problems to our societies including the loss of human 
lives, damage on the goods as well as all kinds of environmental issues. The knowledge of 
flood risk and its consequences is essential for the development of flood management, flood 
control, improvement of resilience and risk reduction. Better understanding on this extreme 
phenomenon is also essential for flood forecasting which is carried out to reduce the damage 
and help to prepare the adequate alternatives.  
 
Flood risk is considered as the combination of a vulnerable system susceptible to suffer loss, 
the hazardous phenomenon of flooding and probability. Basic knowledge for apprehending 
the flood risk therefore concerns the frequency and intensity of floods, human sensitivity to 
floods and their susceptibility to suffer damage, the exposition of humans and assets to 
flooding. Since it brings variable aspects together, such as economic, human, natural and 
environmental, the consequences of floods can be distinguished as negative and positive types. 
The floods that have adverse impacts on the natural system, social system or the building 
environment are referred as damaging floods, i.e. the catastrophes occurred in the Yellow 
River floodplain in China and the Europe (Merz et al. 2010); In August 2002, scenes of 
devastated villages, cities and landscapes were flashed around the world, with tragic loss of 
life and massive economic damage estimated in billions of Euros (see Table 1.1). On the other 
hand, the floods are potential to generate benefits since the effects of flooding on the 
environment can differ between the assessment of the impacts of flooding and ecological 
communities, e.g. the cases of Mississippi delta, improving the agricultural lands and keeping 
the elevation above sea level, and the flood in “1’ Aude” in France 1999 improving solidarity 
between towns (D4E 2007; Montz and Tobin 1997). 
 
 It is highly probable that the mixture of climate change and human interference is responsible 
for human suffering and the losses across the world. Responding to the people’s demand and 
the enormous damage, different actions and management are conducted for managing the 
risks of floods. Examples are the Act on Flood Protection, the recently published directive of 
the European Commission on the sustainable flood protection and the 5-point program of the 
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German Government (Damm 2010). Technical protection measures (dams, diversion canals, 
river and coastal defences) are taking place as well. To understand further about flood risk, 
the following subsections are presented to bring some essential concepts about floods. 
 

Table 1.1  Economic damage of the most severe flood events in Germany since 1990 
Rank Month/Year Rivers Damage [m.€] Insured damage [m.€] 

1 08/2002 Elbe, Danube 11600 1800 

2 12/1993 Rhine 530 160 

3 05/1999 Danube, Rhine 430 75 

4 07/1997 Oder 330 32 

5 01/1995 Rhine 235 95 

Source: (Damm 2010) 
 
What is a flood? 
 
A flood is characterized as an overflow of water that submerges land which is usually dry. 
The European Union Floods Directive defines a flood as a covering by water of land not 
normally covered by water. Several factors, such as extreme climate conditions, concentration 
of water in riverbeds can promote a flood event. Some floods develop quite fast just a few 
minutes and may without visible signs of rain while others can develop slowly. Additionally, 
floods can be very large which affects the whole river basins. They can also be local, only 
impacting a community or neighborhood. A flood situation can be described according to its 
causes (overbank flooding, engineering issues), geography (ice jam flooding) or speed (flash 
floods). 
  
Flood effects and flood forecasting 
 

Floods generate several effects in a direct or indirect way and they can be defined as all 
objective changes on human, economical systems and natural. Nowadays, flooding has been 
considered as the first unfavorable natural hazard in the world since their benefits almost 
certainly outweigh their negative aspects. The primary effects of flooding include loss of life, 
damage to social system and built environment. Flood waters typically inundate farm land, 
cities, making the transport unworkable and preventing crops from being planted or harvested. 
Meanwhile, there are some psychological damages to people who suffered the loss of 
property and serious injuries especially. However, for some smaller floods or in particular 
more frequent ones can also bring many benefits, such as increasing nutrients in soils, 
recharging ground water, providing water in arid and semi-arid regions. Therefore, the 
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flooding phenomenon is a natural process which is considered as a risk if the society is 
potentially affected by the floods. The effects of floods are defined as all objective changes 
generate by floods on human, natural and economical systems. The following scheme (Figure 
1.1) represents these concepts. 
 
Flood forecasting is a complex process of estimating flow rates and water levels for periods 
ranging from a few hours to days ahead, especially the peak flow rate, by using the real-time 
precipitation and stream flow observations and rainfall-runoff models to forecast the possible 
flood events across the target watershed.(Messner et al. 2007). The main goal of flood 
forecasting is to anticipate floods before occurring which allows for people to be warned and 
precautions to be taken. For example, emergency services can make provisions to prepare 
enough resources available in advance to respond to emergencies as they occur, farmers can 
also remove animals from the dangerous flood areas if needed. To make accurate flood 
forecast, it is best to have long time series of historical flow data. In addition, the real time 
knowledge about volumetric capacity in target basin, such as ground water levels, degree of 
saturation and spare capacity in reservoirs are also useful in order to make more accurate 
flood forecasts. For more details, refer to (Saddagh and Abedini 2012; Wu et al. 2013; Yu and 
Tseng 1996) 
 
 
 

 
 

Figure 1.1:  Effects, impacts and damage linked to floods  (edited after Eleutério 2012) 
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 Flood control 
 
Flood control refers to all techniques or practices used to reduce or prevent the detrimental 
effects of flood waters with dams, artificial channels, etc. e.g. The largest and most elaborate 
flood defenses are found in the Netherlands, where they are called ‘Delta Works’ with the 
Oosterschelde dam as its crowning achievement. In China, some rural areas are used as flood 
diversion areas to be deliberately flooded in emergencies in order to protect cities. Basically, 
two alternatives are employed to reduce damage induced by floods: (1) to reduce the potential 
damage by the construction of infrastructure, e.g. dams, retention basins, rectification and 
deviation of waters. These measures imply interventions on the physical world, (2) to reduce 
the vulnerability of assets exposed hazards by focusing on the behavior of individuals, in this 
context, the non-structural measures, such as evacuation plans, education and rescue 
organization, are used to modify the behavior of the individuals to become able to reduce their 
own vulnerability. The structural measures on the infrastructures and buildings can be 
adopted to reduce their susceptibility to suffer damage. The control of urbanization is one of 
important strategies for flood control in a long term perspective. (Bouwer et al. 2011; Colin et 
al. 2011) 
 
Due to global climate change, meteorological and hydrological variables and patterns have 
been changing. Several regional models have concluded that there are dramatic impacts of the 
rising temperature on rainfall and runoff generation process. It is necessary therefore to take 
some measures and actions to deduce the flood risks, although with some unavoidable 
uncertainties from these regional models. 
 

1.2 Estimation of design flood peak 
 

Estimation of design flood peak provides an effective way of design of hydraulic structures, 
water resources planning and flood risk management although reliable estimation of flood 
frequency in terms of peak flows is still a challenge in hydrology (Cameron et al. 1999). 
Flood frequency estimation is concerned with quantification of rarity. The main objective of it 
is to estimate how large a flood will be for a particular probability of exceedance, or how 
often a specific flood event will occur. For the preservation of human life and property, it is 
quite necessary in the design, planning and operation of hydraulic structures, such as dam 
spillways, bridges and culverts (Pegram and Parak 2004; Reis Jr and Stedinger 2005). 
 
Most of the reported design methods are based on frequency analysis assuming stationary 
conditions in a certain time window representing current and future hydrological conditions. 
The peak flows are then treated to be random and independent variables. However, in reality 
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there are nonstationarities in probability distribution of peak flows because of land use 
changes, climate changes and human disturbance on flow regimes by damming and other 
hydraulic constructions (Bradley and Potter 1992; Gebregiorgis and Hossain 2012; Sivapalan 
and Samuel 2009; Villarini et al. 2009a; Villarini et al. 2009b). Despite the controversial issue 
of stationarity of annual peak flow series, statistical flood frequency analysis is still 
commonly applied for the design of hydraulic structures and flood management given 
reasonable assumption of stationarity (Gebregiorgis and Hossain 2012; Villarini et al. 2009a; 
Xiong and Guo 2004). 
 
Several techniques for design flood peak estimation have been developed in many regions. A 
direct estimate of the flood peak for a given exceedance probability can be obtained by 
frequency analysis of observed flood peaks. Since rainfall records are generally longer and 
less variable over time than the flow records, rainfall runoff modeling based techniques are 
often used for the determination of the design flood peak. If the observed flow data are not 
available at the site of interest, the event based methods or some alternate regionalization 
approaches have to be used. USACE (1994) summarizes the use of statistical estimation of 
design flood based on the observations, regionalization approaches for ungauged areas and 
rainfall-runoff modeling based methods. The decision tree for the selection of design flood 
peak estimation method is presented in Figure 1.2. 
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Figure 1.2:  Approaches to design flood peak estimation 

 
 
1.2.1 Statistical approaches 
 
The methods based on the analysis of observed flood samples which are probabilistic by 
nature are hence suitable for estimating design flood peaks. They can be summarized as flood 
frequency analysis method at sites and regional flood frequency analysis for catchment with 
no data. 
 
Flood frequency analysis (FFA) at a gauging site 
 
Design flood peak estimation using FFA at sites method requires the frequency analysis of 
observed instantaneous peak flow data, from a flow gauge, that are adequate in both quality 
and length.  A direct estimation of the design flood peak for a given exceedance can then be 
obtained via frequency analysis. The following assumptions are generally made for the peak 
flow series data: 
 

• The collected peak flow data are supposed to be independent from each other. Thus, in 
a random process, the value of the variant does not depend on previous or next values. 
 

• It is assumed that the sample is representative of the population and the selected 
annual peak flows conform to a stationary and identically distributed random process.    
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There are two procedures included for the probabilistic analysis (Alexander 2001):  
 

1. summarise the observed flood peak data.  
2. select the appropriate probability distribution while estimating the parameters 

 
The summarization of the observed flood peak data includes ranking either the annual 
maximum series (AMS) or partial duration series (PDS) in a descending order of magnitude 
and assigning an exceedance probability to the plotted values subsequently. The AMS are 
defined as the highest instantaneous peak flow value in each hydrological year for the whole 
record period (Chadwick et al. 2004; Schulze 1995). The PDS which has been denoted to be 
advantageous for the flood statistics to represent more than one peak flow per year, is also 
referred to as an peak over threshold (POT) series. In the selection procedure of PDS, it 
includes all events above some arbitrary threshold values and entails that some of the annual 
maximum peaks may be exclude in the series using this threshold exceedance value (Kite 
1988). Several hydrologists have discussed previously the use of the AMS and PDS in their 
studies. According to Madsen et al. (1997), PDS is more suitable for analyzing flood 
frequency when secondary flood peak values are important and also for short data records. 
Additionally, the PDS design estimates can be more accurate than the AMS by including the 
extreme cases which may be exclude in the AMS for not be the largest event in a specific year 
(Stedinger et al. 1993b). On the other hand, Adamson (1981) pointed out that, the AMS 
according to its easy usage instead of theoretical efficiency in characterizing the flood peak 
series are more favorable than the PDS. Therefore, the AMS seems to be much more applied 
in hydrologic studies than PDS, since the extraction of peaks to include in the AMS is a 
straightforward task (Madsen et al. 1997).  
 
Numerous plotting position formulas have been suggested to assign an exceedance probability 
to flood peaks. Most have the general formula: 
 

1 2
i aP

n a
−

=
+ −

                                                                                                                      (1.1) 

 
where P is exceedance probability; i is the ranked number of peak flows in descending order, 
varies from a to 0.5 and n is the total number of observations. 
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Five of the most commonly-used formulas are shown in Table 1.3: 
 

Table 1.2 Plotting position formulas included in the theoretical probability distributions 
Reference a Formula 

Weibull(1939) 0 i/(n+1) 
Blom(1958) 0.375 (i-0.375)/(n+0.25) 

Cunnance(1978) 0.4 (i-0.4)/(n+0.2) 
Gringorten(1963) 0.44 (i-0.44)/(n+0.12) 

Hazen (1914) 0.5 (i-0.5)/n 
 
 
The Weibull formula has long been used as the standard reference for determining flood 
frequencies and for plotting flow duration and flood frequency curves in the United States 
(Langbein 1960). The Blom formula is preferred in probability plots for comparing data 
quantiles to those of anormal distribution. The advantages of Cunance formula are: firstly, it 
is acceptable for normal probability plots, which is very close to Blom; secondly, this formula 
has been proved by Cunnane that it outperforms Weibull when calculating exceedance 
probabilities. Chambers et al. (1983) have applied the Hazen formula for comparing two or 
more data sets using Quantile-Quantile plots.  
 
Parameters estimation methods available for fitting theoretical probability distribution to 
observed flood peaks include: Maximum likelihood (ML), Method of Least-Squares (MLS), 
Method of Moments (MM), Probability Weighted Moments (PWM) and Linear Moments 
(LM) (Chow et al. 1988; Kite 1988; Stedinger et al. 1993b; Yevjevich 1982). Estimation the 
parameters of a theoretical probability distribution based on a specific sample is always 
within limits when using all these methods (Kite 1988). LM estimators are used commonly 
and widely as a standard procedure by hydrologists for the purpose of screening discordant 
data, testing clusters for homogeneity and flood frequency analysis. They have been proved 
better than ML estimators in terms of variance for sample sizes and bias (Hosking 1985) and 
well defined for most of the different distribution functions. Besides, they are more robust 
against outliers than standard MM estimators. Compared with the equivalent PWMs (Hosking 
1994), LM estimators are more convenient because they are more easily interpretable as 
measures of distributional shape (Stedinger et al. 1993a). However, Alexander (2001) 
criticizes LM are too robust against outliers since both low and high outliers are significant 
characteristics of flood peak maxima. The suppression of the effect of outliers cold result in 
unrealistic estimates of longer return periods values. Thus, further investigation is needed 
when adopt these methods. 
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Based on the limited available information, an appropriate theoretical probability distribution 
fitted to the observations allows fitting to a frequency with some systematic extrapolation 
procedures and also provides a smoothed and compact way to present the frequency 
distribution of the population (Smithers and Schulze 2000a). Many statistical distributions 
therefore have been investigated in hydrology for different countries. Annual flood peak 
series are found to be often skewed, which leads to the development of many skewed 
distributions, such as Generalized Extreme Value (GEV) distribution, Gumbel (EV1), the Log 
Pearson Type III (LP3) and 3-parameter Lognormal (LN3) (Pilon and Harvey 1994). In 1984, 
A worldwide survey involving 55 agencies from 28 countries reveals that, in spite of recent 
popularity of GEV distribution in flood frequency analysis, there is only one country 
employing it in comparison with the other most common distributions (such as: EV1, two 
parameter lognormal (LN2), P3 and LP3). (Cunnane 1988). 
 
 
Regional flood frequency analysis (RFFA) 
 
Given the facts that frequently no or inadequate observed flood peak data at flow-gauging 
sites are available and the sampling errors are correspondingly large, the use of regional flood 
frequency analysis becomes necessary. The index flood method is one of the first approaches 
to regional flood estimation (see Dalrymple (1960)). It consists of two major parts. The first is 
to identify the homogeneous regions which can provide a basis for information transfer to the 
target region. Different classification techniques and similarity measures are utilized in 
practice. The second part is to perform the regional estimation methods estimating the flood 
frequency at the target region based on data from the regions identified in the first part of 
analysis. Thus, an appropriate frequency distribution for the selected regions has to be 
included here. In essence, the assumption in regional flood frequency analysis is that in a 
homogeneous region, the probabilistic behaviors of extreme flows are similar for all different 
sites, therefore, the flow data from various single stations can be combined to produce a 
single regional flood frequency curve after justifiable scaling techniques. This determined 
regional frequency curve is intended to be the result for any site (Smithers and Schulze 2003). 
More details about it can be found in (Cunnane 1988; Dawdy et al. 2012; GREHYS 1996). 
 
The advantages of RFFA for design flood peak estimation are evident from the literature. For 
example, Potter (1987) expressed a regional method will be more efficient than the 
application of an at-site analysis in nearly all practical situations. Cordery and Pilgrim (2000) 
concluded that a well conducted regional frequency analysis will yield quantile estimates 
accurate enough to be useful in improving flood prediction and many practical applications. 
This leads to the adoption of a RFFA approach as the recommended approach for design 
flood peak estimation by some countries, such as UK and Australia. However, one should be 
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careful to ensure that such an approach is not applied outside of the range of observations 
used to develop the method or outside of the region where the method was derived. 
 
1.2.2 Derived flood frequency analysis (DFFA) approach 
 
Rainfall-runoff models are used for design flood peak estimation to simulate flood events or 
continuous time series of runoff for which the quantiles of a given recurrence can be 
determined. These methods that seek to integrate rainfall-runoff modeling and statistical 
frequency analysis are referred to as derived flood frequency analysis (DFFA) approaches 
(Eagleson 1972). The advantages of using rainfall-runoff models for design flood peak 
estimation can be summarized as follows (Lamb 2006): 
 

1. Compared with the available flow data, the rainfall records at most of the sites are 
generally longer and with better quality for analysis and the hydrological models can 
be driven by also long synthetic rainfall data. 

2. The changing catchment conditions, measurement errors or inconsistencies in the data 
can render non-stationary flow records which are not suitable for direct frequency 
analysis.  

3. Physical characteristics of a catchment can be incorporated into a rainfall-runoff 
model. In addition, it can also model the different land use and climate situations in 
historical, current or future conditions within a catchment. 

 
Design event models  
 
An established complement to statistical flood frequency analysis is simulating flows for 
discrete design storms with event based procedures. The widespread use of design event 
models, such as Unit Hydrograph, Rational and Soil Conservation Services (SCS), is due to 
their ability to estimate the individual design flood peaks in a robust and simple manner. They 
lump the complicated, heterogeneous catchment processes into a single process prior to the 
occurrence of a flood event. Similar to any conceptual rainfall-runoff model, the structures of 
design event models also combine loss and attenuation modules. 
 
This event based methods can make good use of the available rainfall data, which itself brings 
potential advantages in catchments where longer rainfall records exist or where rain gauge 
network in more extensive than the flow gauge network. One of the limitations of design 
event based models in the assumption that, the frequency of input rainfall and the estimated 
runoff is equal, while being influenced by model parameters and catchment representative 
inputs (Viglione et al. 2009). Namely, if the catchment is at an ‘average’ condition, the T-year 
recurrence interval rainfall will generate the T-year flood peak. This assumption takes into 
account the probabilistic natural of rainfall but ignores the probabilistic behavior of other 
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inputs (e.g. antecedent soil moisture condition) and parameters. Thus, it is likely to introduce 
significant bias in the estimation of design flood peak and the validity of this assumption is 
crucial to the accuracy of this approach. 
 
Continuous simulation methods 
 
In order to overcome the limitations associated with event based design models, continuous 
simulation is proposed to generate extended time series of flow data, from which it is easy to 
extract different features of interest, such as peak flows, measure of flow duration and 
volumes above a threshold. There are three elements included in the continuous simulation 
methods: 
 

•  A series of climate data, derived from observations or a stochastic model as input 
•  Simulation the catchment processes with a model 
•  The extraction of important flood features from the simulated flow time series data. 

 
In contrast to the event based design models, these continuous simulations have the advantage 
that no assumptions on the return period of the design rainfall, its intensity and duration and 
the antecedent soil moisture have to be made (Boughton and Droop 2003; Cameron et al. 
1999). Any rainfall-runoff models could be used, ranging from a black box transfer function 
approach to a distributed, detailed physically based model. It can provide a complete 
hydrograph and continuous simulation of antecedent moisture conditions. 
 
Rainfall inputs are clearly of paramount importance for model simulation. One of the 
motivations for continuous simulation is that rainfall data can often give more information 
than flow data since the rain gauge networks are denser, longer and more extensive 
established. In some cases, there may be an interest in simulating flows directly from the 
observed rainfall when the flow records are not good enough to undertake the frequency 
analysis. In addition, if the rainfall records are too short to drive the length of simulation 
needed for sampling floods, the continuous simulation could still provide a way of estimation 
the design flood peak due to the currently increasing computational power coupling with long 
stochastically generated rainfall series. A long series of artificial discharge data can be used 
for flood frequency estimation subsequently (Blazkova and Beven 2002; Faulkner and Wass 
2005; Sivapalan et al. 2005). 
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1.3 Motivation, objectives and outlines of the thesis 
 
Motivation 
 
Over the last few decades, enormous importance and attention have been given on flood 
management and hydraulic engineering projects. In Hannover, Germany, Aller-Leine river is 
an important source of irrigation, but the increasing flooding along Aller led to heavy losses 
for agriculture in this region.  
 
The severity of floods is often poorly captured using conventional daily flow gauge networks 
which are not sufficient to fully describe the temporal characteristics of flood events and may 
increase the risk of failure due to an underestimation of design floods (Pilon 2004). In fact, 
the bad understanding of this phenomenon is due to peak discharges are unknown in the 
catchments of concern, or the length of the records is too short for a flood frequency analysis. 
However, the design of hydraulic structures often depends on the instantaneous peak flows as 
the maximum daily values are always smaller than the corresponding instantaneous peak 
flows, using the daily data to estimate the design flood flow may cause a significant under 
estimation. in particular, there can be some serious stream flow fluctuations within hours or 
even minutes in some small basins (Fill and Steiner 2003).  
 
Figure 1.3 shows the difference of quantile value (T=100 years) of IPF and MDF for 56 flow 
gauges in Aller-Leine catchment, where the relative error is defined as:  
 

Re 100%IPF MDF

IPF

HQ HQlative error
HQ
−

= ⋅                                                                                   (1.2) 

where the HQIPF and HQMDF are the 100- year quantile values for peak and daily series 
respectively.  
 
It can be seen that the difference between the IPF and MDF is decreasing with the basin area 
while for the some small regions (Area<500km2) the relative error can reach over 50%. 
Besides, most of the regions of interest are not large enough (Area<1000km2) to ignore the 
estimation differences from MDF. Thus, investigations into the link between the IPF and 
MDF are needed to derive the IPF from the available MDF which can further extend our 
knowledge for flood risk management.  
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Figure 1.3:  The difference of IPF and MDF in Aller-Leine catchment 

 

Concerning the impact of change in land use, climate and management on extreme runoffs, 
the available MDF data may not be trusted while the assessment of the safety of existing 
infrastructures is needed. As a result, estimation of the design flood peak requires more robust 
and reliable approaches. With the help of hydrological models, stochastic rainfall models and 
flood frequency analysis techniques, there are probabilities that the design flood peak could 
be estimated by taking into account the dynamic changes in the catchments. 
 
Conceptual models which provide a simplified representation of key hydrological processes 
using a perceived system, on the other hand, are well-known for their moderate data 
requirement. This deficiency cause problems when dealing with ungauged basins since the 
model parameters have to be obtained through calibration. Due to the fact that the 
hydrological models only perform well with calibration based on the historical hydrological 
data, the conceptual basis of these models will reduce their ability to deal with climate/land 
use changes taking place in most regions. In a broad and practical sense, estimation of design 
flood peak based on the simulated extremes requires regionalization methods which relate 
easily measured watershed characteristics to hydrological model parameters. This may enable 
not only the predictions of ugagued sites but also the sites within the emerging context of 
climate change. 
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Objectives and procedures 
 
The main objectives of this frequency analysis study are: 
  

• To determine suitable methods of finding the instantaneous peak flow and maximum 
daily flow relationship, also called IPF-MDF relationship for Aller-Leine catchment, 
Germany; 
 

• To compare two different strategies to derive frequency distribution of IPFs with a 
hydrologic model, namely, calibration of the model on daily step with post correction 
of simulated MDFs (post-correction) and calibration of the model on hourly step with 
disaggregated daily rainfall as input (pre-procession); 
 

• To present the application of parameter regionalization in estimation of IPFs from 
simulated MDFs in ungauged catchments. 
 

A preliminary step in building the IPF-MDF relationship is based on the annual maximum 
statistical models. This requires knowledge of the flood peak characteristics of a specific 
region including examination of probability plots, descriptive statistics, examination of 
suitability of candidate distribution and seasonal analysis. The obtained information can 
further lead to the identification of appropriate probability distribution for describing the flood 
situation in the target region. The goodness of fit tests such as Chi-square (χ2), Kolmogorov-
Smirnov test and nω2 test, are often used to examine the suitability of candidate distributions. 
In this procedure, the assumed parent distribution will be tested to check if it is capable to 
produce random variables with the same statistical characteristics as the observed sample 
series. The annual peak and daily extremes are assumed to have an unique probability 
distribution throughout the whole Aller-Leine catchment. 
 
The simple regression method provides an easy and simple way to relate the IPFs with MDFs: 
 
 IPF MDF
HQ a HQ= ⋅                                                                                                              (1.3) 

IPF MDFPWM b PWM= ⋅                                                                                                       (1.4) 
 
where HQ is the quantiles of IPF and MDF data series; PWMIPF and PWMMDF are the 
probability weighted moments calibrated from IPF and MDF data series respectively. a, b are 
the regression coefficients that can be derived by the leave one out cross validation method. In 
the coefficients determination process, one station will be selected randomly while the HQIPF 



15 

and HQMDF, or PWMIPF and PWMMDF values from the remaining flow stations are regressed 
linearly.  
 
Based on the previous studies, multiple linear regression analysis is employed to describe the 
IPF as a function of MDF and catchment properties. It is important therefore to know which 
properties should be selected as the explanatory variables for the final regression function. 
The effective identification of the explanatory variables is governed by two selection analysis. 
A descriptive statistical analysis is used to give a perspective about the relationship between 
the flow and the candidate catchment properties. A stepwise regression analysis is then to 
eliminate the redundant selected variables from last step and determine the final ones. 
 
It has been observed that the scaling properties of extreme runoff series of different time 
scales exist. The piecewise scaling method is proposed to explore the scaling theory in runoff 
based on the assumption that equality holds in the probability distribution of the observed 
runoff rate at two different time scales. The relationship regarding the moments of IPFs and 
MDFs can be described as: 
 
 IPF MDFM Mλ= ⋅                                                                                                                   (1.5) 
 
where λ is the scaling factor and M is the moments of any order. Hence the quantiles of IPF 
can be estimated by the scaled moments from observed MDF data series. A detailed 
validation of the scaling hypothesis is required in this context. 
 
Given the obtained relationship between IPF and MDF from the above analysis, the objective 
of hydrological modeling is to contribute to the understanding of how the two different 
strategies used to derive IPFs quantiles and also help the decision makers to clarify ideas 
about choosing the proper estimation strategy conditioned on available data. 
A conceptual rainfall-runoff model, HBV model has been chosen to simulate the IPFs and 
MDFs on both hourly and daily time steps for 18 catchments in Aller-Leine area, Germany. 
Two calibration schemes are performed, which are based on flow statistics and traditional 
hydrographs respectively. Four different aspects of the runoff statistics are included: the 
winter (November-April) extremes distribution, summer (May-October) extremes distribution, 
flow duration curve and annual extreme series. An automatic optimization procedure based on 
dynamically dimensioned search algorithm (DDS) algorithm is used for solving a single 
overall objective calibration problem. The frequency analysis of the extreme values is based 
on the generalized extreme value distribution (GEV) with L moments (see Hosking and 
Wallis (1997)). Figure 1.4 gives an overview of the workflow used in this investigation. Since 
there is no time step associated with the instantaneous peak flows (IPFs), the hourly peaks are 
assumed to be the IPFs here. 
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Figure 1.4:  Scheme of the two approaches; the temporal resolution of the data is given in 
brackets.  
 
For the post-correction approach the hydrologic model is operated at a daily time step using 
the two calibration strategies respectively. The quantiles from the simulated MDFs data series 
will then be post-corrected into IPFs by the above derived multiple regression equation. An 
advantage of this method is making good use of the available daily flow and climate data 
since they often have the longer, more extensive and better observations than the 
corresponding hourly ones. The pre-processing approach provides a basis for the direct 
simulation of IPFs using the synthetic hourly rainfall with high temporal and sufficient spatial 
resolution which can be generated from the long-term recorded daily rainfall by a 
disaggregation rainfall model. 
 
Quantification of the IPF in ungauged areas has been an interesting topic for several 
hydrologists in many countries. However, there has been limited knowledge to guarantee a 
quantitative relationship between the simulated MDFs using regionalized parameters and the 
observed IPFs. In addition, the faith one can put on hydrological models in predicting the 
IPFs depends on the uncertainty associated with model parameters. In this part of work, the 
HBV model is used and calibrated to selected gauged sub catchments with contrasting 
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catchment characteristics from different parts of the Aller-Leine basin. The calibration is 
carried out to estimate the regional values of the model parameters as functions of the 
catchment descriptors. The obtained MDFs are then corrected into IPFs by the above 
mentioned multiple regression. 
 
Outline of the thesis 
 
Besides the current chapter, the remaining part of the thesis is structured as follows: 
 
Chapter 2 describes the state of the art of this research which is concentrated on investigating 
the ideas and methods of estimating the instantaneous peak flow based on maximum daily 
flow. It covers some historical reviews on examination of IPF-MDF, flood frequency 
modeling and calibration techniques. 
 
Chapter 3 presents three statistic approaches to estimate the IPF from the corresponding MDF 
based on the observed records. The comparison results of the advantages and disadvantages of 
these three methods can give an insight into how to choose the proper method due to the 
specific catchment condition.  
 
Chapter 4 reports about the estimation of IPF from MDF using hydrologic models. This 
chapter gives a detailed account of two estimation strategies: post-correction and pre-
processing approach. The necessary comparisons are also made between them to provide the 
guidelines for engineering practice in flood peak estimation. 
 
Chapter 5 gives estimation of IPF from MDF using hydrologic models with regionalized 
parameters. A simultaneous model calibration is carried out for all the studied sub catchments 
with a predefined function between the model parameters and catchment descriptors. The 
simulated MDFs are then post-corrected into IPFs by the multiple regression derived in 
Chapter 3. It gives a new insight of estimating IPFs in catchments without flow data. 
 
Chapter 6 provides a summary, the conclusions and the outlook of the study. 
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Chapter 2  
 

2  State of the art in this research 

Whoever wants to reach a distant goal take many small steps.  – Helmut, Schmidt 
 

2.1 Estimation of IPF from MDF using statistical methods 
 

The first known study about estimating the relationship between annual instantaneous peak 
flow (IPF) and its corresponding maximum daily flow (MDF) is Fuller’s study (Fuller 1914). 
He analyzed flow data from 24 river basins with drainage areas varying from 3.06 to 151,592 
km2 in the Eastern United States and developed an equation to calculate IPF from MDF as a 
function of the basin area. Following Fuller’s method, there have been several studies 
investigating the relationship between the ratio of IDF and MDF and basin area. For instance,  
Langbein (1944) illustrated that the ratio of IPF to MDF is a function of the ratio of the daily 
discharge of the preceding day to the discharge of the maximum day and the ratio of the daily 
discharge of the succeeding day to that of the maximum day. Since this method does not 
permit generalized conclusions, it was further improved by Sangal (1983) and Fill and Steiner 
(2003). Additionally, Canuti and Moisello (1982) studied a group of basins in Tuscany to 
determine the probability distribution of the IDF on the basis of the MDF using the ratio of 
IDF and MDF as a function of its geomorphic catchment characteristics, such as mean 
altitude, basin magnitude, basin relief and channel slope, where the basin area does not seem 
to be the most important predictor.  
 
Tanguas et al. (2008)  developed a three-step procedure to find possible linear relationships of 
IPF—MDF in semi-arid areas of Spain. The first step is a preliminary analysis and involves 
categorizing basins into different groups according to the coefficient of determination (R2) of 
the regressions between IPF and MDF. The second step is the identification of the most 
important hydrological and topographic characteristics of the watersheds that will be included 
in IPF-MDF regional equations by using Principal Components Analysis (PCA). The third 
step is the development of regional equations to calculate the peak flow based on the 
influence of different attributes of the studied areas. The results showed a significant 
improvement in comparison to the traditional method of Fuller. The influence of the 
catchment properties on the hydrological response is an accepted concept in hydrology, upon 
which many models are built (Beven et al. 1988). Muñoz  (2012) developed a reliable peak 
flow estimation method for the design of hydraulic structures in Chile to relate instantaneous 
peak flow with rainfall and several other geomorphological descriptors.  
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As such, in this study, to effectively use the available flow data in IPF—MDF studies, there is 
a need to develop other potential techniques to relate instantaneous peak flow and maximum 
daily flow. One approach to tackle this problem is by using simple regression between 
observed peak and daily data regarding their PWM and quantile values. This method focuses 
on the average correlation performance between the IPF and MDF rather than on the 
empirical function within a region. As one of the key driver, an visual impression of the 
differences in IPF and MDF can be obtained from this direct comparison of their PWM and 
quantile values. Given the data series of all stations being available, the simple regression 
method can be easily operated. 
 
On the other hand, the link between annual instantaneous peak flow and maximum daily flow 
in this study is further investigated in a more comprehensive and easier manner, compared 
with the former researches. It is assumed assumed that the peak discharge response of a 
catchment is dependent on the regional runoff mechanism and climate and is also a reflection 
of different watershed characteristics, such as river slope, land use, land cover and rainfall 
intensity. A multiple linear regression analysis is therefore performed. The selection of the 
most important catchment descriptors has extended the work of further constructing a 
functional linear relationship between IPF and MDF.  

 
During the last decades, self computing approaches have evolved with several applications in 
hydrology. Dastorani et al. (2013) employed artificial neural networks (ANN) and adaptive 
neuro-fuzzy inference systems (ANFIS) to derive IPF from MDF. The authors compared their 
results with the methods of Fuller (1914), Sangal (1983) and Fill and Steiner (2003). ANFIS 
showed the highest accuracy of all methods. A general limitation of machine-based learning 
techniques is the need for training data. Thus, they need at least a short time series of IPF. In 
addtion, several disaggregation methods have been developed and performed in different 
areas to construct streamflow series at a finer temporal scale (Stedinger and Vogel 1984; 
Tarboton et al. 1998; Kumar et al. 2000; Xu et al. 2003; Acharya and Ryu 2014). It is 
suggested that many of these disaggregation algorithms are capable to produce streamflow 
realizations. However, the uncertainty existed in estimating parameters, high dimensionality 
of the disaggregation problem and the intensive computational resources mightily limit the 
application of disaggregation methods.  
 
Another potential approach is based on the concept of scaling which has gained increasing 
awareness recently in the field of geophysics and hydrology. Gupta & Waymire (1990) 
introduced the “multiplicative cascade” modeling framework for studying spatial variability 
of probabilistic structures of the rainfall process by introducing the concepts of simple and 
multiple scaling. Smith (1992) developed a lognormal cascade model to represent the basin 
scale in flood peak distributions and used a lognormal multi-scaling model to fit observed 
flood series in the Appalachian region of the United States. Gupta et al. (1994) applied a 
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multi-scaling theory at the regional scale to study the invariance of the probability 
distributions of peak flows on a basis of log-levy stable distributions. De Michele and Rosso 
(1995) proposed an assessment of regionalization procedures to show that the spatial 
variablility of flood probabilities of a small basin in Italy can be well presented by simple 
scaling. Yu et al. (2004) investigated the regional Intensity-Duration-Frequency formulas 
based on the scaling theory. It involves the hypothesis of piecewise simple scaling combined 
with the Gumbel distribution and the analysis of the temporal scaling properties of annual 
maximum precipitation series for various durations and return periods in northern Taiwan. 
These studies reveal that scaling theory is capable of finding a synthesis of the regularities in 
different temporal scales to characterize extreme storm probabilities.  
 
Thus, the scaling theory is adopted in this study to investigate the scaling properties of 
extreme flow for different time scales and to estimate IPF from MDF data. It proposes to 
build the scaling equations in three 15min flow stations while no such work has been done in 
the literature on relating the IPF with MDF. This scale-invariant model, scales flow data from 
one temporal resolution to another which give us a new insight into overcoming the lack of 
the instantaneous peak flow data and regionalization. 
 
Generally, all these methods are based on the purpose of estimation of IPF from MDF in a 
simple and reasonable manner. The state of art of this part of study can be summarized as:  
 

1. The transfer function of IPF-MDF is further improved by correlating their PWM and 
quantile values and new catchment descriptors have been found to establish a new 
multiple regression analysis in Aller-Leine basin, Germany.  
 

2. Although the scaling theory is quite popular and developed in the rainfall studies, it is 
not fully explored in the application of runoff, especially in the field of building the 
relationship between IPF and MDF. Here, the piecewise simple scaling combined with 
the GEV distribution is applied to estimate the moments of IPF form the observed 
MDF data series and subsequent quantile values of IPF. 

 
 

2.2  Estimation of IPF from MDF using hydrological modeling 
 
Various statistical methods can be found to estimate design peak flow in case there are long 
enough recorded stream flow data available. However, in many circumstances, the measured 
stream flow data are often too short to perform robust statistical inference at the site of 
interest. Under such conditions, Rainfall-runoff modeling is one of the most important and 
efficient method for the solution of extreme flows estimation problems, as well as for analysis 
of catchment and climate change or for theoretical investigation of controls on the flood 
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frequency curve (Cameron et al. 1999; Haberlandt and Radtke 2014). Additionally it can be 
quite useful to estimate IPFs for ungauged sites, where no measurements are available. In this 
case, regionalization of hydrological model parameters is commonly used to transfer 
information from gauged or partially gauged sites to the target site (Hundecha and Bárdossy 
2004; Merz and Blöschl 2004; Oudin et al. 2010; Seibert 1999; Sivapalan 2003; Wallner et al. 
2013). Consequently, the IPFs magnitudes and return periods can be estimated by the 
frequency analysis of flow data generated by a hydrological model with the transferred 
parameters. 
 
One main problem in hydrological modeling has been the lack of high resolution climate data. 
One possible solution would be to run the hydrological model with stochastically generated 
high resolution rainfall data (Blazkova and Beven 2004; Cameron et al. 1999; Haberlandt et al. 
2008; Haberlandt and Radtke 2014; Viglione et al. 2012). Another alternative would be to use 
a daily time step in hydrological modeling with the longer available daily climate forcing data. 
Then scale the simulated flows or derived extreme values afterwards. Unfortunately, it is not 
known which of the two options, namely, calibrating the daily model with subsequent 
correction of simulated MDFs and calibrating the hourly model with the disaggregated daily 
rainfall as input, provides better results. 
 
 A state-of-art assessment regarding the performances of these two methods is proposed in 
this study. To make an appropriate choice for a specific design problem, the estimates of IPFs 
from daily simulations with post-correction of flows and hourly simulations with pre-
processing of precipitation are compared. The simulated annual maximum daily and hourly 
extremes are subsequently analyzed for different return periods. Since the results from hourly 
simulation lead to estimations of IPFs with the desired recurrence interval, it is referred as 
pre-processing approach. On the other hand, the obtained maximum daily flow (MDF) 
quantiles are subsequently transformed into IPFs with a multiple regression model. This is 
called post-correction approach.  
 
Hydrological models are selected and applied as a basis for decision making about water 
resources management. The degree of belief people have in model predictions is often 
dependent on how well the model is able to reproduce observations, especially, to simulate 
the extremes. In this study, two calibrations strategies for the hydrological model using the 
hydrograph and using flow statistics, respectively, are compared through application for both 
post-correction and pre-procession approaches. The use of additional information during 
parameter estimation in the form of flow statistics, such as cumulative distribution function 
and flow duration curves, may help reduce uncertainties in simulating extremes (Cameron et 
al. 1999; Haberlandt and Radtke 2014; Westerberg et al. 2011; Yu and Yang 2000).  
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2.3 Estimation of IPF from MDF in ungauged catchments 
 
The estimation of design floods in ungauged catchments is a common problem in hydrology 
since there are numerous ungauged basins in the world. The most commonly adopted methods 
for this task include Index Flood (Method Hosking and Wallis 1993), the Quantile Regression 
Technique (Haddad and Rahman 2012; Tasker and Stedinger 1989) and Probabilistic Rational 
Method (Rahman et al. 2011; Young et al. 2009). These methods are limited to peak flows 
and hence are not particularly useful when the estimation of complete streamflow hydrograph 
is needed. The rainfall-based Design Event Approach has been recommended by a lot of 
countries, e.g. Australia and England. In this approach, the probabilistic nature of rainfall 
depth is considered in the rainfall-runoff modeling, but it ignores the probabilistic behavior of 
rainfall temporal patterns and runoff (Hill and Mein 1996). 
 
With the development of computational power, rainfall-runoff models have been commonly 
used to estimate the design flood peak in ungauged catchments since modeling has been 
proven to be an efficient and useful tool for estimating the elements of the water cycle in a lot 
of different catchments. The model parameters for these areas can be estimated using regional 
information. One can assume that catchments with similar characteristics have a similar 
hydrological behavior and thus can be operated using similar model parameters. It is therefore 
plausible for regionalization of model parameters on the basis of catchment characteristics.  
 
Regionalization techniques including the parameter regression approach (Fernandez et al. 
2000; Merz and Blöschl 2004; Seibert 1999; Servat and Dezetter 1993), nearest neighbor 
approach (Bárdossy and He 2006; Chiew and Siriwardena 2005; Merz and Blöschl 2004) and 
parameter regionalization (Kapangaziwiri and Hughes 2008) are implemented to transfer 
model parameters from one catchment to another catchment defined with similar climatic and 
hydrological characteristics. Parajka et al. (2005) compared a range of different 
regionalization methods using both snow cover data runoff data to estimate the model 
parameters. 
 
Although the regression-based approach was strongly doubted by McIntyre et al. (2005) who 
suggest to investigate the relationship between model parameter and the catchment descriptor 
to produce a joint distribution function of the model parameters which however requires a 
large number of observed catchments, it is still the main-stream regional calibration 
approaches. Earlier on, there are two steps involved in the regression-based regional 
approaches: (1) estimation of watershed model parameters at each individual catchment 
independently, followed by (2) attempts to relate the model parameters to catchment 
characteristics. Examples of this method can be found in Abdulla and Lettenmaier (1997) and 
Sefton and Howarth (1998). However, the transfer of parameters is difficult due to the non-
uniqueness of the model parameters. In principle, it is not easy to estimate the flow elements 
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in ungauged areas by calibrating the transfer function between model parameters with the 
characteristics of the catchment. To improve this weakness, a one step approach is proposed 
by Hundecha and Bárdossy (2004) where the calibration is carried out with the reference to 
the coefficients of the predefined regression function instead of the model parameters. In this 
approach, Model parameters are regionalized through simultaneous calibration of the same 
hydrological model on different catchments.  
 
Here, one step regression-based regionalization approach is used for the purpose of estimating 
the IPFs from simulated MDF in ungauged areas. A predefined function between model 
parameters and catchment descriptors is proposed. All the sub basins in in Aller-Leine 
catchment, Germany are calibrated simultaneously with the dual objective of reproducing the 
flow statistics of observed daily streamflows and additionally to obtain four quantile values of 
IPF. The HBV model is operated only on a daily time step. The simulated annual maximum 
daily extremes are subsequently analyzed for four return periods (T=10, 20, 50, 100yr). The 
obtained maximum daily flow (MDF) quantiles are subsequently transformed into IPFs with a 
multiple regression model. In addition, the calibrations strategy for the hydrological model is 
using flow statistics.  
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Chapter 3  
 

3 Estimation of IPF from MDF using statistical methods 

 
Given the available observed flow data, these three statistical methods developed in this 
chapter are performed to seek a relationship between the instantaneous peak flow (IPF) and 
mean daily flow (MDF). Such a regression function should prove to be attractive and useful to 
the people who want to determine peak flows based on the available often longer recorded 
daily flows. They are applied to a series of flow stations in Germany and compared to the 
traditional method available in the literature. The idea of the fist approach is to apply a simple 
regression between observed IPF and MDF data regarding their probability weighted 
moments (PWM) and quantile values. It can directly give us an impression of the differences 
and significance of correlation between IPF and MDF. The second method including a 
multiple linear regression analysis constructs a functional linear relationship between IPF and 
MDF with the selected catchment descriptors. The last scaling method proposes to extend the 
former research and build a scale-invariant model scaling the flow data from one temporal 
resolution to another. It gives us a new insight into overcoming the lack of the instantaneous 
peak flow data and regionalization. 
 

3.1  Methods 
 

3.1.1 Simple regression using quantiles and probability weighted moments 
(PWMs) 
 
L-moments are linear functions of Probability weighted moments (PWMs), introduced by 
Greenwood et al. (1979). PWMs can be written as: 
 

( )
1

0i x F F dFβ ′ ′= ∫                                                                                                                (3.1) 

 
where i=0, 1, 2…is positive integer. When i =0, 0β  is equal to the mean of the distribution; F 

is cumulative distribution function (CDF) for x and ( )x F ′ is inverse CDF of x evaluated at 

the probability F. 
 
The ith L-moments iγ are related to the ith PWM through 
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For instance, the first three L-moments are related to PWMs using 
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L-moments ratios are defined by Hosking 1990 as follows: 
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where L-CV is a termed the L-coefficient of variation, L-skew is referred to as L-skewness 
while L-kurt is referred to as L-kurtosis. 
 
Extreme value distributions are the statistic models to measure events which occur with very 
small probability and they are quite useful in flood risk modeling as risky events per 
definition happen with low probability. The class of Extreme value distributions essentially 
involves three types of extreme value distributions, namely, type Ι, II and Ш.  
 
The Gumbel distribution (type Ι) is named after the German mathematician Emil Gumbel, one 
of the pioneer scientists in practical applications. It has been extensively used in various fields 
including hydrology for modeling extreme events (Benito et al. 2006; Fortin et al. 1997; Guo 
and Cunnane 1991; Martins and Stedinger 2001; Veijalainen et al. 2010). The type II 
distribution is named after a French mathematician Maurice Fréchet who developed a possible 
limiting distribution for a sequence of maxima with convenient scale normalization. This has 
been applied often in modeling of market-returns in France which are often heavy tailed. The 
Weibull distribution is named after a Swedish engineer and scientist Waloddi Weibull who is 
famous for his work on fatigue analysis and strength of materials. Due to its flexibility 
Weibull distribution is widely used in various areas although it was originally devised to 
address the problems in material sciences for minima arising. 
 
The Generalized Extreme Value (GEV) distribution arises from the extreme value theorem as 
the only possible limit distribution of properly normalized maxima of a sequence of 
independent and identically distributed random variables (Fisher and Tippett 1928). It is a 
family of continuous probability distributions combining the Gumbel, Fréchet and Weibull 
families and has been fairly applied to model the maxima of long sequences of random 
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variables. GEV distribution has been recommended for use in flood frequency analysis by 
many hydrologists (Ahilan et al. 2012; Bobee 1999; Wallis et al. 2007). The cumulative 
distribution function of GEV has the following form (Jenkinson 1955): 
 

( )
( ){ }
( ){ }

1/
exp 1 / 0

exp exp / 0

k
k x u a k

F x
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−  − + − ≠ = 
  − − − = 

                                                                      (3.5) 

 
where k=0, k>0, and k<0 correspond respectively to the Gumbel, Fréchet and Weibull 
distribution; u∈ is the location parameter, a >0 is the scale parameter and k∈  is the shape 
parameter. Hosking et al. (1985) showed that probability weighted moments (PWM) provide 
more efficient and less biased parameters than using the maximum likelihood method for the 
short sample sizes encountered in flood frequency analysis. 
 
The simple regression analysis consists of three steps: 
 
Step 1: select the proper frequency distribution function for fitting of annual extreme flow 
series by the Chi-square test; 
 
The first step of the method will decide the possible probability distribution for peak and daily 
extreme values. Eight commonly employed probability distributions for extreme values are 
considered as the candidate distribution. These are: two-parameter Weibull (Wei), gamma 
distribution (Gam), three-parameter generalized extreme value (GEV), Pearson type III, 
generalized pareto distribution, kappa distribution, five-parameter wakeby and generalized 
logistic distribution (GlO). For the Chi-square goodness of fit procedure, the acceptability of 
the distribution functions are selected on the basis of a p-value with a confidence level of 95% 
(α=0.05). The null hypothesis will therefore be rejected if the p-value is smaller than the 5% 
significance level. Following Hosking & Wallis (1997), L-moments are utilized for the 
parameter estimation in the second step. 
 
Step 2: estimate the flood quantiles (T=10, 20, 50, 100 years) for annual maximum daily and 
annual peak flow series respectively; 
 
Step 3: apply linear regression without intercept to obtain a regional regression model based 
on the quantile and PWM values derived from step 2. 
 
In the third step, the linear regression with no intercept is carried out using the quantiles for 
the return periods of T= 10, 20, 50, 100 years and alternatively the first four PWMs for each 
flow station within our study area. The details of the final regression equations are presented 
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as follows. Eq. (3.6) describes the quantile regression for a single return period, where for 
testing cq is determined by the leave one out cross validation method. In this procedure, one 
station is selected randomly while the peak and daily flow quantiles based on the observed 
IPF and MDF data series from the remaining flow stations are regressed linearly. The slope of 
the regression line is the parameter cq for the station left out. Eq. (3.7) is used for the PWM 
regression and for testing the parameter cm is estimated using the same procedure. 
 

est obs
qpeak dayHQ HQc= ⋅                                                                                                                (3.6) 

est obs
peak m dayPWM c PWM= ⋅                                                                                                        (3.7) 

 
where 𝑐𝑞 and 𝑐𝑚are the quantile regression coefficient and the PWM regression  coefficient 
respectively; obs

dayHQ  and obs
dayPWM  are the derived daily quantile flows and probability 

weighted moments from observed MDF data series; est
peakHQ and est

peakPWM  are the 

corresponding estimated instantaneous peak flow values and moments. 
 

3.1.2 Multiple linear regression method  

Multiple regression analysis is often applied to test the influence of independent variables 
(predictors) on a single dependent variable (criterion). Given a data set of n statistical 
units, the model can be described as (Draper and Smith 1998): 
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                                                (3.8) 

 
where Y is a column vector containing a series of the criterion variables; X is a matrix 
containing list of all the independent variables that are related with Y; B is also a column 
vector containing the regression coefficients. 
 
Here, this idea is further employed to the following objectives:  
 

• To study the geomorphologic and hydrological factors that can restrict the basin 
responses; 

• To explore the possible relationships of between annual instantaneous peak flow (IPF) 
and the corresponding daily flow (MDF); 

http://en.wikipedia.org/wiki/Statistical_unit�
http://en.wikipedia.org/wiki/Statistical_unit�
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• To develop the final regional equations based on the selected catchment characteristics 
to calculate the IPF. 
 

This method consists of the following three steps: 
 
As the first step of the method, in order to obtain a perspective about the relationship between 
extreme flow rate and the selected explanatory variables as well as the interrelation among the 
latter by a descriptive statistical analysis is carried out. In addition, Pearson’s correlation 
coefficient r with p value is calculated to measure the strength of linear association between 
two variables.  
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                                                                                    (3.9) 

 
where x and y are variables; n is the sample size. 
 
The correlation coefficient r is a number between -1 and 1. There are 3 types of correlation by 
describing the relationship between a pair of variables that is as one variable increases what 
happens to the other variable: 
 

1. Negative correlation: the other variable is predicted to decrease, with the value of -1 
for a perfect negative correlation; 

2. Positive correlation: the other variable is predicted to increase, with the value of 1 for 
a perfect positive correlation; 

3. No correlation: the other variable does not show any increase or decrease tendency. 
 

On the other hand, the p value shows the statistical significance of the predictors related with 
IPF since the correlation does not imply an underlying causal relationship between them. 
Given that the p value is less than the significance level (traditionally α=0.05), there is a 
significant linear correlation between the selected variable with IPF can then be concluded. 
Consequently, this descriptive statistical analysis can give one a sense of the data to select the 
proper catchment descriptors into the next step. 
 
Secondly, a stepwise regression analysis based on the selected catchment characteristics 
derived in the first step is performed. 
 
The stepwise regression procedure used here is a combination of forward and backward 
selection techniques. It therefore involves removing or adding variables to the regression 
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equation step by step and eliminating the variable which contributes least to the prediction of 
a group membership (see Figure 3.1).  

 
 

Figure 3.1:   The scheme of stepwise multiple regression 

 
To begin with, the variable which has the highest correlation with IPF is the first to be added 
in the regression equation. The second variable to be added is the one that explains the largest 
remaining candidate variation in the IPF. At this stage the first variable is tested for 
significance and retained or discarded depending on the results of this test. It is guided by the 
AIC (Akaike information criterion) score which allows for an immediate ranking of the 
candidate models. The model with the minimum AIC score has the smallest divergence (see 
Bozdogan 1987). Furthermore, the adjusted coefficient of determination (Adj. R2) and 
Residual Sum of Squares (RSS) are also considered. RSS is the sum of the squared 
differences between the actual and estimated IPF. This procedure is repeated till a situation is 
reached when all the factors not included in the equation are insignificant, and all the factors 
included in the equation are significant. This is a very good approach to use but care must be 
exercised to ensure that the resulting equation is rational.  
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The final step is to eliminate redundant explanatory variables within the selected regression 
models through a partial correlation analysis and compare the final multiple regression model 
with the traditional Fuller equation. The aim of the last step is to evaluate the performance of 
the final multiple regression model in comparison to Fuller’s equation (see Eq. (3)). Fuller’s 
equation is one of the most commonly used methods describing the relationships between IPF 
and its corresponding MDF, where the drainage area is the only physical descriptor. Further 
details about Eq. (3)  are referred in Fuller (1914).  
 

( )10 2peak dayQ Q Aββ β= ⋅ + ⋅                                                                                                  (3.10) 

 
where 𝛽0  … 𝛽2 are regression coefficients; A= drainage area (km2); Qday is the maximum 
mean daily flow (m3/s) and Qpeak is predicted peak flow (m3/s). 
 

3.1.3 Simple scaling theory 

The importance and recognition of scale issues in hydrology has grown enormously within 
the last few decades. In particular, people want to know what attributes become different and 
what attributes keep invariant under scale change. Proper notions of scale invariance and scale 
transformation are therefore proposed and tested in science and engineering. Ideas of 
statistical simple scaling and multi-scaling generate a natural framework to understand the 
hydrological processes within a region and physical structure of floods (Gupta et al. 1994; 
Gupta and Waymire 1990; Smith 1992). One of the most important issues recently is the 
recognitions of runoff organization at different temporal scales. The scaling properties 
including scaling exponents by using the observed annual maximum runoff data at recording 
station are investigated for various durations and return periods. Since scaling theory has been 
investigated far less in runoff study in comparison with extreme rainfall, The theory with the 
basic equations applied in rainfall studies are introduced first.  
 
The scaling hypothesis is that equality holds in the probability distribution of the observed 
runoff depth at two different time scales (see Koutsoyiannis et al. 1998; Yu et al. 2004), as 
described by Eq. (3.11).  
 

d

h hQ Qαλ λ=                                                                                                                           (3.11) 
 

where 𝑑= is understood in the sense of equality of the probability distributions of Qλh and Qh; 

Qh is the 15_minute flow series; α is the scaling exponent and λ denotes a scale factor. It 
suggests that Qλh and λαQh have the same probability distribution.This property is referred to 
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as ‘simple scaling in the strict sense’ by Gupta and Waymire (1990). If both variables have 
finite moments of an order k, their relationship regarding moments can be then described as 
Eq. (3.12) which implies that the raw moments k

hM λ  of any order are scale invariant. 
 

k
d

k k
h hM Mα

λ λ=                                                                                                                      (3.12) 
 
In order to acquire the scaling exponent α, Eq. (3.12) can be log-transformed into Eq. (3.13): 
 

( ) ( )log log logkk k
h hQ QM Mλ λα= +                                                                                (3.13) 

 
where αk is the scaling exponent. The scaling exponent can be estimated from the linear 
regression slope between the ratio ( ) ( )( )log logk k

h hQ QM Mλ  and scale parameter ( )logλ  for 

various orders of moments (k).  
 
When the scaling exponents and their corresponding order of moment have a linear 
relationship with the scaling exponent of order 1, namely, αk = kα1, it is usually referred to 
simply as ‘wide sense simple scaling’. If the this linear relationship cannot be found in the 
target variable, the other approach namely, multi-scaling can be considered (see Gupta & 
Waymire 1990). 
 
For the analysis in this method, piecewise scaling approach is used to deal with the multi-
scaling problem and five steps are carried out as follows: 
 

1. Select the peak flow series using the peak over threshold (POT) method (see Katz et 
al. 2002); 
 

2. Assess the scaling properties in the maximum flows of various durations by scaling 
analysis of probability weight moments (PWM);  
 

3. Validate the scaling hypothesis in runoff; 
 

4. Determine the scaling formulas based on the scaling property of fractal; 
 

5. Estimate the quantile values of instantaneous peak flows from daily flows with 
downscaling of the PWMs using Eq. (3.12) computed in the above step and the GEV 
distribution. The application of this step for unobserved gauges without IPF data 
involves the assumption of spatial consistence of the relationship within the transfer 
region. 
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3.1.4 Evaluation criteria 
 
Leave-one-out cross validation (LOOCV) illustrated in Figure 3.2 is the degenerate case of k-
fold cross validation. In LOOCV, the original sample is randomly partitioned into N equal 
size subsamples and N is the total number of observation in the original sample. It 
incorporates using one subsample as the validation set and the remaining (N-1) subsamples as 
the training set. This procedure is repeated N times on all ways to cut the original sample on a 
validation set of one observation and a training set. This has the benefit that each observation 
in the sample will be utilized once as validation data and avoids splitting the sample with their 
limited size into independent calibration and validation datasets. LOOCV  has also been 
proven to be an almost unbiased estimator of prediction risk by Cawley and Talbot (2003). 
Here, it is used to assess the performances of all three models.  
 

 
 
Figure 3.2:  The scheme of leave one out cross validation (LOOCV) 

 

Root mean square error (RMSE) and bias are the criteria applied for the evaluation of model 
performance. The root mean square error normalized with the average observed flow is given 
by: 
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                                                                                       (3.14) 

 
and the normalized bias criterion is given by: 
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where N is the number of stream flow stations; iHQ∗ and

iHQ denote the quantile values based 
on estimated and observed peak flow values respectively. 
 

3.2  Study area and data 
 
The Aller-Leine river basin is located in the federal state of Lower Saxony in northern 
Germany. The total basin area is 15,803 km2 and the basin is physiographically diverse. Mean 
elevations in this catchment range from 5m.a.s.l (meters above sea level) to 1140m.a.s.l (see 
Figure 3.3). In the northern part of the basin, the highest elevation is 169m.a.s.l, compared to 
southern the Harz middle mountains where elevations reach up to 1140m.a.s.l. In the Harz 
mountains most aquifers are fractured with some areas of karst. The flatland of the 
Lüneburger Heide is characterized by sandy soils, porous quaternary aquifers and heath and 
moor vegetation. 58.2% of the total area is agriculture and 32.5% forest. The climate is 
characterized by high annual precipitation with mean annual precipitation ranging from 
500mm to approximately 1600 mm. Frost is present in the winter season.  
 
According to the locations of discharge gauges, there are 45 delineated sub-basins. For each 
basin, 16 catchment descriptors are derived (see Table 3.1). Their geomorphologic 
characteristics, such as drainage area, minimum and maximum elevation, longest flow path, 
river slope and basin slope, are obtained from a Digital Elevation Model (DEM) with a 
resolution of 10 meters. The shape length is taken as the perimeter of each catchment, and the 
derivation of time of concentration (Tc) is based on Kirpich’s formula. The soil properties of 
effective field capacity (Fc) and saturated hydraulic conductivity (Kf) are estimated from the 
German digital soil data base BÜK1000 (see Hartwich et al. 1995). The portion of different 
land use types is derived from the land cover map CORINE2000 (see EUR 1994). Mean 
annual areal precipitation is computed using point observations from 244 daily precipitation 
stations, which are interpolated on a 11 km raster through Ordinary Kriging (OK) and 
aggregated over space. Finally, mean daily temperature is interpolated for all available 
climate stations by External Drift Kringing (EDK) with elevation as additional information 
(see Haberlandt et al. 2015). 
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Table 3.1 Physical and hydrologic catchment descriptors for the 45 sub-basins 
Variable description Symbol  Units 

100-year of peak flow HQ1 m3/s 
100-year of daily flow HQ2 m3/s 

Shape length of subbasins shape_len m 
Subbasin area Area Km2 

Basin slope basin_sl ‰ 
Mean concentration time Tc h 

Longest flow path lst_fp m 
River slope river_sl - 

Max elevation Elv_up m 
Min elveation Elv_ds m 

Mean elevation mean_Elv m 
Mean conductivity Kf mm/h 
Mean field capacity FC Vol-% 

Ratio of city City % 
Ratio of agriculture agriculture % 

Ratio of forest Forest % 
Annual precipitation PCP mm/year 

Mean daily temperature Tem °C 
 
Figure 3.4 displays box plots of the hydrological attributes for all 45 sub-basins. It shows that 
minimum elevations vary between 33 m and 580 m, the size of the catchments from 40 km2 to 
1000 km2, and the longest flow path from 10 km to 70 km. The sampling of annual flood flow 
series is done in a way that instantaneous peak flow (IPF) and maximum daily flow (MDF) 
always belong to the same event. The primary daily and peak discharge data for analysis 
herein are employed from a total number of 45 flow stations which are illustrated in Figure 
3.3. However, only three 15 min continuous flow stations can be used for the scaling analysis, 
since the record length of all other stations is inadequate. The record lengths of the three 
15_minute flow stations used are from 2000 to 2008, from2002 to 2008 and from 2003 to 
2008 respectively. It can be seen from Figure 3.3 that all the three selected 15 min continuous 
flow stations are located within the higher elevated area of the catchment.  
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Figure 3.3:  Study region showing the Aller-Leine catchment within Germany and the federal 
state of Lower Saxony; the right figure displays the topographic structure of the catchment, 
the location of 45 daily flow stations including 3 stations with 15_minute continuous flow 
record. 
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Figure 3.4:  Box-plots of stream flow gauges and hydrological attributes of the 45 sub-     
basins 
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3.3 Results 
 

In this section, three different models presented in chapter 3 are used to explore the 
relationship between instantaneous peak flow and maximum daily flow regarding their 
frequency analysis. The performance of these models is measured by leave one out cross 
validation based on RMSE and bias criteria for a total number of 45 flow stations in northern 
Germany. It is important to note that for the first two models long-term observed annual IPF 
and MDF data series are used, whereas for the third model the observed MDF and the short-
term 15_minute continuous flow data for three flow stations are used.  
 
3.3.1 Simple regression approach 
 
In the first method, a simple regression model is obtained by direct comparison between the 
observed annual instantaneous peak flow (IPF) and maximum daily flow (MDF) series 
regarding their quantile and probability weighted moments (PWM) values. Here only the best 
fitting four probability distributions, according to Chi-square test performed on each of the 45 
discharge gauges, are shown here (see Figure 3.5). The red solid line in the figure indicates a 
5% significance level.  As can be seen, the best fitted probability model is the generalized 
extreme value distribution (GEV) with hardly any rejection of the null hypothesis for all flow 
gauges that the GEV fits the flow data (p-value > 0.05) for both MDF and IPF data series. 

 

 
Figure 3.5:  P-value results obtained from chi-square test for maximum daily flow (MDF) 
and instantaneous peak flow (IPF) data series 
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     (a) 
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               (b) 

 
Figure 3.6: (a) shows the relationship between the annual peak flow and maximum daily flow 
series regarding regarding their quantile values, whereas cq is the regression coefficient and r 
is the correlation coefficient; (b) shows the relationship between the annual peak flow and 
maximum daily flow series regarding probability weighted moments (PWM); cm  is the 
regression coefficient and r is the correlation coefficient. 
 
It can be seen that peak and maximum daily flow are highly correlated with each other in the 
sense of their quantiles and PWMs, with correlation coefficients larger than 0.95 for the four 
return periods and the first four orders of PWMs. Hence, it is reasonable to estimate the 
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design IPF though correcting the underestimation of its corresponding MDF. In addition, the 
strength of PWMs and the quantile values regression are very similar. As such, the 
performance of the simple regression models regarding the PWM and quantiles are expected 
to be similar, as shown in Figure 3.7.  
                                     
                                          (a) 

 
                                          
                                          (b) 

 
Figure 3.7:  The RMSE (a) and Bias (b) of the simple regression model regarding probability 
weighted moments (PWM) and quantiles averaged for all 45 flow gauges 
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Figure 3.7 (a)-(b) display the root mean square errors (RMSE) and bias from the simple 
regression model using cross validation. The IPFs based on the observed annual peak flow 
series are considered to be the reference for assessment of the performance of the following 
three models. The first blue column is the observed error representing the difference between 
the peak flows and maximum daily flows from observed IPF and MDF series; while the red 
and yellow columns denote the estimation error from the simulated peak flows using the 
observed annual MDF series. On average, the RMSE is approximately 20% for the simple 
regression model for these four different recurrence intervals in comparison with an observed 
error of over 30%. The results in Figure 3.9 (b) show the biases from the simple regression 
model are approximately -11% and the observed errors around -26%. This means that the 
simple regression model reduces considerably the error in estimating the design peak flow 
compared to using the observed MDF data, although still with some negative bias. 
 
3.3.2 Multiple regression analysis 
 
Figure 3.8 shows a scatter plot matrix with a combined correlation for HQ1 and all 
explanatory variables. The symbols of all explanatory variables are indicated in the diagonal 
of the matrix and their definitions can be referred to in table 1. In the cells of the upper part of 
the matix (above the diagonal), the correlation coefficients and P values are presented. For the 
remainder of the matrix, scatter plots are shown between variables pairs. The scales of each 
variable are indicated on the margins of the matrix.  
 
As an arbitrary decision rule to determine the significance of the predictors related with HQ1, 
the p value limit of 0.05  is considered to be important, although the absolute values of the 
simple correlation coefficients for some variables may be less than 0.5. For instance, the 
Elv_up is selected as one of the importand predictors even though the simple correlation 
coefficient between Elv_up and HQ1 is 0.36 while the p value is less than 0.05. It can be seen 
from the top two rows, that Area has the strongest positive correlation with HQ1 and HQ2, 
followed by lst_fp and shape_len. In addition to these three aforementioned variables, Elv_ds 
is also selected for the next step, as it has the strongest negative correlation with HQ2 (P 
value=0.057, r=-0.29). Below the second row, it is shown that many of the explanatory 
variables are highly interrelated with one another (e.g. Area~lst_fp, Area~shape_len). This 
fact must be taken into account for further analysis and possible exclusion of variables from 
the final model. 
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Figure 3.8: Scatter plot and correlation matrix for the basin properties and the instantaneous 
peak flow 
 
A stepwise multiple regression analysis is carried out in the next step. According to the 
number of predictors, six regression models are selected from their specific combination 
groups (see Table 3.2). The adjusted coefficients of determination of the last five models are 
almost equal while the first model with HQ2 as the only predictor, possesses the least 
correlation with the target variable (Adj.R2=0.94). For the Residual Sum of Squares RSS, the 
first two models produce almost twice as large errors as the other models. Given the 
simplicity and overall performance of the regression model, the fourth model with shape_len, 
lst_fp, Elv_ds as  predictors, seems to be the most suitable model with the least AIC value 
(189.47) while the third model is the next most suitable. 
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Table 3.2 Stepwise regression results for peak flow 

Number Variables 
Adj.R2 RSS AIC 

(-) (m3/s)2 (-) 
1 HQ2 0.9423 4607 208.65 
2 HQ2,Elv_ds 0.9553 4575 191.21 
3 HQ2,lst_fp,Elv_ds 0.9602 2650 190 
4 HQ2,shape_len,lst_fp,Elv_ds 0.9630 2600 189.47 
5 HQ2, shape_len,lst_fp,Elv_ds,Area 0.9636 2551 190.64 
6 HQ2, shape_len,lst_fp,Elv_ds,Area,ELV_up 0.9648 2539 192.44 

 
 
As shown in Table 3.3, there is a significant correlation between the longest flow path (lst_fp) 
and shape length (shape_len), with a partial correlation coefficient of 0.921. This can lead to 
multi-collinearity and thus can have negative impacts on the stability and quality of the 
regression model. Therefore, the third model in Table 3.2 is determined to be the final 
multiple regression model. It further proves that peak flow can be determined with an 
appreciable degree of accuracy using just three predictors, namely, the maximum daily flow, 
longest flow path and minimum elevation (see Eq. (3.16)). 
 

1 2 3
est obs
peak day lst fp Elv dsHQ HQα α α= ⋅ + ⋅ + ⋅                                                                      (3.16) 

where  𝛼0 …𝛼3  are regression coefficients; obs
dayHQ   denotes the derived daily flow quantiles 

obtained from observed MDF data series and est
peakHQ  denotes the estimated instantaneous peak 

flow quantiles. 
 

Table 3.3 Partial correlation matrix of basin descriptors and hydrologic response 

Variables 
   Maximum daily flow          Shape length        Longest flow path           Minimum elevation  

(HQ2)       (shape_len) (lst_fp)   (Elv_ds) 

HQ2 1 -0.045 0.005 0.012 

shape_len 

 

1 0.921 -0.188 

lst_fp 

  

1 -0.044 

Elv_ds       1 

 

 
A comparison of the performance between the Fuller equation and the developed multiple 
regression model, through the RMSE and bias, is presented in Figure 3.9.  
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It can be seen that both methods are able to reduce the error compared to using the observed 
annual MDF data series. However the multiple regression model outperforms the traditional 
Fuller equation. For the Fuller equation, the RMSE values increase with increasing return 
period, ranging from 18.12% RMSE for the 10 year recurrence interval to around 23% RMSE 
for the 100 year recurrence interval. Additionally, the bias also rises from -10% to -17%, 
which implies that for a higher return period the underestimation is larger. In contrast, for the 
multiple regression model proposed here, the errors are independent of the recurrence instead. 
Some physical explanations for the selected regression are:  
 

(1) The differences between peak flow and daily flow are due to the catchment 
retention. Therefore, basins with longer flow paths have greater potential to show 
differences between MDF and IPF.  

(2) The significance of other commonly used predictors will become weaker for larger 
basins. The differences between their mean climate, soil or basin slope 
characteristics is not obvious, whereas the distinctive minimum elevation in each 
basin can be more representative. 

(3) According to the initial investigation in our study area, the available maximum daily 
flow data are the most important resource to relate the instantaneous peak flows. 

 
 
 
                                     (a) 
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                                  (b) 

 
Figure 3.9:  The RMSE (a) and bias (b) of stepwise multiple regression model averaged for 
all 45 flow gauges 

 

3.3.3 Scaling analysis 
 
In the first step of the scaling analysis the annual peak flow series are extracted from three 
short term 15_minute flow stations. The observed 15_minute flow data for each gauge are 
aggregated into 27 different time scales (see Table 3.4). For each time scale, the peak over 
threshold (POT) is adopted to extract approximately 30 extreme values. Briefly, the peaks 
will be extracted at an average rate of four events each year from those aggregated flow time 
series data sets. According to the characteristics of the flood events in our study basin, a 
minimum separation period of 45 days is imposed to ensure independence of selected peaks 
within the one year. The PWMs of the runoff extremes including all 27 time scales are 
consequently derived.  
 

Table 3.4 The definition of 27 scales 
Time scales 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Flow duration (h) 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10 12 14 16 18 20 22 24 

 
 
Next, the property of simple scaling of runoff of various durations in the three selected sample 
stations is demonstrated according to Eq. (3.13). Here, the parameter h is defined as the runoff 
duration of 0.25h; the scale parameter λ is a multiplier to convert runoff duration h to λh and 
Qλh denotes the runoff intensity of λh hours. Figure 3.10 gives the regression results after a 
logarithmic transformation between PWM and durations of the flow data for all 5 moment 
orders and three 15_minute flow stations. As can be seen, the whole period (15 minute— 24h) 
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can be visually divided into 3 pieces (15 minute—2h, 2h—10h, and 10h—24h) where the 
slope of the linear regression line for each piece gives the values of the scaling exponent αk 
for various orders of moments k. For each piece the linear regression lines are almost parallel 
to one another. This characteristic implies that the scaling exponents (the slopes of linear 
regression lines) of each piece will be very similar for various orders of PWM, which is 
demonstrated in Figure 3.11.  
 

(a) Station1 

 
 
 

(b) Station2 
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(c) Station3 

 
Figure 3.10: The relationship between log-transformed values of probability weighted 
moments (PWM) of various orders and various runoff durations at (a) station 1, (b) station 2, 
(c) station 3 
 

Figure 3.11 shows the relationship between the scaling exponents and various orders of PWM 
for the three divided pieces at the three 15_minute flow stations. It is clear that a linear 
relationship exists between scaling exponents and various orders of PWM. The scaling 
exponents increase slightly with the order of PWM in the second and third piece (2h—10h 
and 10h—24h), but remain stable in the first piece (15 minute—2h). This indicates that the 
property of simple scaling of runoff rate exists in the three analyzed stations. Furthermore, the 
scaling properties at station 1 and 2 are more similar than when compared with station 3. The 
reason for it may be that the first two flow stations are located within close proximity (see 
Figure 3.1). 
 
 
 
 
 
 
 
 
 
 
 

K order of moment 
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(a) Station 1 

                    
 

   (b)  Station 2 

 
 

       (c)  Station 3 

                 
Figure 3.11: The relationship between scaling exponents and various orders of probability 
weighted moments (PWM) at (a) station 1, (b) station 2, (c) station 3 
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Based on the above analysis, the piecewise scaling formulas are developed as follows: 
 

( ) ( )
( ) ( )
( ) ( )
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210 2
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log log log 2.4

log log log5

log log log8
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h h
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h h
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α

α

α

 = +
 = +
 = +

                                                                        (3.17) 

 
where  𝛼1𝑘 , 𝛼2  

𝑘 ,  𝛼3𝑘  are the scaling exponents for various orders of PWM in the first 
(15_minute—2h), second (2h—10h) and third piece (10h—24h) respectively; Q15_minute 
represents the observed annual 15_minute extreme values; Q2h and Q10h represent the annual 
2-hour and 10-hour extreme values respectively using the aggregated 15_minute continuous 
flow series. 
 
According to the obtained scaling exponents (𝛼1𝑘, 𝛼2  

𝑘 , 𝛼3𝑘) of various orders of PWM and 
pieces for the three 15_minute flow stations , the three scaling equations are applied 
separately to all 45 daily flow stations in our study catchment to compute PWMs of annual 
instantaneous peak flows. The GEV distribution is then utilized for estimating the design 
values of peak flow for four different return periods (T=10, 20, 50, 100 years). 
 
The cross validation results of simple scaling method are illustrated in Figure 3.12, where a 
comparison of RMSE and bias among the three 15_minute resolution flow stations is 
presented. Here, the reference error (Observed) is the same as for the former two regression 
models and the four return periods. It shows the difference between the average daily flow 
and instantaneous peak flow at the same event. 
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                           (a) 

 
 

                           (b) 

 
 

Figure 3.12:  The RMSE (a) and bias (b) results from simple scaling method averaged 
for all 45 gauges 
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It can be seen from Figure 3.12(a) that the three simple scaling models also produce good 
results considering the flood frequencies. Generally, the difference of RMSE between station 
1 and 2 is small, with an average RMSE of approximately 20% for the four return periods. It 
reduces the observed error by 10% and no obvious dependence of RMSE exists with 
increasing return period. The most significant difference between station 3 and the other two 
stations is that station 3 exhibits greater RMSE (by 6%) at the T=10 year recurrence interval, 
but for the more important larger return periods, it performs as well as the other two 
15_minute flow stations. Compared with the RMSE, the differences in bias (see Figure 3.12 
(b)) between the three stations are more apparent, ranging from -3% to 0, -8% to -5% and -4% 
to 14% respectively for each station. For the longer return periods (T=50, 100 years), the bias 
results indicate an underestimation of the design peak flows for all three scaling models. In 
summary, the scaling model generated from station 1 displays the best overall performance 
according to the above performance analysis and is recommended for application here. Due to 
the sparse station network and limited record length of the 15_minute runoff gauges, the 
relationship between the selected station locations and scaling attributes could not be 
investigated in more detail. 

 
Comparative results for the three methods  
 

Table 3.5 The comparative results for the three methods 

RMSE (%) 
Observed 

(daily)  

Simple regression approach 
Multiple regression 

analysis Scaling analysis 

Quantile regression     PWM regression Fuller Q~QLE station1 station2 station3 

T=10[yr] 30.23 20.66 20.72 18.12 16.22 18.95 18.84 25.46 

T=20[yr] 30.30 20.93 21.07 19.21 15.96 19.60 19.78 22.42 

T=50[yr] 30.55 21.77 21.90 21.31 16.75 21.08 21.19 21.42 

T=100[yr] 30.85 22.79 22.78 23.25 18.41 22.69 22.46 22.29 

Bias (%)         
T=10[yr] -26.68 -11.84 -11.99 -10.01 2.55 -0.77 -5.20 13.83 

T=20[yr] -26.42 -11.18 -11.52 -11.90 2.28 -2.66 -6.72 7.46 

T=50[yr] -26.05 -10.60 -10.95 -14.66 2.24 -3.04 -7.28 0.55 

T=100[yr] -25.73 -10.51 -10.40 -16.70 2.58 -2.17 -6.92 -3.89 

 
The three methods in terms of their performance in predicting the IPF from MDF are 
compared. The final comparative results for the four return periods are illustrated in Table 3.5. 
The observed error in the second column denotes the direct comparison between the observed 
maximum daily flow and its corresponding peak flow. The RMSE of it (around 30% for each 
return period) suggests for some catchments the average maximum daily flow will be much 
lower than the corresponding peak flows without post correction. It is clear that the multiple 
regression analysis performs best with the average value of RMSE 16.8% and Bias 2%. The 
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simple regression approach performs poorest since the magnitude of the estimation error is 
larger (around 20% for each return period) and it underestimates the peak flows significantly. 
Overall the scaling analysis based on the three hourly flow stations corresponds well and the 
first two stations perform better than the third one regarding their Bias results.  
 

3.4 Conclusions and discussions 
 

In this chapter, three different methods are proposed to provide a relatively simple way for 
this estimation of instantaneous peak flows from maximum daily flows in northern Germany. 
 
The first method, a simple regression model, provides a coefficient to correct the 
underestimation of the design daily flow. The expression is based on the linear relationship 
between IPF and MDF regarding their quantile and PWM values. it presents a good 
comparison of the difference between IPF and MDF and is computationally very favorable. 
The final RMSE and bias results prove it to be a useful approach for estimating the peak 
flows for flood studies. 
 
In the second method, a stepwise multiple regression model, special attention is given to the 
extraction of the proper predictors. The MDFs, the longest flow path and the minimum 
elevation in this case have been selected as predictors in the final regression equation using 
stepwise regression and considering partial correlations. According to the multiple regression 
analysis, the longest flow path is highly correlated with peak flow and also highly interrelated 
with basin area which is most significantly related with flow. This explains that the longest 
flow path is found to be one of the final explanatory variables. However, unlike in previous 
studies the minimum elevation showed a higher performance than the catchment area (eg. 
Taguas et al. 2008 and Fuller 1914). A physical explanation is given by the structure of the 
catchment. Using the area alone does not sufficiently differentiate between headwaters in the 
upper and the lower parts of the catchment. This study confirms that the scaling of the 
response is much related to hill slope and channel properties, where the elevation of the outlet 
is useful information. A side effect of the result is the fact that the lowest point of the 
catchment can be easily obtained because it is approximately the same value as the geodetic 
elevation of the gauging station, which is often published with the maximum flow data. 
 
In comparison with the classical Fuller’s equation, the proposed multiple regression model 
noticeably improves the accuracy of the estimation results. Despite a small overestimation, 
the multiple regression model performs best among the three models and for longer return 
periods its comparative performance becomes even more remarkable. Although this case 
study is carried out for Aller-Leine catchment in northern Germany, the knowledge and the 
methods can be applied to other areas.  
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The last method, a piecewise simple scaling model, provides promising insights into the 
temporal issues between peak flow and its corresponding maximum daily flow.  The 
hypothesis of piecewise simple scaling combined with the GEV distribution, is used to 
explore the link between PWMs of IPF and MDF, given short-term 15_minute continuous 
flow data for three discharge gauges. The formulas obtained from the three 15_minute flow 
stations are then applied to the 45 daily gauges individually. The validation results reveal that 
the three piecewise simple scaling models are capable of deriving peak flow when only 
maximum daily flow is available. Compared with the regression models, the scaling model is 
more efficient because the parameters of the scaling model can be determined exclusively by 
one station with sufficient continuous high resolution flow data. Therefore, this method could 
be used for correcting a single station only. However, criteria for selecting a proper high 
resolution donor station are not clear and further investigation is required to establish regional 
scaling formulas. 

 
It is difficult to perfectly represent IPFs with MDFs regarding the flood frequency analysis. 
For all three proposed methods, the stream flow data are considered to be the only decision 
variable. As discussed, all of them can provide a significantly better result compared with 
using MDFs directly and they can be easily applied.  The first two methods are highly depend 
on the peak data availability for a sufficient set of stations, which may restrain its use in areas 
with poor peak flow data. The next step will be related to using hydrological models together 
with rescaling approaches in order to be able to consider land use or climate changes for the 
estimation of design flows. 
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Chapter 4 
 

4 Estimation of IPF from MDF using hydrological Model 

 
The primary aim in this chapter is to explore the possibility of deriving frequency 
distributions of IPFs using hydrological modelling with daily and hourly time steps in 
comparison.  

4.1 Methods 

The conceptual semi distributed model HBV has been chosen and is operated on an hourly 
and a daily time step respectively. Two calibration schemes are applied, which are based on 
hydrographs and multiple flow statistics, respectively. For the latter different aspects of the 
runoff statistics: the winter (November-April) extremes distribution, summer (May-October) 
extremes distribution, flow duration curve and annual extreme series are considered. An 
automatic optimization procedure based on dynamically dimensioned search algorithm (DDS) 
algorithm is introduced for solving a single overall objective calibration problem. The 
frequency analysis of the extreme values is based on the generalized extreme value 
distribution (GEV) with L moments (see Hosking and Wallis (1997)).  
 
To make an appropriate choice for a specific design problem, The estimates of IPFs from 
daily simulations with post-correction of flows and hourly simulations with pre-processing of 
precipitation are compared. The simulated annual maximum daily and hourly extremes are 
subsequently analyzed for four return periods (T=10, 20, 50, 100yr). The results from hourly 
simulation lead to estimations of IPFs with the desired recurrence interval. It is referred as 
pre-processing approach. The obtained maximum daily flow (MDF) quantiles are 
subsequently transformed into IPFs with a multiple regression model. This is called post-
correction approach. 
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4.1.1 Hydrological modelling 
 
HBV model 
 
The HBV model is a conceptual hydrological model for simulating runoff with reasonable 
requirements of hydrological data and computing power. Its application lies in flood 
forecasting, irrigation scheme planning, water balance studies and study of climate change 
impact on hydrological processes. The model was named after the abbreviation of 
Hydrologiska Byråns Vattenbalans-avdelning (Hydrological Bureau Waterbalance-section) 
and originally developed at the Swedish Meteorological and Hydrological Institute (SMHI) in 
early 1970s (SMHI 2008). The basic modeling philosophy behind this model is: 
 

• The model should be based on a reasonable scientific foundation; 
• Data demands should be met in the study areas; 
• The model must be understandable by modelers and properly validated; 
• The model performance can be utilized to justify the model complexity. 

 
Nowadays, the HBV model has been developed into different versions and forms although 
only minor changes in the basic model structure are made. The applied hydrological model in 
this study is a version of the HBV model modified by Wallner et al. (2013). Here, the 
introduction of land use and potential evaporation time series as input is the main difference 
from the original HBV model (see Wallner et al. (2013)). 
 
Model structure 
 
HBV consists of a snow module, a soil moisture routine, a runoff generation and 
concentration routine within each sub basin and flood routing of the runoff in the river 
network. It is therefore possible to run the model for several sub-basins separately and then 
add the contributions from all the sub-basins. A schematic sketch of the HBV model version 
is presented in Figure 4.1. In this case, the input data are observations of precipitation, air 
temperature, crop coefficient and potential evaporation. 
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Figure 4.1: Conceptual structure of the modified version of the HBV from Wallner et al. 
(2013) 
 
The snow routine represents snow melt and accumulation process by a simple degree day 
concept, based on the air temperature with a water holding capacity of snow. The snowmelt 
contributes to the runoff if the actual temperature (T) is higher than the threshold temperature 
(tt). Otherwise, the precipitation is in the form of snow. The amount of snow depth at t and 
t+1 time step can be calculated as: 
 

( )
1 1

1
1 1max ;0

t t t
t

t t t

SD P t if T tt
SD SD P t if T tt

+ +
+

+ +

+ ⋅∆ ≤=  −∆ ⋅∆ >
                                                                        (4.1) 

 
where: SD = the snow depth storage  
             T = the actual temperature  
             tt = the threshold temperature, influenced by landuse 
and the amount of runoff contributing rainfall at t and t+1 time step can be calculated as: 
 



57 

( ) ( )( )
1
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t t t t t
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P

wsmf P dd t T tt SD t P if T tt
+

+
+ + + +

≤∆ =  + ⋅ ⋅ ⋅∆ ⋅ − ∆ + >                         (4.2)       
 

 
where: ∆P = the sum of rainfall and snowmelt while P = the precipitation 

           wsmf = the wet snow melt factor which accounts for a faster snow melt if 
precipitation occurs 

              dd = a degree day factor when there is no rainfall 
 
The soil moisture is the main routine that determines the runoff generation and actual 
evapotranspiration. After the snow routine, the adjusted soil moisture at t+1 time step is 
calculated as: 
 

1 1t t tSM SM P t+ +′ = + ∆ ⋅∆                                                                                                           
(4.3) 
where: SM′= adjusted soil moisture at t+1 time step 
            SM= old soil moisture 
 
It consists of two parts. The actual evapotranspiration is calculated in the first part as the 
following equation. This method solves the problem of the requirement of the water supply 
and the landuse data to compute the real evapotranspiration. The water supply is represented 
by the soil parameters the actual water content. The crop coefficient is used to consider 
specific landuse. 
 

1 1
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c t pot t t
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t

+ +
+ + +

+

+
+ + +

 ′ ′  ′⋅ ⋅ ≤ ⋅  ⋅ ∆  = 
′  ′⋅ > ⋅  ∆ 

                                            (4.4) 

 
where:  Ea = actual evapotranspiration 
             Kc= crop coefficient 
             Epot= potential evaporation 
             lp= limit for potential evaporation 
             fc= maximum soil moisture storage 
 
The second part of soil routine is to calculate the contribution of precipitation or snow melt to 
the runoff which is directly linked to the response routine. The adjusted soil moisture taking 
place from the soil zone is: 
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1 1 , 1t t a tSM SM E t+ + +′′ ′= − ⋅∆                                                                                                        (4.5)      

 
where: SM′′= adjusted soil moisture at t+1 time step 
 
The runoff depended on the state of soil water content and the soil paramters is described by a 
power funtion as: 
 

( )( )1 1 1 1min / ; /t t t tQ P SM fc SM tβ
+ + + +′′ ′′∆ = ∆ ⋅ ∆                                                                          (4.6)                   

 
where: ∆Q= generated runoff 
            β=shape factor if it smaller than 1 the effect that greater water supply contribute to   

greater runoff can be reduced and the contribution to the next routine is great, even for 
small actual soil water content. 

 
The final moisture state at t+1 time step is then calculated as: 
 

1 1 1t t tSM SM Q t+ + +′′= − ∆ ⋅∆                                                                                                       (4.7) 
 
The response routine estimates runoff generated from rainfall after the soil moisture routine 
which consists of one upper nonlinear reservoir and one lower linear reservoir. The flow 
generated from these hypothetical reservoirs assumes to obey Darcy’s law. The contributing 
runoff ∆Q is directly linked to the upper reservoir. The surface runoff will occur if the water 
content in the upper reservoir exceeds the threshold value hl and the storage change and 
surface flow is calculated by:  
 

1 1t t tUZ UZ Q t+ +′ = + ∆ ⋅∆                                                                                                            
(4.8) 
where: UZ′= adjusted water content of the upper reservoir 
            UZ= actual water content of the upper reservoir 
 

( )0, 1 1
0

1max ;0t tQ UZ hl
k+ +

 
′= ⋅ − 

                                                                                             (4.9) 

 
where: Q0 = surface runoff 
            k0 = storage coefficient for upper reservoir, upper outlet 
            hl = threshold value in upper reservoir 
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with the updated soil water content in upper reservoir (see Eq. (4.10)) the interflow and the 
percolation to the lower reservoir are calculated by: 
 

1 0, 1t t tUZ UZ Q t+ +′′ ′= − ⋅∆                                                                                                          (4.10) 

1, 1
1

1
t tQ UZ

k+ ′′= ⋅                                                                                                                      (4.11) 

1, 1t t tUZ UZ Q t+′′′ ′′= − ⋅∆                                                                                                             (4.12) 

, 1
1

perc t t
perk

Q UZ
k+ ′′′= ⋅                                                                                                              (4.13) 

 
where:  UZ″ and UZ‴= updated water content of upper reservoir 
             Q1=interflow 
              k1 =storage coefficient for upper reservoir, lower outlet 
              Qperk =percolation 
              Kperk = storage coefficient for percolation from upper to lower reservoir 
 
Therefore, the final actual water content of the upper reservoir at t+1 time step is: 
 

1 , 1t t perc tUZ UZ Q t+ +′′′= − ⋅∆                                                                                                      (4.14) 

 
The outflow from the lower reservoir is consider to be the base flow with the linear 
relationship between storage and flow: 
 

, 1t t perc tLZ LZ Q t+′ = + ⋅∆                                                                                                        (4.15) 

2, 1
2

1
t tQ LZ

k+ ′= ⋅                                                                                                                    (4.16) 

1 2, 1t t tLZ LZ Q t+ +′= − ⋅∆                                                                                                        (4.17) 
 
where:   LZ′ and LZ =actual water content of the lower reservoir 
              Q2= baseflow 
               k2 = the storage coefficient for lower reservoir 
 
The total runoff at the outlet of a certain basin is then smoothed by the use of a simple 
triangular transformation function. The routing parameter maxbas describes the approximate 
delayed time steps of this transfer function. This is the runoff at the outlet of a sub-basin (or 
catchment). If more sub-basins are connected to each other the river routing is realized by the 
Muskingum method. Two parameters, mk and mx, have to be derived for this method. Details 
can be found in the literature, e.g. Chow et al. 1988. 
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The model parameters are explained in Table 4.1 and only 6 parameters indicated with grey 
color are selected for the calibration. These are all conceptual parameters which are often not 
easy to estimate from physical catchment properties. Besides, they have been tested to be 
sensitive with respect to their impact on model output. Further details about the model 
parameters can be found in Hundecha and Bárdossy (2004) and Wallner et al. (2013). 
 

Table 4.1 Hydrological model parameters with units and meaningful range for this study 

Module 
Optimized HBV 

model parameters 
Description and unit Prior range 

Snow wsmf 
wet snow melt factor accounting for 
faster snow melt when precipitation 
occurs [mm-1] 

1 — 4 

 
tt 

threshold temperature for snowmelt 
[°C] 

-2 — 2 

  dd 
degree day factor accounting for 
daily amount of snowmelt [mm°C-1d-

1] 
0.5 — 5 

Soil fc the maximum soil moisture storage 
[mm] 

30 — 600 

  β a shape coefficient [-] 0.5 — 8.0 

Response hl 
a threshold value of water content in 

the upper reservoir  [mm] 
1 — 30 

 
k0 

top recession coefficient of the upper 
reservoir [d] 

0.25 — 5.00 

 
k1 

second recession coefficient of the 
upper reservoir [d] 

5— 50 

 
k2 

recession coefficient of the lower 
reservoir [d] 

10— 500 

  KPerc  
storage coefficient of the percolation 

[d] 
3 — 50 

Tansform 
Routing 

maxbas 
base length of the triangular unit 

hydrograph [h] 
3 — 10 

 
mx weighting factor [-] 0.1 — 0.4 

  mk retention constant [h] 0.25— 10 
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Optimization algorithms: Dynamically Dimensioned Search algorithm (DDS) 

Almost all runoff simulation models contain effective conceptual or physical model 
parameters that are either difficult or impossible to measure directly. Therefore, applications 
of these models are required that model parameters should be adjusted to obtain the 
predictions closely enough replicating the observed system response data. The tradition 
approach to solve this problem is manually by trial and error which may be difficult to 
implement for some complex model calibration situations and extremely labor intensive. 
Automatic calibration is described as an optimization algorithm based search for a set of 
model parameters that can minimize the model prediction errors compared with available 
measured data for the system being modeled. As compared with manual calibration, automatic 
calibration is fast and the confidence of the model simulations can be explicitly stated 
(Madsen 2000; Sorooshian and Dracup 1980; Sorooshian and Gupta 1983).  
 
Research into optimization methods has led to several optimization algorithms, such as, the 
shuffled complex evolution developed at the University of Arizona (SCE-UA) (Duan et al. 
1993), PEST (Kim et al. 2007) and Dynamically Dimensioned Search algorithm (DDS). In 
this thesis, the focus is on long term continuous hydrological modeling with the conceptual 
model HBV at both a daily and an hourly time step for subsequent flood frequency analysis 
using DDS algorithm. The scheme of DDS algorithm implemented to calibrate the HBV 
model is shown in Figure 4.2. 
 

 
Figure 4.2: The scheme of DDS algorithm interacted with HBV model 

 
The dynamically dimensioned search (DDS) is a stochastic, single objective search algorithm 
which has been proved to be efficient in finding ‘good quality’ global solutions (see Tolson 
and Shoemaker (2007)). Based on the way the neighborhood can be dynamically adjusted 
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when the dimension of the search changes, it is unique in relation to current optimization 
algorithms. To be more specific, the DDS perturbation variances remain constant if the 
objective function keeps the same. The number of decision variables perturbed from their 
current best value decreases as the number of function evaluations becoming close to the 
maximum function evaluation limit.  
 
Tolson and Shoemaker (2007) suggested the value of 0.2 for the scalar neighborhood size 
perturbation parameter (r) which associates the standard deviation of a random perturbation 
size with a fraction of the model parameter’s range. The DDS algorithm searches globally at 
the start then becomes a more local search as the number of iterations reaches the maximum 
allowable number of function evaluations. The model parameters being calibrated in 
automatic calibration are the decision variables and the number of model parameter values 
being changed is the dimension being varied to generate a new search neighborhood. Initially, 
a subset of dimensions for perturbation is selected completely at random without reference to 
sensitivity information and perturbed by values randomly sampled from a normal distribution. 
Then the number of perturbed parameters decreases with an increasing number of iterations to 
let the solver search more globally at the beginning and more locally at the end of the 
optimization process. In this study, the DDS algorithm is implemented to calibrate the HBV 
model in a lumped mode on both daily and hourly time steps with a total evaluation number 
of 2000 iterations.  
 
Six steps are involved in the DDS algorithm as: 
 
Step 1: define DDS inputs including neighborhood perturbation size parameter, r =0.2; lower 
and upper bounds (xmin,  xmax) and initial solution for all the model parameters being 
optimized, Xt=0=[x1,…xD],  and the maximum number of evaluation times M. 
 
Step 2: set the iteration counter to 1, k=1 and evaluate the objective function F with the given 
initial solution, assuming Xbest=Xt=0 and Fbest=F(Xt=0). 
 
Step 3: for d =1,…D decision variables, modify all the decision variables xd according to the 
following rule:  

( ) ( ) ( ) ( )
( )

max min ln
0,1 0,1 1

ln
best
d d dnew

d

best
d

k
r N if Ux x x Mx

otherwisex


+ − ⋅ ⋅ < −= 




                                             (4.18) 

where xd is the best achieved for the entry decision variable d, N(0,1) is a standard normal 
distribution with a mean of 0 and standard deviation 1; U(0,1) is a uniform distribution and a 
random number can then be generated in the interval [0,1]; k is the current iteration count. 
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Step 4: The one dimensional decision variable perturbations in this step can generate new 
decision variable values outside of the box constraints. In order to make the new decision 
variable respect the bounds in the DDS algorithm, the minimum and maximum decision 
variable limits represent as reflecting boundaries. The values of the decision variables will be 
adjusted if necessary: 

( )
( )

min min min

maxmax max

d d d d d
new
d

d d dd d

ifx x x x x
x

ifxx x xx

 + − <= 
− >−

                                                                                 (4.19) 

or 
max min

min max

d d dnew
d

d d d

ifx x x
x

ifx x x

 <
= 

>
                                                                                                           (4.20) 

 
Step5: evaluate F(Xnew) and update current best solution if necessary: 

( ) ( );new best new new
best bestF F X X X if F X F= = ≤                                                             (4.21) 

 
Step6: set iteration count k=k+1 and check stopping criterion:  
if k=M, stop or else go to step 3. 
 
Noted that regardless of whether the maximum function evaluation number is 10 or 10,000, 
the DDS algorithm scales the search strategy from global in the initial iteration to more local 
in the final iteration. 
 
Calibration strategies 
 
For the purpose of operational predictions, the usefulness of a hydrological model mainly 
depends on how well the model can be calibrated. If the parameters are poorly estimated, the 
model behavior of the catchment of interest can be quite different from those actually 
observed. Therefore, appropriate calibration is a key issue in hydrological modeling since all 
the models have parameters that need to be specified or identified, and much attention has 
been required to it. 
 
Two different calibration strategies, representative of different ways of interpreting the 
calibration process to evaluate model performances with respect to estimation of IPFs are 
compared. The first one is referred to hydrograph calibration (hydr_d) which associates the 
model parameters with flow time series process. The second strategy (CDF_d) results in the 
determination of a set of parameters associated with four different flow statistics. 
The objective functions used for both strategies are a combination of Nash-Sutcliffe 
coefficient (NSC) after Nash and Sutcliffe (1970) for different flow criteria.  
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For the calibration against the observed hydrograph where the model is forced with observed 
daily climate data, the objective function is: 
 

1 log0.5 0.5OF NSC NSC= ⋅ + ⋅                                                                                               (4.22) 

 
where NSClog stands for the NSC calibrated with log transformed flows. The log-transformed 
discharges to emphasize low flows to provid equal attention to both high and low flows. 
 
In the light of the second CDF_d strategy a weighted total Nash-Sutcliffe coefficient (NSC) is 
computed from the following objective function. 
 

2 0.275 0.275 0.20 0.25CDF WIN FDC MDFCDF SUM
OF NSC NSC NSC NSC−−

= ⋅ + ⋅ + ⋅ + ⋅                    (4.23) 

 
where the index CDF stands for the Cumulative distribution function of daily extremes for 
summer (SUM) and winter (WIN) respectively; FDC is flow duration curve and MDF is 
annual maximum daily flow series; As the main focus of this paper is the simulation of 
extremes the sum of weights for summer and winter is set to 55%. The remaining 45% are 
then portioned between annual maximum daily series and flow duration curve.  
 
Traditional approach to determine the success of hydrological models often depend on the 
minimization of the differences between observed and simulated runoff time series, namely 
using hydrograph calibration (hydr_d). It can fully describe the water balance variability and 
provides an effective way of simulating the observations through the process of calibration. 
But, calibration on the exact hydrograph gives rise to limited feedback on areas of model 
deficiency and sensitivity to model parameters. Since it cannot give variable importance of 
the performance with flow magnitudes, this method may results with unsatisfactory extreme 
values. 
 
CDF_d calibration strategy requires sufficient information content to make reliable estimation 
of parameters. This presents considerable insight into catchment runoff response and also 
enables us to assess how well the hydrological model is able to predict the flow response of 
the catchment without dependency on hydrograph fitting. Since it focuses on reproducing the 
observed discharge frequency distribution, better IPF simulation results are expected. Besides, 
this method is able to evaluate the model performance when observation time periods for 
model input data and discharge do not overlap. 
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4.1.2 Disaggregation rainfall model 
 
 
A large variety of rainfall disaggregation methods have appeared in hydrological literature 
and used in hydrological applications such as urban hydrology, flood risk assessment and 
erosion investigations (Jebari et al. 2012; Licznar et al. 2011). For the calibration of the 
models long, high-resolution time series of rainfall are necessary. Observed time series of this 
kind are often too short. On the contrary, time series from non-recording rainfall stations 
(daily values) exist for much longer periods and with a higher network density. The 
disaggregation of these values using information of the time-series from nearby recording 
stations can be a possible solution for the data scarcity (Koutsoyiannis et al. 2003). For this 
study a multiplicative random cascade model (Güntner et al. 2001; Olsson 1998) is used, that 
has been modified and adapted to the study region in Northern Germany (Müller and 
Haberlandt 2015). 
 
The scheme of the basic version of cascade model is shown in Figure 4.3. The cascade model 
is micro-canonical, so the rainfall amount is conserved exactly during the disaggregation 
procedure for each time step. The rainfall amount of one coarse time step (here daily) is 
divided into b finer time steps with equal length, where b is called the branching number. 
With b =2 in the first disaggregation step a temporal resolution of 12 h is achieved. For 
further disaggregation steps, temporal resolutions of 6 h, 3 h and finally 1.5 hour are achieved. 
There are three possibilities (P) as to how the rainfall amount splits in each time interval: 
dry/wet with P(0/1), wet/dry with P(1/0), wet/wet with P(x/1-x)  illustrated in Eq. (4.24).  
 

( )
( )

( )( )
1 2

0 1 0 /1

, 1 0 1/ 0

1 / 1 ;0 1

and with P

W W and with P

x and x with P x x x


= 


− − < <

                                                       (4.24) 

 
where W1 and W2 are multiplicative weights and their sum is equal to 1. 
 
The basic version of the cascade model requires four parameters which depend on the position 
and the rainfall volume of each time step. There are four classes of position of a time step: 
starting boxes (dry-wet-wet) preceded by a dry time step, succeeded by a wet time step; 
ending boxes (wet-wet-dry); enclosed boxes (wet-wet-wet) and isolated boxes (dry-wet-dry) 
(Olsson 1998). These parameters for the model can be estimated from the nearest recorded 
high resolution stations and running the model backwards.  
 



66 

 
Figure 4.3:  Scheme of the basic cascade model for rainfall disaggregation 

 (modified from Müller and Haberlandt 2015) 
 
Since the above disaggregation procedure starting with daily values can only result in a 
temporal resolution of 1.5h or 0.75h rainfall data while hourly rainfall data are needed in most 
cases. To overcome this problem, here, the model divides the observed daily precipitation into 
three equal sized non-overlapping boxes in the first step. Then the branch number b=2 is 
selected for the following disaggregation steps. Therefore, rainfall time series with resolutions 
of 1h can be obtained. The scheme of the updated version of the cascade model is shown in 
Figure 4.4. Depending on the wet or dry state of the adjacent time intervals and rainfall 
amount, the parameters for the model are estimated from the nearest hourly recording stations. 
For more details about the disaggregation procedure, see Müller and Haberlandt (2015).  
 

 
Figure 4.4: Scheme of the updated cascade model for rainfall disaggregation (modified from 
Müller and Haberlandt 2015) 
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The possibilities of splitting during the first disaggregation steps are as follows: 
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                                                                          (4.25) 

 
As the impact of diurnal variation of the evaporation and temperature is of low importance for 
this study, the daily temperature values are regarded as constant over the whole day, while the 
daily evaporation values are uniformly divided over 24 hours. 
 
 
4.1.3 Post correction and pre-processing approaches 

Post-correction approach 

For the post-correction approach the hydrological model is operated at a daily time step 
followed by a subsequent correction of the daily extremes into instantaneous peak flows 
(IPFs). An advantage of it is the availability of longer (more than 30 years in our case) and 
higher quality observation records based on the denser runoff and climate networks. 
The approach consists of three steps: 
 
Step 1: Calibrate the hydrological model on daily flow statistics (CDF_d) and hydrograph 
(hydr_d) respectively. 
 
Step 2: Select the sample of the annual maximum daily winter/summer flows from the 
simulations and fit Generalized Extreme Value (GEV) distributions to both samples. Estimate 
the daily flow quantiles for four different return periods (T=10, 20, 50, 100 yr). 
 
Step 3: Post correct the MDF quantiles using multiple regression equation which has already 
been derived in our former research to obtain the IPF from MDF (See Chapter 3): 
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1 2 3 0IPF MDF lst fp Elv dsHQ HQα α α α= ⋅ + ⋅ + ⋅ +                                                              (4.26) 
 
where α0 … α3 are regression coefficients; MDFHQ   denotes the daily flow quantiles obtained 
from hydrological simulations and IPFHQ  denotes the estimated instantaneous peak flow 
quantiles; lst_fp and Elv_ds respesent longest flow path and minimum elevation of study 
basins respectively.  

Pre-processing approach 

In order to provide a basis for the direct simulation of instantaneous peak flows, synthetic 
hourly precipitation has been used given the restricted availability of long continuous rainfall 
series data with high temporal and sufficient spatial resolution. This method consists of the 
following points:  
 

• Disaggregate the observed daily precipitation into hourly precipitation. In order to 
consider the uncertainty in the disaggregation process, 10 realizations of hourly 
rainfall are generated from historical daily data (see section 4.1.2).  
 

• The calibration of the model with CDF_h strategy is carried out using disaggregated 
precipitation from the first step and observed flow statistics on an hourly base of the 
same time period. The objective function to assess the hourly model performance is 
OF3. 

 
 
              

3 0.275 0.275 0.20 0.25CDF WIN FDC IPFCDF SUM
OF NSC NSC NSC NSC−−

= ⋅ + ⋅ + ⋅ + ⋅        (4.27) 

where the index CDF stands for the Cumulative distribution function of hourly 
extremes for summer (SUM) and winter (WIN) respectively; FDC is flow duration 
curve and IPF is annual instantaneous peak flow series. 

 
• Derive the mean flow quantiles obtained from the 10 GEV distributions which are 

obtained from the 10 disaggregation realizations. The parameters for hydr_h are 
derived by calibration of the model on shorter hourly hydrographs where the objective 
function is the same as Eq. (4.22), except for the time step of the flows. 
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Evaluation of the performance of estimating IPFs 
 
The Root mean square error (RMSE), bias and Nash-Sutcliffe coefficient (NSC) (Nash and 
Sutcliffe 1970) are the criteria applied for the evaluation of model performance. The root 
mean square error is given by: 
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HQ HQ
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                                                                                         (4.28)    
the bias criterion is: 
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where N is the number of stream flow stations; iHQ∗

and iHQ denote estimated and observed 
peak flow values respectively. 
 
NSC is computed as: 
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where n is the total number of observations; 
obs
iHQ  and  

sim
iHQ  are the ith observed and 

modeled peak flows; 
meanHQ  is the mean of the observed peak discharge. 

4.2 Study area and Data 

The investigations are carried out for 18 catchments within the Aller-Leine River basin in 
northern Germany (see Figure 4.5). Its detailed catchment descriptions are given in Chapter 3.  
The 18 study catchments are located in different geomorphologic and climatologic areas. 
Three sample catchments highlighted in Figure 4.5 are selected to demonstrate selected 
results in detail for the following results section. Table 4.2 summarizes some of the 
hydrological characteristics of those catchments. The size of the catchments is from 45 km2 to 
633 km2 and the annual precipitation varies between 730 mm/year to around 1500mm/year. 
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The third column in the table shows the time window of observed discharge as daily flows 
and monthly peak flow series. 

 
Figure 4.5: The locations of 18 subbasins of Aller-Leine catchment in northern Germany 

Appropriate processing is performed to establish the distribution of important catchment 
characteristics based on the obtained different GIS digital data pertaining to the sub basins. 
These include a digital elevation model (DEM) with a resolution of 10 meters, a land use map 
and a river net work. The three characteristics (Area, longest flow path and minimum 
elevation) in Table 4.2 are derived from the digital elevation model (DEM). The portion of 
the forest land use type is derived from the land cover map CORINE2000 (see EUR 1994). 
Daily precipitation data from 244 stations covering the whole study area are obtained from the 
German Weather Service. Besides, there are 100 recording stations providing the hourly data. 
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Table 4.2 List of catchments and their basic descriptors 

Nr 
basin 
name 

observed flow 
record 

annual 
precipitation 

 
Area 

Longest flow 
path 

Min 
elevation 

urban agricultural forest 

(-) (-) (year) (mm/year)  (Km2) (m) (m) (%) (%) (%) 

1 BS 1968--2007 840.16  127 19689 96.8 4.81 67.99 27.37 

2 BP 1967--2007 733.9  116 25747 67.5 6.33 87.58 6.26 

3 Br 1962--2007 872.32  285 41802 41.0 4.7 42.75 51.91 

4 Go 1959--2006 791.61  633 62868 141.5 7.03 66.95 26.04 

5 Gr 1962--2006 1004.74  125 23915 129.4 7.91 48.85 43.22 

6 Ha 1974--2007 838.62  104 25244 74.8 6.71 55.5 37.98 

7 Ku 1962--2006 910.93  61.8 13524 130.2 1.97 70.39 27.73 

8 Lh 1955--2007 854.3  100 25987 24.8 0.94 57.51 41.8 

9 Ma 1964--2006 835.91  45 12035 196.2 0.98 67.63 31.49 

10 Mt 1967--2007 748.98  242 36744 36.6 28.1 54.34 16.7 

11 NP 1967--2006 737.17  334 40583 55.5 3.46 62.01 34.44 

12 Ol 1962--2006 1004.16  149 25339 128.6 1.7 31.8 66.43 

13 Pi 1952--2006 1537.94  44.5 17112 339.6 0.51 0.24 99.1 

14 Re 1964--2006 793.69  321 43413 182.9 5.29 66.09 28.64 

15 RH 1962--2006 781.71  184 24915 154.7 6.9 72.46 20.8 

16 VR 1964--2006 1136.36  57.5 22158 133.1 15.88 19.19 65.18 

17 De 1978--2007 899.57  309 49067 90.9 5.63 56.25 38.08 

18 Me 1962--2007 889.15  136 27856 81.9 6.38 58.37 35.28 

 
Records of precipitation with hourly temporal resolution are available around 6 years at a 
daily time step for the period between 1951 and 2008. The other climate data applied to force 
the hydrological model, such as temperature and evaporation are available for both temporal 
resolutions and time periods. Table 4.3 gives an overview of the time periods of these 
measurements.  
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Table 4.3 Time windows of hydrological data 
variable Daily Hourly 

runoff 29-44 yr 2004-2008 

monthly peak flow (-) 31-44 yr 

precipitation 1951-2008 2003-2008 

temperature 1951-2008 2003-2008 

evaporation  1951-2008 2003-2008 

 

4.3 Results  

In this section, first the calibration results of the hydrological model using the observed daily 
data as input and using the two different calibration strategies (CDF_d and hydr_d) are 
presented. The multiple regression model is applied to post correct the simulated maximum 
daily flows (MDFs) into instantaneous peak flows (IPFs). Then the corresponding hourly 
simulation results by applying disaggregated daily rainfall data (CDF_h and hydr_h) are 
discussed. The performance and uncertainty of the four alternatives are finally compared for 
the purpose of estimating IPFs for the 18 catchments.  
 
Note, that the conclusions are made based on a relative comparison involving only calibration 
results. A real validation of the hydrological model using a different data period is not feasible 
because of the short hourly observation period on one hand and the required full peak flow 
sample for calibration on extreme value statistics on the other hand.  
 
 
4.3.1 Daily simulations with post-correction  
 
Performance of the hydrological model calibrated on flow statistics (CDF_d) 

 
Figure 4.6 shows comparisons between the fitted probability distributions of daily extremes in 
winter and summer for the sub-basins Br, De and Pi. These flood frequency results are 
calculated using observed and simulated daily flow data for over 30 years. The red solid line 
denotes the fitted GEV distribution on the observed annual daily extremes (black dots). The 
red dashed lines enclose the 90% confidence interval obtained by using bootstrap method 
after Efron and Tibshirani (1986). The black line corresponds to the simulated distributions, 
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generated using the parameter sets that achieve the best performance for the selected flow 
statistics. Since the small sample size may give rise to poor fitting of CDFs for observations, 
the comparison is then based on the more smooth and robust theoretical CDFs. 
 
It is apparent from Figure 4.6 that the distribution functions corresponding to the simulated 
extremes seem to fit the functions derived from observations quite well in winter although 
there are some deviations in summer for both observed and simulated cases at the higher 
return periods. In those cases, given the observations only, there could be doubts about the 
accuracy of the observed peaks and ability of the hydrological model to simulate the flow 
peaks of similar magnitude corresponding to the same storm events that give rise to the 
observed peaks. Therefore, more care should be taken for the extrapolation of the fitted 
distributions in summer since extraordinary extremes appear more often than in winter season.  
 
The uncertainty bands of the observed annual extreme values differ significantly in summer 
and winter. The wider extent of confidence interval in summer indicates greater uncertainty 
than in winter. Br catchment shows the best fits between the probability distributions derived 
from the observed and simulated flow peaks in both summer and winter season.  
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Figure 4.6: Observed and simulated fitted CDFs to daily extremes in winter and summer for 
the three sample catchments (Br/De/Pi); red dashed lines enclose the 90% confidence interval 
against observed peak flows 
 

In order to investigate the performance of the hydrological model regarding winter and 
summer extremes for all 18 catchments, the fitted GEV distributions using observed and 
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simulated extremes are compared. For that a goodness of fit Chi-square test is performed and 
Figure 4.7 shows the results in the form of p-values. The red dashed line indicates a 5% 
significant level. A better the fit to the model is indicated by a larger p value. As can be seen, 
the estimation of winter peaks is far more robust than those in summer with median values 
(middle black line) in summer and winter of 0.05 and 0.41 respectively. This is consistent 
with the results obtained above regarding the three sample catchments. 
 

 
Figure 4.7: Boxplots of the p value over 18 catchments for the fitted GEV distribution 
between observed and simulated daily extremes in winter and summer respectively; red 
dashed line indicate the confidence line (a=0.05) 

 

Figure 4.8 shows the visual assessments of simulated and observed flow duration curves 
(FDCs) (0.05, 0.25, 0.5, 0.75, 0.95, 0.975 Quantile). One can see that the general fit between 
simulated (red dashed line) and observed (blue line) FDCs is satisfactory although there are 
some overestimations in the low flow part of FDCs for the first two catchments. It is likely a 
result of higher weighting of high flows during the calibration process. In addition, quantative 
assessments of FDCs for all 18 sub catchments to check the overall quality of a given 
simulation are shown in Table 4. The average NSC value is 0.87 with a tendency to 
overestimation suggested by a positive bias value 20%.  
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Figure 4.8:  Comparison of observed and simulated daily flow duration curve (FDC) for the 
three sample catchments 
 
 
Table 4.4 Calibration results of flow duration curve (FDC) using daily observed precipitation 

FDC Ku Go Re VR Br De RH Lh Pi Me Ha BS NP Gr BP Ol Ma Mt 

 NSC [-] 0.95 0.96 0.94 0.94 0.91 0.92 0.74 0.60 0.93 0.98 0.91 0.89 0.96 0.91 0.93 0.98 0.94 0.95 

 Bias [%] 23.25 15.12 33.11 32.29 14.53 35.93 15.72 11.16 -12.07 10.81 17.99 19.75 17.74 32.33 32.44 18.57 42.07 9.23 
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Figure 4.9  illustrates the post correction results using multiple regression model (Ding et al. 
2014) for a return period of 50 and 100 years among the whole study area in winter and 
summer. IPF (Obs) and IPF (Sim) indicate the quantiles of observed and simulated 
instantaneous peak flows respectively. R2 is the coefficient of determination and RMSE is the 
root mean square error. As might be expected, the estimation of the higher return period peaks 
(T=100yr) are subject to greater amounts of estimation error in both summer and winter 
season while the estimations in winter (RMSE=0.202) is better than in summer (RMSE=0.237) 
 

 
Figure 4.9: Comparison between the observed and simulated instantaneous peak flow in 
winter and summer using the CDF_d strategy at recurrence intervals of 50 and 100 years 
 
 
Table 4.5 gives the results of multiple regression coefficients for all 18 sites where the 
simulated annual maximum daily flows obtained by using the CDF_d strategy are regressed 
with the observed annual instantaneous peak flows. 
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Table 4.5 Final results of multiple regression coefficients for all 18 sub catchments using 
CDF_d strategy 

Regression 
Coefficients 

α0 α1 α2 α3 

T=10 yr 1.817 1.927 -0.00021 0.023 

T=20 yr 2.846 1.916 -0.00030 0.032 

T=50 yr 2.156 1.748 -0.00032 0.058 

T=100 yr -0.762 1.598 -0.00025 0.091 

  
 

Performance of the hydrological model calibrated on daily hydrograph (hydr_d) 

 
Turning to daily hydrograph simulation, it is important to notice that, all the observed climate 
and flow data are used here for calibration. Figure 4.10 shows only a portion of the calibration 
result (2005 and 2006 yr) at the three sample catchments. It can be seen that, in general, the 
low flows and the medium peak flows are estimated well although occasional underestimation 
of the higher peak flows are noticed in De and Pi catchments. Table 4.6 details the calibration 
results for all the 18 catchments in the form of their NSC and Bias value. One can see that 
good model fits to the observed flow time series data are achieved by hydrograph simulation, 
with NSC value between 0.70 and 0.89 and Bias between -1.31% and 5%.  
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Figure 4.10:  Example of observed and simulated daily hydrographs for the three sample 

catchments 
 

Table 4.6 Calibration results for daily hydrographs over the whole record periods 
hydr_d BS BP Br Go Gr Ha Ku Lh Ma Mt NP Ol Pi Re RH VR De Me 

NSC [-] 0.76 0.75 0.80 0.89 0.79 0.8 0.75 0.71 0.73 0.81 0.74 0.83 0.82 0.82 0.74 0.70 0.85 0.81 

Bias [%] 5 5 -0.56 -0.84 -0.25 1.18 3.15 -0.55 5.07 -1.11 -1.9 0.34 -1.31 0.44 -0.27 4.52 1.77 -0.8 

 
Figure 4.11 shows the post correction results with respect to the selected maximum daily flow 
series from the hydrograph simulation. The discrepancies between the observed and simulated 
IPFs demonstrated here confirm the findings in Figure 4.9 with slightly worse estimation 
results for all the cases. Especially, the values of RMSE in winter are much higher than the 
ones obtained from CDF_d strategy. 
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Figure 4.11:  Comparison between the observed and simulated instantaneous peak flow in 
winter and summer using the hydr_d strategy at recurrence intervals of 50 and 100 years 
 
Table 4.7 Final results of multiple regression coefficients for all 18 sub catchments using the 
hydr_d strategy 

Regression 
Coefficients α0 α1 α2 α3 

T=10 yr 3.219 2.373 -0.00015 0.022 

T=20 yr 8.842 2.900 -0.00040 0.003 

T=50 yr 14.761 3.005 -0.00058 -0.012 

T=100 yr 14.737 2.816 -0.00048 -0.005 

Table 4.7 gives the final results of multiple regression coefficients for all 18 sites where the 
simulated annual maximum daily flows obtained using the hydr_d strategy are regressed with 
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the observed annual instantaneous peak flows. The comparison of regression coefficient α0 in 
Table 4.5 and Table 4.7 indicates the hydrograph simulation leads to underestimation of peak 
flows. This case is especially true for the long return periods (T=50, 100yr) where α0 =2.156,-
0.762 for CDF calibration while α0 around 14.7 for hydrograph calibration. 
 
4.3.2 Hourly simulations with pre-processing  

The results presented in this section are based on continuous hydrological simulations at an 
hourly time step for the whole observed period. The hydrological model is forced by 
disaggregated daily climate data and the obtained results from the two calibration strategies 
CDF_h and hydr_h are compared with the results from the corresponding daily simulations. 
 
Performance of hydrological model calibrated on flow statistics (CDF_h) 
 

Figure 4.12 shows comparisons between the fitted GEV distributions for the three sample 
catchments in summer and winter season. The red and black solid lines are the results based 
on observed and simulated annual maxima respectively. The red dashed lines enclose 90% 
confidence interval of the observed IPFs, represented by black dots. Compared with the 
corresponding results shown in Figure 4.6, it is apparent in Figure 4.12 that the fitted 
probability distributions from the simulated and observed peaks seem to match fairly well 
although with a slight overestimation. Unlike the significant underestimation of flows at 
higher return periods in summer for daily simulations (see Figure 4.6), a better agreement 
between the observed and simulated data fitted to GEV distributions can be seen here at 
T=100yr. However, it can also be noted that the agreement between the observed and 
simulated CDFs for lower return periods is a bit poorer than the corresponding daily 
simulations. Both the CDF_h and CDF_d strategies are more likely to identify a proper 
parameter set that reproduce the annual extremes of the observed flow data in winter than in 
summer. 
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Figure 4.12: Observed and simulated fitted CDFs to hourly extremes in winter and summer 
for the three sample catchments (Br/De/Pi); red dashed lines enclose the 90% confidence 
interval against observed peak flows 
 
Figure 4.13 shows the p-value results in winter and summer by Chi-square test where the 
better “goodness of fit” between the simulated and observed IPF frequency curves for all 18 
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catchments is indicated by a bigger p value. Those results support the findings in Figure 4.7, 
that the agreement of fitted frequency distributions using observed and simulated peaks is 
more robust in winter. Additionally, the parameter sets estimated by CDF calibration with the 
disaggregated daily precipitation give rise to a better fit between the observed and simulated 
GEV distribution curves in summer. 
 

 
Figure 4.13: Boxplots of the p value over all sub catchments for the fitted GEV distribution 
on observed and simulated hourly extremes in winter and summer respectively; red dashed 
line indicate the confidence level of 95%  (a=0.05) 

 

A direct comparison of simulated and observed daily FDCs is done by aggregating the hourly 
simulated flow time series into daily values (Figure 4.12). Compared with Figure 4.6, it is 
apparent that, given the choice of the same target quantiles (0.05, 0.25, 0.5, 0.75, 0.95, 0.975), 
the aggregated hourly simulations are closer to the observed daily data series in these three 
sample catchments. The remaining results from the other 14 catchments except Lh shown in 
Table 4.8 also agree with it. The poorer estimation performance in Lh can be explained by the 
pre-processing procedure since the available daily and hourly rainfall stations involved in the 
disaggregation are not within the basin (see Figure 4.5). Given the relatively small sample 
size for FDC estimation, it is likely to have perfect NSC value (NSC=1) results, such as BP 
and Ol catchments.  
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Figure 4.14: Comparison of observed and simulated daily flow duration curve (FDC) for the 
three sample basins at an hourly time step 
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Table 4.8  Calibration results of flow duration curve (FDC) using the Nash-Sutcliffe criterion 
(NSC) and the bias criteria 

FDCs Ku Go Re VR Br  De RH Lh Pi Me Ha BS NP Gr BP Ol Ma Mt 

NSC [-] 0.94 0.99 0.97 0.92 0.97 0.96 0.94 0.51 0.97 0.89 0.96 0.95 0.98 0.99 1.00 1.00 0.81 0.98 

Bias [%] 21.76 -4.88 5.19 33.31 12.78 -12.21 20.95 32.82 -11.43 30.61 23.21 26.50 0.79 6.87 0.31 2.57 -5.83 -13.23 

 
 
Performance of hydrological model calibrated on hydrograph (hydr_h) 
 
Turning to hourly hydrograph simulation, the visual assessment of the simulation of the three 
sample catchments is shown in Figure 4.15 and Table 4.9 details the quantitative assessment 
for all the 18 catchments. It can be seen, that the hydrological model describes the runoff 
dynamics well with the Nash values varied between 0.7 and 0.91 and Bias values varied 
between -15.5% and 13.62%. 
 

 
Figure 4.15: Comparison of observed and simulated hydrographs based on hourly observed 
precipitation for the three sample catchments 
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Table 4.9 Calibration results of continuous hourly hydrograph over the whole record periods 
hydr_h BS BP Br Go Gr Ha Ku Lh Ma Mt NP Ol Pi Re RH VR De Me 

NSC [-] 0.82 0.75 0.82 0.84 0.8 0.84 0.75 0.7 0.72 0.81 0.85 0.91 0.85 0.78 0.73 0.72 0.82 0.74 

Bias [%] 7.83 13.62 -0.41 -0.61 12.3 3.71 -7.75 0.6 -2.66 0.09 2.98 3.29 -15.5 -2.9 2.14 -1.22 4.2 -5.67 

 
 
4.3.3 Comparison between post-correction and pre-processing approaches 
 
Uncertainty is inherent in any flood frequency estimation which results from various sources, 
such as the analytical techniques applied, the hydrological model regarding its structure and 
parameters and the limitations of the observed data series. 
 
Figure 4.16 shows a comparison for the estimation of the 100 yr IPFs including uncertainty 
bands for the three sample catchments using all different methods (CDF_d, CDF_h, hydr_d, 
hydr_h). In order to consider the error from the hydrological model, 50 parameter sets are 
optimized for each method to obtain 50 sets of simulated flow peaks. Subsequently, bootstrap 
is applied to estimate the confidence intervals for the estimated 100 yr IPF with the observed 
and all sets of simulated flow peaks. For each parameter set, 500 samples of the same length 
as calibration period are generated using bootstrapping. This provides 25000 samples for 
estimation of the uncertainty range in this figure. The result based on the observed data series 
is referred to as OBS. 
 
The uncertainty bands of OBS in summer are generally wider than in winter for the three 
sample catchments. Good estimation of IPFs is obtained by calibrating the model on flood 
frequency curves at both daily and hourly time steps (CDF_d and CDF_h) where CDF_h 
gives rise to a larger uncertainty range. The traditional calibration on hydrograph with 
observed long term daily (hydr_d) and short term hourly rainfall (hydr_h) performs generally 
poor. However, the daily hydrograph simulation (hydr_d) generates smaller uncertainty and 
better estimation results than the corresponding hourly simulation results (hydr_h). These 
findings are only proved in the three example catchments. 
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Figure 4.16: Estimated 100yr IPFs with 90% confidence bands for the three sample 
catchments by calibrating the model on flow statistics and hydrograph at daily and hourly step 
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Finally, to sum up the contrast between daily simulation with post correction and hourly 
simulation with pre-processing over the whole study area for four different return periods 
(T=10, 20, 50, 100yr) in summer and winter, the RMSE and bias criteria, are estimated to 
check the overall quality of a given simulation strategy. Figure 4.17 illustrates the averaged 
results for 18 gauges using daily observed climate data with post correction and disaggregated 
daily data with pre-processing to estimate the design IPFs by calibration on flood distributions. 
Accordingly, the results of Figure 4.18 are based on calibration using hydrographs. 
 
The first column (MDF-IPF) represents the differences between the estimated quantiles of 
instantaneous peak flows (IPFs) and the corresponding maximum daily flows (MDFs) without 
any correction. As can be seen the immediate replacement of IPF with MDF can lead to 
significant underestimation with an average RMSE 30% and Bias -30% in winter and 35% 
and -35% in summer for the four return periods. The estimation from daily calibration with 
post correction is shown in the second column (CDF_d). The third column shows the 
estimation error from calibration at an hourly time step using disaggregated climate data as 
input (CDF_h).  
 
Figure 4.17 shows in general that the model calibration at both temporal steps (daily and 
hourly) is able to effectively predict the IPF. However, using disaggregated daily rainfall as 
input provides the better overall estimation results with RMSE of 15 % in winter and 19% in 
summer although there is a slight underestimation in summer. The accuracy by calibrating the 
model on daily flow statistics with post correction is stable in summer and winter where the 
average RMSE is 22% with Bias 4%. 
 
Turning to the hydrograph calibration strategy, Figure 4.18 shows the advantage of the 
hydr_d approach to estimate the IPFs where observed long-term daily rainfall data as input 
are combined with subsequent post-correction of daily peaks. This is more notable in the 
summer season. The RMSE from hydr_d is 25% and 27% for the return period of 50 yr and 
100 yr, respectively while the hydr_h using disaggregated daily precipitation gives 30% for 
both periods. 
 
Besides, the bias shows that there is a significant underestimation of IPFs in summer (-18%) 
and overestimation in winter (10%) when using the disaggregated daily precipitation (hydr_h). 
The daily simulation with post-correction (hydr_d) produces only small overestimation for 
both seasons (6% and 4% respectively). 
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Figure 4.17:  Comparison of the root mean square error (RMSE) and Bias using the CDF_d 
and CDF_h for summer and winter season averaged over 18 gauges 
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Figure 4.18: Comparison of the root mean square error (RMSE) and Bias using the hydr_d 
and hydr_h for summer and winter season averaged over 18 gauges 

 

4.4 Conclusions and discussions 
 
This research compares two different approaches for the estimation of instantaneous peak 
flows (IPFs), namely, post-correction and pre-processing. Observed daily rainfall and 10 
realizations of hourly disaggregated rainfall data are used as input of the rainfall-runoff model 
HBV. The calibration strategies for model parameter estimation incorporate standard 
hydrograph calibration and calibration on flow statistics based on winter/summer extremes 
distributions, flow duration curve for 18 sub catchments in the Aller-Leine river basin, 
Germany.  
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The results for the three sample catchments shows that, the parameters sets obtained from 
both flood frequency estimation and hydrograph simulation are found to be acceptable within 
the current hydrological modeling limits. This is in consist with the findings in (Haberlandt 
and Radtke 2014 and Cameron et al. 1999).   
 
In general the final comparison of the different methods for design IPF estimation suggests: 
 

(1) The multiple regression model developed from observed MDFs and IPFs data series is 
capable to estimate the IPFs with the modeled MDFs regarding flood frequency 
analysis. 

(2) Generally, the model performances using flow statistics calibration strategy (CDF) are 
better than using the traditional hydrograph calibration strategy (hydr) according to the 
obtained RMSE and bias results. 

(3) The best overall performance for design IPF estimation for all catchments is obtained 
when disaggregated rainfall data are used for calibration on the observed probability 
distribution of peak flows (CDF_h). However, the requirement to have available 
observed long recorded peak flow data fitted to the probability distributions may limit 
its application in catchments with poor data records. 

(4) The daily simulation with post-correction using the same calibration method, namely 
(CDF_d) is the second best approach. Compared with CDF_h, it has fewer limitations 
regarding the length of the observation period of peak flows since the data on a daily 
basis are more available in most cases. This can help the decision makers and 
modelers to clarify ideas about how to choose the proper estimation strategy 
conditioned on available data. 

(5) The daily simulation with post-correction (hydr_d) provides better estimation results 
of IPFs than the corresponding hourly simulation (hydr_h) when the calibration 
strategy is based on hydrographs. It can be used for estimation of design IPFs when 
there are not long enough peak flow data available to carry out CDF calibration. 
 

Although the results are obtained for a specific study region, it is assumed, that they hold in 
general also for other regions with similar characteristics. It would be beneficial to have more 
case studies also involving other hydrological models. Further work is under way considering 
not only this scaling of the flows but regionalization for unobserved catchments 
simultaneously. 
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Chapter 5 
 
5 Estimation of IPF from MDF in ungauged areas 

As watershed models become increasingly useful and sophisticated, there is a need to extend 
their applicability to basins where they cannot be calibrated or validated to estimate IPF. 
Little is known so far how the regional relationships between model parameters and 
catchment characteristics impact the ability to model stream flows in ungauged areas. 
Therefore, it would be beneficial to take further work considering not only the scaling 
strategies of daily flows but also regionalization techniques for unobserved catchments. 
 

The tradition regionalization approach includes two steps: (1) estimation of hydrological 
model parameters at each site, then (2) attempts to obtain the relationship between model 
parameters with catchment characteristics. In this chapter, a methodology for the 
regionalization of HBV model is introduced which involves calibration of a hydrological 
model to many sub catchments simultaneously, instead of the previous two-step approach. 
Besides, the dual objective of reproducing the flow statistics of observed daily flows and 
additionally, to avoid ‘equifinality’ (see Beven and Freer 2001) by using a proper 
transformation function has been taken into account. 
 
The following sections outline the regional calibration methodology and provide an 
evaluation of the overall strategy by comparing the estimation results of IPF with the 
corresponding results from Chapter 4.  

5.1 Methods 

The modified version of the conceptual hydrological model HBV is also used here and the 
detailed description can be found in Chapter 4. Inspired by the linear transfer function applied 
successfully in many regionalization studies (Hundecha and Bárdossy 2004; Seibert 1999; 
Wallner et al. 2013; Yadav et al. 2007), this method is designed to give a different insight of 
estimation of instantaneous peak flow from simulated daily flow in ungauged areas. 
 
The model parameters are linked with the catchment characteristics and can be estimated 
uniformly for all sub catchments based on the selected catchment characteristics. The 
traditional way to obtain the transfer function is to first calibrate the model for each sub 
catchment independently and then attempt to build a regional relationship betweeen the 
optimized model parameters with the hydrological indicators (such as land use/cover 
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parameters, climate characteristics) (Abdulla and Lettenmaier 1997). It can generate several 
different parameter sets which would reach the same model performance and the derived 
relationship therefore is likely to be weak or even ‘false’. Here, to avoid this problem a 
predefined functional form of the relationship between the model parameters and catchment 
characteristics is used and then the model is calibrated for all sub catchments simultaneously. 
The transfer function implemented in this work is based on the previous work carried out by 
Wallner et al. 2013 and Hundecha and Bárdossy 2004. It is in a linear form as: 
 

, , , , ,
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= =

= ⋅ + ⋅ + ⋅ +Ψ ∑ ∑                                                            (5.1) 

 
where ψp,b is the hydrological model parameter value for the specific parameter p and the 
specific basin b. the variables Sb,i and Lb,j represent different soil and land use characteristics 
for basin b. e is the random error in regression analysis.  
 
By establishing such a relationship, the model is calibrated by simultaneous estimations of the 
regression coefficients of the transfer function (α, β, γ, …) and of the model parameters p. 
Therefore, the regression coefficients of the transfer function keep unique for all the study 
basins whereas different basins have different parameter sets. Table 5.1 shows the selected 
calibrated 6 HBV model parameters and their corresponding linked catchment characteristics. 
The meaning for each symbol can be found in the first row of Table 5.2. 
 
Table 5.1 Predefined relationship between model parameters and their corresponding 
catchment descriptors for the linear transfer function (see also Table 5.2) 

Model parameter Combination of catchment descriptors 

tt Melv aspR 
 

fc FC PV 
 

β Bslop fc LUF 

hl Bslop FC LUF 

K0 Bslop Lst_fp Kf 

Perc Bslop Kf BFR 

 
 
In order to get the instantaneous peak flow, the multiple regression method derived in chapter 
3 is applied here to post correct the simulated MDFs into IPFs. The optimization technique 
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DDS is utilized to achieve an effective and optimum estimation of the regression coefficients 
and parameters. Since the model is operated for several basins simultaneously, there is a need 
to aggregate all the different objective function into one objective function. Then, the sum of 
the individual objective functions of all the sub catchments is considered in DDS program. 
The objective function for this regionalization method is as follows:  
 

0.25 0.25 0.25 0.25FFC SUM FFC WIN FDC MDFOF NSC NSC NSC NSC− −= ⋅ + ⋅ + ⋅ +                                  (5.2) 
 
where the index CDF stands for the cumulative distribution function of daily extremes for 
summer (SUM) and winter (WIN) respectively; FDC is flow duration curve and MDF is 
annual maximum daily flow series; As the main focus is the simulation of extremes the sum 
of weights for summer and winter is set to 50%. The remaining half is then portioned between 
annual maximum daily series and flow duration curve.  

5.2 Study area and data 

The investigations are carried out for 18 catchments within the Aller-Leine River basin in 
northern Germany (see Figure 4.6). The 18 study basins are located in different 
geomorphologic and climatologic areas. For each sub catchment there are 11 catchment 
descriptors applied in this research and one can find the details in Table 5.2 from column 2 to 
12. The second row of the table shows the reference symbol of each descriptor. The first six 
characteristics (Area – aspR) are derived from a Digital Elevation Model (DEM) with a 
resolution of 10 meters. The main orientation (aspR) ranges between 0 and 1, the bigger the 
value, the greater the portion of the basin orient to the north. The soil properties of effective 
field capacity (Fc), saturated hydraulic conductivity (Kf) and total pore volume (TPV) are 
estimated from the German digital soil data base BÜK1000 (see Hartwich et al. 1995). The 
portion of the forest land use type is derived from the land cover map CORINE2000 (see 
EUR 1994). Based on the observed runoff with an automatic base flow filter the recession 
constants are calculated in different hydrogeological units (HGUs) (Arnold et al. 1995). The 
mean recession constants for each basin are weighted according to the contributing area of the 
HGUs.  
 
Table 5.3 gives an overview of the time periods of these measurements. Observed discharge is 
available as daily flows and monthly peak flow series within the period from 1951 to 2008 
with lengths between 29 to 44 years for all the 18 catchments. The other climate data applied 
to force the hydrological model, such as temperature and evaporation are available for the 
same time periods.  
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Table 5.2 List of catchments and their basic descriptors 

name Area 
minimum 
elevation 

Mean 
elevation 

Longest 
flow path 

Basin 
slope 

Main 
aspect 

Raito 
of 

forest 

Field 
Capacity 

Conductivity 
total 
pore 

volume 

Mean 
recession 
constant 

 
Area Elv_ds Melv lst_fp Bslop aspR LUF FC Kf TPV BFR 

(-) (Km2) (m) (m) (km) (‰) (-) (%) (vol.%) (mm h-1) vol.% (d) 

BS 127 96.8 156.94 19.689 199.05 0.65 27.37 18.26 82.51 24.3 63 

BP 116 67.5 90.58 25.747 95.35 0.85 6.26 20.82 62.78 33.9 37 

Br 285 41.0 58.87 41.802 76.49 0.43 51.91 12.31 282.11 35.7 102 

Go 633 141.5 315.84 62.868 299.31 0.49 26.04 16.57 117.39 27.3 100 

Gr 125 129.4 208.43 23.915 269.32 0.56 43.22 15.92 92.6 29.5 56.4 

Ha 104 74.8 93.42 25.244 152.64 0.42 37.98 19.17 66.52 37.7 42.1 

Ku 61.8 130.2 219.9 13.524 237.97 0.38 27.73 14.26 109.96 37.8 37.5 

Lh 100 24.8 54.87 25.987 53.60 0.52 41.8 13.89 238.99 32.6 102 

Ma 45 196.2 275.58 12.035 312.56 0.56 31.49 12.25 125.98 19.9 34 

Mt 242 36.6 61.76 36.744 53.83 0.63 16.7 14.42 206.25 36.7 64.6 

NP 334 55.5 65.02 40.583 77.06 0.67 34.44 13.96 248.68 43.4 56 

Ol 149 128.6 284.6 25.339 328.04 0.63 66.43 17.41 130.93 30.5 56 

Pi 44.5 339.6 586.09 17.112 634.67 0.32 99.1 7.8 166.87 20.4 35 

Re 321 182.9 273.74 43.413 341.49 0.49 28.64 15.96 127.09 27.3 100 

RH 184 154.7 206.07 24.915 254.36 0.56 20.8 16.99 150.82 26.5 100 

VR 57.5 133.1 467.03 22.158 435.86 0.79 65.18 13.98 145.27 20.1 35 

De 309 90.9 258.02 49.067 208.87 0.56 38.08 17.33 84.44 29.5 56.4 

Me 136 81.9 395.54 27.856 199.88 0.75 35.28 17.39 84.28 36.3 38 
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Table  5.3 Time windows of hydrological data 
variable Daily 

runoff 29-44 yr 

monthly peak flow (-) 

precipitation 1951-2008 

temperature 1951-2008 

evaporation  1951-2008 

 
 

5.3 Results 
 
In this section the performance of the hydrological model with and without regionalization 
strategies for estimation of design IPF has been compared. Four different flow statistics are 
used to represent the goodness of fit of the calibrated daily flows to the observed flows, 
namely, winter/summer extremes distributions, flow duration curve, annual daily extremes. 
The results of calibration of the hydrological model without regionalization are obtained from 
Chapter 4. For the regionalized results, the hydrological model is applied by estimation of 
regression coefficients of the transfer function and model parameters simultaneously for all 18 
sub catchments.  
 
5.3.1 Comparison of model performances with and without regionalization  

 
Figure 5.1 shows comparisons between the fitted probability distributions of daily extremes in 
winter and summer for the sub-basins Br, De and Pi with and without regionalized model 
parameters. It is based on the observed and simulated daily flow data for over 30 years. The 
light grey (CDF_Reg) line corresponds to the simulated distributions, generated using the 
regionalized parameter sets while the dark grey line (CDF_d) is the simulated distributions 
without regionalization. The red solid line denotes the fitted GEV distribution on the observed 
annual daily extremes (black dots). The red dashed lines enclose the 90% confidence interval 
for the observations obtained by using a bootstrap method after Efron and Tibshirani (1986).  
 
It is apparent from Figure 5.1 that the distribution functions corresponding to the simulated 
extremes by CDF_d strategy seem to fit the functions derived from observations much better 
than by CDF_Reg strategy in both winter and summer seasons. This fact indicates that the 
hydrological model is better able to simulate the extreme flows when it is calibrated 
independently at each site, especially in summer season. However, for both regionalization 
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and without regionalization cases, some underestimations of the design peak flows at the 
higher return periods can be noticed. There could be doubts about ability of the hydrological 
model to simulate the peaks of similar magnitude corresponding to the same storm events that 
give rise to the observed peaks. Therefore, more care should be taken for the selection and use 
of specific efficiency criterions since they place different emphasis on different types of 
observed and simulated behaviors.  
 
The uncertainty bands of the observed annual extreme values differ significantly in summer 
and winter. The wider extent of the confidence interval in summer indicates greater 
uncertainty than in winter. The discrepancies between the probability distributions derived 
from the observed and two types of simulated flow peaks in both summer and winter season 
are smallest in De catchment. 
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Figure 5.1:  Observed and simulated fitted CDFs to daily extremes in winter and summer for 
the three sample catchments (Br/De/Pi) with and without regionalization; red dashed lines 
enclose the 90% confidence interval against observed peak flows 
 
In order to investigate hydrological model performance in terms of fitting both winter and 
summer extremes to the GEV distributions for all 18 catchments, the results based on 
regionalization are compared the ones without regionalization. For that a goodness of fit Chi-
square test is performed and Figure 5.2 gives a visual comparison of the results in the form of 
p-values. The left green violin is without regionalization and the right red one is with 
regionalization. A larger the p value shows a better model fit. As can be seen, the estimation 
of winter peaks for both cases is far more robust than those in summer. However, the use of 
regionalization shows fewer advantages in representation of the observed extremes 
distributions. 
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Figure 5.2:  Violin plots of the p value over all sub catchments for the fitted GEV distribution 
between observed and simulated daily extremes in winter and summer respectively; suffix ‘-d’ 
and ‘–Reg’ indicate with and without regionalization 
 
Figure 5.3 shows the comparison for simulated and observed flow duration curves (FDCs) in 
terms of 6 quantile values (0.05, 0.25, 0.5, 0.75, 0.95, 0.975 Quantile). The blue solid point 
indicates the observations; the red (FDC_d) and green (FDC_Reg) points are simulated results 
by calibrating the hydrological model without and with regionalized parameter sets 
respectively.  
 
It is noticeable that the general goodness of fit between simulated and the observed 6 
quantiles of FDC is satisfactory for both of the two approaches although there is a slightly 
overestimation generated by FDC_d method for Br catchment. The assessments for all the 18 
sub catchments shown in Table 5.4 confirm the above findings. For hydrological modeling 
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with regionalized parameters, the average NSCs is 0.88 with a trend of overestimation 
suggested by a positive bias value 34.8% while without regionalization, the average NSC 
value is 0.87 with a positive bias value of 20%. 
 
Table 5.4 Calibration results of flow duration curve (FDC) using the Nash-Sutcliffe criterion 
(NSC) and the bias with and without regionalization 
 
    Ku Go Re VR Br De RH Lh Pi Me Ha BS NP Gr BP Ol Ma Mt 

NSC[-] 
FDC_d 0.94 0.96 0.95 0.51 0.98 0.93 0.84 1 1 0.97 0.95 0.67 0.87 0.88 0.79 0.99 0.56 0.95 

FDC_Reg 0.95 0.96 0.94 0.44 0.91 0.92 0.74 0.8 0.93 0.98 0.91 0.89 0.96 0.91 0.93 0.98 0.74 0.95 

Bias[%] 
FDC_d 28.6 12.34 32.69 42.14 -8.51 38.36 56.67 -0.61 -15.47 22.36 27.77 53.46 32.35 37.76 31.91 -2.94 29.06 37.58 

FDC_Reg 23.25 15.12 33.11 32.29 14.53 35.93 15.72 11.16 -12.07 10.81 17.99 19.75 17.74 32.33 32.44 18.57 42.07 9.23 

 
 
 
Table 5.5 gives the results of multiple regression coefficients for all 18 sites where the 
simulated annual maximum daily flows obtained from the regionalization approach are 
regressed with the observed annual instantaneous peak flows. 
 
Table 5.5 Final results of multiple regression coefficients for all 18 sub catchments using 
regionalization 
 

Regression 
Coefficients 

α0 α1 α2 α3 

T=10 yr 1.748 1.792 -0.00010 0.016 

T=20 yr 1.677 1.966 -0.00016 0.019 

T=50 yr 0.844 2.184 -0.00028 0.028 

T=100 yr -1.123 2.324 -0.00040 0.041 
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Figure 5.3:  Comparison of observed and simulated daily flow duration curve (FDC) for the 
three sample catchments by calibrating the hydrological model without and with regionalized 
parameter sets respectively 
 
Table 5.6 illustrates the post correction results for the above two approaches using the 
multiple regression model for a return period of 50 and 100 years among the whole study area 
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in winter and summer. As mentioned before, CDF_d and CDF_Reg indicate the flow statistic 
calibration strategy combined with and without regionalization respectively. R2 is the 
coefficient of determination and RMSE is the root mean square error. The high values of R2 

indicate a good overall agreement between observed and simulated peaks for both cases. 
However, the comparison of RMSE shows CDF_d gives a significantly better representation 
of the observed peak flows at T=50yr and T=100yr than CDF_Reg and this is especially true 
in winter season.  
 
Table 5.6  Comparison between the observed and simulated instantaneous peak flow using the 
CDF strategy combined with and without regionalization in winter and summer at recurrence 
intervals of 50 and 100 years 

  Winter Summer 

R2 [-] CDF_d CDF_Reg CDF_d CDF_Reg 

T=50 yr 0.967 0.967 0.952 0.954 

T=100 yr 0.95 0.95 0.961 0.966 

RMSE [%] CDF_d CDF_Reg CDF_d CDF_Reg 

T=50 yr 18.801 27.319 21.906 30.921 

T=100 yr 20.178 32.528 23.677 32.991 

 
 

To further understand the difference of performance between regionalization and without 
regionalization, the distribution of RMSE for the 100yr flood from observed instantaneous 
peak flow series (IPFs) and the corresponding simulated ones for the whole area is shown in 
Figure 5.4 and Figure 5.5 respectively. It can be seen from Figure 5.4 the RMSE generated 
with regionalization in summer is from 1% to 80% whereas the corresponding range in Figure 
5.5 is only between 0.2% and 42%. This trend also continues in winter season with smaller 
errors using regionalized parameters sets. For both cases, the overall distribution of error 
among the whole study area is similar. Major discrepancies are observed for Mt where the 
largest error for CDF_Reg case is following in summer and winter seasons. An opposite 
behavior is noticed in BP sub catchment with RMSE generated from CDF_Reg 1.4% in 
summer and 27.8% in winter while the corresponding results from CDF_d are 41.8% in 
summer and 2.1% in winter. The loss in model performance using CDF_Reg method suggests 
that the ability of the hydrological model to match high flows could be decreased by the 
regionalized parameters. Meanwhile, the model and parameter uncertainty could also be 
accredited to these unsatisfactory results.  
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Figure 5.4: RMSE for estimating the 100yr flood in all 18 catchments using regionalized 
HBV model parameters 

 
Figure 5.5: RMSE for estimating the 100yr flood in all 18 catchments using individually 
calibrated HBV model parameters 
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5.3.2 Final comparison between CDF calibration with regionalization and 
without regionalization 

 
Finally, to sum up the contrast between CDF simulation with and without regionalization over 
the whole study area for four different return periods (T=10, 20, 50, 100yr) in summer and 
winter, the RMSE and bias criteria, are used. Figure 5.6 illustrates the results using daily 
observed climate data with post correction and without post correction to estimate the design 
IPFs by calibration on flood distributions. 
 
The first column (MDF-IPF) represents the differences between the estimated quantiles from 
observed instantaneous peak flows (IPFs) and the corresponding observed maximum daily 
flows (MDFs) without any correction. The estimation from daily calibration with 
regionalization also without post correction is shown in the second column (MDF(Reg)-IPF). 
The comparison between the first column and the second column shows that the simulated 
maximum daily flows generated by the hydrological model with regionalized parameters are 
not acceptable for the purpose of estimation of IPFs. The third (CDF_Reg) and fourth 
(CDF_d) columns show the estimation error from daily calibration post-correction and with 
and without regionalization respectively. 
 
As can be seen from the Figure 5.6 that immediate replacement of IPFs with observed or 
simulated MDFs can lead to significant underestimation in both seasons for four return 
periods and this tends to be even worse with using the simulated MDFs (average RMSE=46% 
in summer and 36% in winter). Additionally, the regionalization combined with post 
correction strategy (CDF_Reg) shows advantage of estimation of IPFs. The average RMSE 
for these four different return periods is reduced to 26.5% in winter and 31.5% in summer 
although there is a slight underestimation in both seasons (4.7% and 5.3%). The comparison 
of CDF_Reg approach with CDF_d approach reveals about 9% of the remaining accuracy is 
induced by calibrating the hydrological model without regionalization. 
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Figure 5.6: Comparison of root mean square error (RMSE) and Bias for estimating flood 
quantiles by with and without using regionalized parameter sets for the whole study area in 
both winter and summer season 
 

5.4 Conclusions and discussions 
 
In this chapter, the model performance regarding estimation of IPFs for 18 sites in Aller-
Leine catchment is investigated with and without using regionalized parameter sets. The 
hydrological model is calibrated not only on flow statistics with the daily observed 
precipitation as input. The main findings can be summarized as follows: 
 
It is found that the post correction step based on the multiple regression model is necessary 
and important to yield reasonable IPF results from simulated MDFs. 
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Based on the established function between model parameters and readily available 
information about catchment characteristics, regionalization of the HBV model parameters 
combined with post correction technique has been proved to be capable of estimating the IPFs 
from simulated MDFs in ungauged areas. However, the comparison of the results with and 
without regionalization indicates that the relative simplicity of parameter estimation may lead 
to worse model performance by calibrating the model simultaneously with regionalized 
parameter sets. It would be therefore recommended to classify the sub catchments according 
to their specific catchment characteristics in the future work.  
 
In conclusion, this study provides important information to support the design peak flow 
estimation in ungauged areas which is essential for hydraulic infrastructures, flood 
management and planning for future development. 
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Chapter 6 

Summary, conclusions and recommendations 
 
The work reported in this thesis is carried out to determine suitable and feasible methods of 
estimating the instantaneous peak flow from the maximum daily flow in Aller-Leine 
catchment, Germany. Data include the daily flow time series and monthly peak flow from 50 
flow gauges with the average recording length more than 30 years. In addition, daily 
precipitation data of 18 gauges have been disaggregated into hourly time step precipitation. 
 
Chapter 3 deals with estimation of IPF from MDF conditioned on at-site observations using 
three different statistical methods, namely, simple regression method, multiple regression 
method and piecewise simple scaling method. The results have shown they can efficiently 
reduce the estimation error compared to using immediate replacement of quantiles of 
maximum daily flows (MDFs) with the corresponding quantiles of instantaneous peak flows 
(IPFs). The simple regression method provides an adjusted coefficient to correct the 
underestimation of the design daily flow. The expression is based on the linear relationship 
between IPF and MDF regarding their quantile and PWM values. The goodness fit test has 
proven the GEV distribution as being the best fit compared with all the other candidate 
distributions. The regression coefficients are then considered as the adjusted coefficients and 
this method is computationally very favorable. The final analysis of all three methods gives us 
a more comprehensive understanding of the difference between IPF and MDF.  
 
For the stepwise multiple regression method, special attention is given to the extraction of the 
proper predictors. A number of catchment characteristics are selected and considered as the 
initial explanatory variables. The longest flow path and minimum elevation in this case have 
been selected as the final predictors in the regression equation by using the partial correlation 
method and stepwise regression. According to the previous multiple regression analysis, the 
longest flow path is highly correlated with peak flow and also highly interrelated with basin 
area which is most significantly related with flow. It is not surprising that the longest flow 
path is found to be the explanatory variable. However, unlike previous study results (eg. 
Taguas et al. 2008 and Fuller 1914) the minimum elevation is also taken into account here 
due to the above statistical analysis. In comparison with the classical Fuller’s equation, the 
proposed multiple regression model noticeably improves the accuracy of the estimation 
results. Despite a small overestimation, the stepwise multiple regression method performs the 
best among the three models and for longer return periods its comparative performance 
becomes even more remarkable.  
 



108 

The last method, a piecewise simple scaling model, provides promising insights into the 
temporal issues between peak flow and its corresponding maximum daily flow. The 
hypothesis of piecewise simple scaling combined GEV distribution, is used to explore the link 
between PWMs of IPF and MDF, given the short-term 15_minute continuous flow data for 
three discharge gauges. Overall, the validation results reveal the three piecewise simple 
scaling models are capable of deriving peak flow when only maximum daily flow is available. 
Compared with the regression models, the scaling model is more efficient because the 
parameters of the scaling model are determined exclusively by the station with sufficient 
continuous highly resolution flow data. Therefore, this method could be used if only data 
available for a single station. However, the reason for the performance variance between 
different flow stations is at this stage not clear and a thorough investigation is required before 
it can be used in other basins. This indicates that the estimation of design IPF cannot be 
formulated to a single strict function based procedure. For a specific study case, the choices 
must be made according to the data availability and the particular circumstances of the 
problem. 
 
Chapter 4 shows the comparison results to derive design IPFs using the HBV hydrological 
model which is operated on both daily and hourly time steps for 18 sub catchments in Aller-
Leine catchment. There are two calibration strategies are involved: calibration on flow 
statistics and hydrographs. The model parameters sets obtained from both calibration 
strategies illustrated on the three sample basins are found to be acceptable within the current 
hydrological modeling limits. This is in consist with the findings in (Haberlandt and Radtke 
2014 and Cameron et al. 1999).  Overall the results also reveal the multiple regression model 
developed from Chapter 3 is capable to estimate the IPFs with the modeled MDFs regarding 
flood frequency analysis. The general model performances using flow statistics calibration 
strategy (CDF) are better than using the traditional hydrograph calibration strategy (hydr) 
according to the obtained RMSE and bias results. The best overall performance for design IPF 
estimation is CDF_h using disaggregated rainfall data and calibration on the observed 
probability distribution of peak flows. Discussion is provided on the issues of the applicability 
and limitations when those methods are applied in other areas. CDF_h requires long observed 
peak flow data fitted to the probability distributions which may limit its application in 
catchments with poor data records. The daily simulation CDF_d with post-correction using 
the same calibration method is the second best approach and it has fewer limitations regarding 
the length of the observation period of peak flows since the data on a daily basis are more 
available in most cases. For the traditional hydrograph calibration, the daily simulation with 
post-correction (hydr_d) provides better estimation results of IPFs than the corresponding 
hourly simulation (hydr_h). In some cases calibration on hydrographs is more preferable for 
estimation of design IPFs when there are not long enough peak flow data available to carry 
out CDF calibration. 
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Chapter 5 investigates estimation of IPFs in ungauged areas by regionalization of the HBV 
model parameters. The hydrological model in this chapter is calibrated only on flow statistics 
with the daily observed precipitation as input. The analysis is also carried out for the same 
study area as in Chapter 4. Since the calibration is carried out simultaneously for all sub 
catchments with different hydrological properties, the restriction of parameter estimation may 
lead to unacceptable model performance in some basins. It would be beneficial to classify the 
sub catchments according to their different catchment characteristics. In addition, the results 
reveal that the post correction on the simulated MDFs is an important step to yield more 
reasonable IPFs.  
 
Although all those results are obtained for a specific study region, it is assumed, that they hold 
in general also for other regions with similar characteristics. It would be beneficial to have 
more case studies also involving other hydrological models.  
 
The following steps are recommended for further development of estimation of IPFs in 
ungauged areas: 
 

• Grouping of all the sub catchments according to their  catchment characteristics by 
cluster analysis 

• Regionalize the model parameters in each group and validate the regionalized 
parameter sets using Leave One Out Cross Validation (LOOCV) 

• Comparing the performance of regionalization method with and without clustering 
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