
MitteilungenHeft 114INSTITUT FÜR HYDROLOGIE UND WASSERWIRTSCHAFT

P. KASARGODU ANEBAGILU

Bio-inspired Optimization in Integrated River Basin Management
ISSN 0343-8090



 

1 

 

Bio-inspired Optimization in Integrated River Basin 

Management 

 

Von der Fakultät für Bauingenieurwesen und Geodäsie der  

Gottfried Wilhelm Leibniz Universität Hannover 

 

zur Erlangung des akademischen Grades  

Doktor-Ingenieurin  

- Dr.-Ing. - 

 

 genehmigte Dissertation von 

 

Prajna Kasargodu Anebagilu, M.Sc. 

geboren in Kasargodu (Indien)  

 

 

2023 

  

 



 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: PD Dr.-Ing. Jörg Dietrich  

Korreferent: Prof. Dr.-Ing. Kai Schröter, Technische Universität Braunschweig  

Tag der Promotion: 25.01.2023  



 

i 

 

Declaration 

 

I, Prajna Kasargodu Anebagilu, hereby declare that:  

1. I know the regulations for the doctoral candidates at the Leibniz University of Hannover, and I 

have met all the requirements. I agree with an examination under the provisions of the doctoral 

regulations.  

2. I have completed the thesis independently, and where I have consulted other works, to the best 

of my knowledge, this is always clearly attributed.  

3. I have not paid any third party to contribute to the content of my dissertation. The scientific 

work has not been acquired or conveyed, either in part or in full, by a third party for payment 

or any other consideration.  

4. This works contains no material which has been accepted for the award of any other degree or 

diploma at any other university or tertiary institution.  

5. The same or partly similar work has not been submitted at any other university or academic 

institution.  

6. I agree that my thesis can be used for verifying the compliance with scientific standards, in 

particular using electronic data processing programs. 

 

 

Hannover, 13.09.2022  

 

 

 

 

 

 

  



 

ii 

 

  



 

iii 

 

Abstract 

Water resources worldwide are facing severe challenges in terms of quality and quantity. 

It is essential to conserve, manage, and optimize water resources and their quality through 

integrated water resources management (IWRM). IWRM is an interdisciplinary field that works 

on multiple levels to maximize the socio-economic and ecological benefits of water resources. 

Since this is directly influenced by the river’s ecological health, the point of interest should start 

at the basin-level. The main objective of this study is to evaluate the application of bio-inspired 

optimization techniques in integrated river basin management (IRBM). This study demonstrates 

the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM.  

In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) 

and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within 

a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the 

basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions 

for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE 

model to distribute a set of measures and compute the resulting TN reduction. The algorithms 

spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both 

algorithms can successfully yield a discrete combination of measures to reduce long-term annual 

mean TN concentration. They achieved an 18.65% reduction, and their performance was on par 

with each other. This study has established the applicability of these bio-inspired optimization 

algorithms in successfully distributing the TN mitigation measures within the river basin. 

Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and 

policymakers are aware of the ground reality through large amounts of information collected from 

the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the 

decisions and eases their implementation. Therefore, a socio-hydrological framework is developed 

and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under 

which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent 

soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned 

Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from 

the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results 

showed that the ABM corroborates with the survey results and the farmers are willing to extend 
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the width of VFS as long as their utility stays positive. This framework can be used to develop 

tailor-made policies for river basins based on the conditions of the river basins and the 

stakeholders' requirements to motivate them to adopt sustainable practices. 

It is vital to assess whether the proposed management plans achieve the expected results 

for the river basin and if the stakeholders will accept and implement them. The assessment via 

simulation tools ensures effective implementation and realization of the target stipulated by the 

decision-makers. In this regard, this dissertation introduces the application of bio-inspired 

optimization techniques in the field of IRBM. The successful discrete combinatorial optimization 

in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-

hydrological framework using ABM prove the forte and diverse applicability of bio-inspired 

optimization algorithms.  

Keywords: river basin management, bio-inspired algorithms, parameter optimization, spatial 

distribution, socio-hydrology  
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Zusammenfassung 

Die Wasserressourcen stehen weltweit vor großen Herausforderungen in Bezug auf 

Qualität und Quantität. Die Erhaltung, Bewirtschaftung und Optimierung der Wasserressourcen 

und ihrer Qualität durch integriertes Wasserressourcenmanagement (IWRM) ist von 

entscheidender Bedeutung. IWRM ist ein interdisziplinärer Wissenschaftsbereich, der mehrere 

Ebenen einbezieht, um den sozioökonomischen und ökologischen Nutzen der Wasserressourcen zu 

maximieren. Da dies direkt von der ökologischen Gesundheit des Flusses abhängt, sollte das 

Interesse auf der Ebene des Einzugsgebiets beginnen. Diese Studie demonstriert die Anwendung 

vielseitiger, flexibler und dennoch einfacher metaheuristischer bioinspirierter Algorithmen im 

IRBM. Das Hauptziel dieser Studie ist es, die Anwendung von bioinspirierten 

Optimierungstechniken im integrierten Flussgebietsmanagement (IRBM) auszuwerten.  

In einem neuartigen Ansatz werden die bioinspirierten Optimierungsalgorithmen Ant 

Colony Optimization (ACO) und Particle Swarm Optimization (PSO) eingesetzt, um Maßnahmen 

in einem Einzugsgebiet räumlich zu verteilen und so die langfristige mittlere jährliche 

Gesamtstickstoff (TN)-Konzentration am Ausgang des Einzugsgebiets zu verringern. Das 

Einzugsgebiet der Oberen Fuhse, das mit dem hydrologischen Modell Hydrological Predictions 

for the Environment (HYPE) entwickelt wurde, wird als Fallstudie verwendet. ACO und PSO 

werden mit dem HYPE-Modell gekoppelt, um die ausgewählten Maßnahmen zu verteilen und die 

daraus resultierende TN-Reduktion zu berechnen. Die Algorithmen verteilen neun 

Minderungsmaßnahmen auf Ebene der Kulturen und Teileinzugsgebiete unter vier Kategorien 

räumlich. Beide Algorithmen können erfolgreich eine diskrete Kombination von Maßnahmen zur 

Verringerung der langfristigen mittleren jährlichen TN-Konzentration liefern. Sie erreichten eine 

Reduktion von 18,65 % und ihre Leistung war gleichwertig. Diese Studie hat die Anwendbarkeit 

dieser bioinspirierten Optimierungsalgorithmen bei der erfolgreichen Verteilung der 

Minderungsmaßnahmen innerhalb des Flusseinzugsgebiets nachgewiesen. 

Die Einbeziehung von Interessengruppen ist ein entscheidender Aspekt des IRBM. Sie stellt 

sicher, dass Forscher und politische Entscheidungsträger die Realität vor Ort kennen, indem sie 

eine große Menge an Informationen von den Interessenvertretern einholen. Die Einbeziehung von 

Interessengruppen in die politische Planung und Entscheidungsfindung legitimiert die 

Entscheidungen und erleichtert ihre Umsetzung. Daher wurde ein soziohydrologischer 
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Framework entwickelt und im Einzugsgebiet des Larqui, Chile, getestet, um die Bedingungen zu 

untersuchen, unter denen die Landwirte Gewässerrandstreifen (vegetative Filterstreifen, VFS) zur 

Verhinderung der Bodenerosion anlegen oder ausweiten würden. Der Rahmen besteht aus einem 

sozialen Verhaltensmodell (erweiterte Theory of Planned Behavior, TPB) und einem 

agentenbasierten Modell (entwickelt in NetLogo), das mit den Ergebnissen des vegetativen 

Filtermodells (Vegetative Filter Strip Modeling System, VFSMOD-W) gekoppelt ist. Die 

Ergebnisse zeigten, dass das ABM mit den Umfrageergebnissen übereinstimmt und die Landwirte 

bereit sind, die Breite des VFS zu vergrößern, solange ihr Gewinn positiv bleibt. Dieser Rahmen 

kann genutzt werden, um maßgeschneiderte Strategien für Flusseinzugsgebiete zu entwickeln, die 

auf den Bedingungen der Flusseinzugsgebiete und den Anforderungen der Interessengruppen 

basieren, um sie zu motivieren, nachhaltige Praktiken anzuwenden. 

Es ist von entscheidender Bedeutung zu beurteilen, ob die vorgeschlagenen Bewirtschaf-

tungspläne die erwarteten Ergebnisse für das Flusseinzugsgebiet erzielen und ob die Beteiligten 

sie akzeptieren und umsetzen werden. Die Bewertung mit Hilfe von Simulationswerkzeugen 

gewährleistet eine effektive Umsetzung und Verwirklichung der von den Entscheidungsträgern 

festgelegten Ziele. In diesem Zusammenhang wird in dieser Dissertation die Anwendung von bio-

inspirierten Optimierungstechniken im Bereich des IRBM vorgestellt. Die erfolgreiche diskrete 

kombinatorische Optimierung in Bezug auf die räumliche Verteilung von Minderungsmaßnahmen 

durch ACO und PSO und der neuartige sozio-hydrologische Rahmen unter Verwendung von ABM 

beweisen die Stärke und vielfältige Anwendbarkeit von bioinspirierten Optimierungsalgorithmen.  

Stichworte: Flussgebietsmanagement, bioinspirierte Algorithmen, Parameteroptimierung, 

räumliche Verteilung, Sozio-Hydrologie 

  



 

vii 

 

Acknowledgments 

I would like to thank all the people whose assistance was a milestone in the successful completion 

of this thesis. 

Firstly, I would like to express my sincere gratitude to my supervisor, PD Dr. Jörg Dietrich, for 

giving me the opportunity to work on this topic. I am grateful for his support, insights, 

encouragement, review of my progress, and guidance through my Ph.D. studies. I would also like 

to thank him for providing me an opportunity to teach and supervise students of the WATENV 

and WUK programs. It has been a great learning experience for me. 

I must thank the contributions of my co-authors Lisette Prado-Stuardo, Dr. Etti Winter, Prof. 

Arumi, and Robert Ojwang. In addition, I am grateful for the master thesis of Bruno Morales, Lina 

Saenz and Xinyu Li, in a direction that provided some preliminary results. I am also thankful for 

the guidance and support provided by Dr. Elahe Fallah-Mehdipour. I am also grateful to all my 

current and former colleagues Ana, Anne, Bastian, Bora, Christian, Golbarg, Hannes, Kristian, 

Luisa, Larrisa, Maria, Ms. Lovewell, Mandy, Ms. Poslednik, Quynh, Ronja, Ross, Tam, Stefan 

and last but not least Prof. Haberlandt for their kindness and for being a great bunch of people in 

and out of the Institute. I am indebted to Bhumika for the valuable scientific discussions about 

anything I was unsure about during my studies and for proofreading. A special thanks to Steffi for 

proofreading my thesis and providing advice that will benefit me throughout my life. I would like 

to express my appreciation to Ajay, Ashwini, Aparna, Ayan, Deepchandra, Gesine, Mayur, Malte, 

Prashant, Prachi, Rahul, Thirumal, and Vishwavijay for their company and for making the past 

years much more enjoyable.  

I deeply appreciate Gerard’s patience, love, support, and rational yet uplifting words keeping me 

well-balanced and calm throughout my Ph.D. studies. I am ever so grateful for the warm hugs, 

delectable food, and endearing words of encouragement from Beatrice and Matthias Janetscheck. 

Finally, most importantly, I wish to acknowledge the support and great love of my mother, father, 

sister and brother. They are my pillars of strength and have kept me going. This work would not 

have been possible without their patience, encouragement, and nurturing. A special thanks to my 

lovely sister for proofreading my thesis and my brother for all his timely, crucial help.  

Thank you all!  



 

viii 

 

  



 

ix 

 

Contents 

1. Motivation and Objectives ................................................................................ 1 

1.1 Background ...................................................................................................................... 1 

1.2 Motivation and Objectives .................................................................................................... 6 

1.3 Thesis Structure and Overview ............................................................................................. 7 

2. State of Art ......................................................................................................... 8 

2.1 Optimization .......................................................................................................................... 8 

2.2 Metaheuristics Optimization ................................................................................................. 9 

2.3 Bio-inspired Optimization ................................................................................................... 12 

2.3.1 Swarm Intelligence (SI) based algorithms .................................................................... 12 

2.3.2 Non-SI-based algorithms .............................................................................................. 22 

2.4 Agent-based model (ABM) ................................................................................................. 25 

3. Spatial distribution of mitigation measures to reduce total nitrogen 

concentration using Ant Colony Optimization and Particle Swarm 

Optimization ...........................................................................................................27 

3.1 Introduction ......................................................................................................................... 28 

3.2 Materials and Methods ........................................................................................................ 32 

3.2.1 Study Area .................................................................................................................... 32 

3.2.2 Ant Colony Optimization (ACO) ................................................................................. 35 

3.2.3 Particle Swarm Optimization (PSO)............................................................................. 39 

3.3 Results and Discussion ........................................................................................................ 42 

3.3.1 Parameter selection ....................................................................................................... 42 

3.3.2 Spatial distribution of mitigation measures .................................................................. 42 

3.4 Conclusions ......................................................................................................................... 50 

4. Application of the theory of planned behavior with agent-based modeling 

for sustainable management of vegetative filter strips .......................................52 

4.1. Introduction ........................................................................................................................ 53 

4.2. Materials and methods ....................................................................................................... 56 



 

x 

 

4.2.1. Study area .................................................................................................................... 56 

4.2.2. Modeling framework ................................................................................................... 57 

4.3. Results and Discussion ....................................................................................................... 66 

4.3.1 Statistical analysis of the field survey and the theoretical model ................................. 66 

4.3.2 VFSMOD-W Modeling ................................................................................................ 70 

4.3.3 ABM Modeling............................................................................................................. 71 

4.4 Conclusions ......................................................................................................................... 74 

5. Conclusions and Outlook ................................................................................77 

6. Bibliography .....................................................................................................82 

Appendix A ...........................................................................................................132 

Appendix B ...........................................................................................................136 

Appendix C ...........................................................................................................138 

 

 

  

 

 

  



 

xi 

 

List of Tables 

Table 3.1 Mitigation measures to reduce TN and their level of implementation in HYPE ........ 345 

Table 3.2 Parameter selection for ACO and PSO ......................................................................... 42 

Table 3.3 Measures selected by ACO and PSO ............................................................................ 43 

Table 4.1 Parameters of the utility function.................................................................................. 63 

Table 4.2 Decision-making rules for different types of agents ..................................................... 64 

Table 4.3 VIF, outer loading, t and p-value of constructs ............................................................ 68 

Table 4.4 Agent decision depending on the behavioral categorization ........................................ 73 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

List of Figures 

Figure 2.1 Classification of optimization techniques ..................................................................... 9 

Figure 2.2 Disciplines inspiring metaheuristic algorithms ........................................................... 10 

Figure 2.3 Chronology of various bio-inspired optimization techniques developed .................... 15 

Figure 3.1 Upper Fuhse river basin, Germany .............................................................................. 32 

Figure 3.2 Flowchart of Ant Colony Optimization for spatial distribution of measures .............. 38 

Figure 3.3 Flowchart of Particle Swarm Optimization for spatial distribution of measures ........ 41 

Figure 3.4 Selection of crop-level measures by ACO .................................................................. 44 

Figure 3.5 Selection of crop-level measures by PSO ................................................................... 45 

Figure 3.6 Annual mean TN achieved by ACO and PSO ............................................................. 46 

Figure 3.7 Long-term annual mean percentage reduction of TN by ACO ................................... 47 

Figure 3.8 Long-term annual mean percentage reduction of TN by PSO .................................... 48 

Figure 3.9 Performance indicator map.......................................................................................... 49 

Figure 4.1 Schematic representation of the workflow .................................................................. 58 

Figure 4.2 Extended Theory of Planned Behavior model ............................................................. 60 

Figure 4.3 Formative-formative type model of the extended TPB ............................................... 67 

Figure 4.4 Simplified higher-order formative-formative type PLS-SEM model of extended TPB 

results ............................................................................................................................................ 69 

Figure 4.5 Performance efficiency of different widths of VFS in soil retention for all classes 

combined together ......................................................................................................................... 71 

Figure 4.6 Decision of the agents on the width of VFS at the end of every three years ............... 72 

 

 

 

 

 

 

 

file:///C:/Users/prajn/Desktop/FINAL/final_thesis_PKA.docx%23_Toc113889220
file:///C:/Users/prajn/Desktop/FINAL/final_thesis_PKA.docx%23_Toc113889222
file:///C:/Users/prajn/Desktop/FINAL/final_thesis_PKA.docx%23_Toc113889223


 

xiii 

 

Abbreviations 

 

ABC – Artificial Bee Colony 

ABM – Agent-Based Modelling  

ACO – Ant Colony Optimization 

ANN – Artificial Neural Network 

BCO – Bacterial Foraging Optimization 

BfG – German Federal Institute of Hydrology 

BMP – Best Management Plans 

CS – Cuckoo Search 

DE – Differential Evolution 

DEMC – Differential Evolution Markov Chain 

DP – Dynamic Programming 

EA – Evolutionary Algorithms 

EP – Evolutionary Programming 

ES – Evolutionary Strategies 

EU – European Union 

FA – Firefly Algorithm 

FD – Flood Directive 

GA – Genetic Algorithm 

GP – Genetic Programming 



 

xiv 

 

 

 

GWO – Grey Wolf Optimizer 

HYPE – Hydrological Predictions for the Environment  

IRBM – Integrated River Basin Management  

IWRM – Integrated Water Resources Management  

LP – Linear Programming 

NLP – Non-Linear Programming 

PSO – Particle Swarm Optimization 

RBD – River Basin Districts 

RBMP – River Basin Management Plan 

SEM – Structural Equation Modeling  

SI – Swarm-Intelligence 

STP – Sewage Treatment Plant 

TN – Total Nitrogen 

TPB – Theory of Planned Behavior  

VFS – Vegetative Filter Strips 

WFD – Water Framework Directive 

 

 

  



 

1 

 

1. Motivation and Objectives 

1.1 Background 

Water is a vital resource encompassing hydrological, ecological, social and economic 

dimensions. Effective management of such a vital resource directly and significantly benefits 

ecology, communities, and regions. Humans rely on water for survival, yet water resources 

worldwide face threats from overuse, contamination, disruption of flows and a changing climate. 

Though natural resources management has been in practice, albeit in different forms, since the 

earliest periods of human settlement, the focus on river basin management (RBM) came about 

only in the last century (Hooper, 2005). This is due to the acceptance of the significance of water 

as an essential resource for human existence and ecosystem functioning (MacKenzie, 1996). In the 

early twentieth century, RBM focused on the ethics of resource exploitation to achieve economic 

development.  

In contrast, later in the century, it shifted to resource conservation and sustainable resource 

management. The shift happened for two critical reasons, as outlined by Hooper (2005). First, the 

conventional approach was a reactive, fragmented approach without understanding the inter-

relationships between resource management and issues with ecological functions. Second, the 

inter-dependencies of biological, economic, and human systems were ignored and addressed 

separately, leading to competing management goals. The concept Integrated Water Resource 

Management (IWRM) was officially articulated in the 1992 Dublin Conference on Water and 

Environment and the 1992 United Nations Rio Summit on Environment and Development 

(Mukhtarov, 2008). One of the primeval attempts of IWRM implementation, even before the term 

was introduced, was in 1933 by the Tennessee Valley Authority (TVA). To control floods and 

produce power, TAV constructed dams. And in its evaluation, TAV included the assessment of 

erosion control, recreation, public health and welfare. 

Global Water Partnership defines IWRM as a process that “promotes the coordinated 

development and management of water, land and related resources in order to maximize economic 

and social welfare in an equitable manner without compromising the sustainability of vital 

ecosystems and the environment” (GWP, 2000). The primary components of IWRM include 
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managing water resources at the lowest level, optimizing supply and managing demand, providing 

equitable access to water resources through participatory and transparent governance, developing 

improved and integrated policy, establishing regulatory and institutional frameworks, and ensuring 

an inter-sectoral approach to decision-making. In most parts of the world, the river is a crucial 

water resource as it is a hydrological conduit that receives excess water from precipitation through 

runoff, infiltration and groundwater movement. The ecological health of the land systems and 

urban settlements is directly dependent on the river’s ecological health (Hooper, 2005). Therefore, 

it is apt to consider a river basin as a natural unit for decision-making.  

IWRM is best implemented at the river basin level using an Integrated River Basin 

Management (IRBM) approach. IRBM emphasizes interdisciplinary coordination, planning and 

management of water resources, sustainable development and strategies for water, land and other 

related resources in a river basin to achieve long-term sustainability (Downs et al., 1991; Savenije 

and Van der Zaag, 2008; Bandaragoda and Babel 2010). IRBM is, therefore, a subset of IWRM 

(Elfithri and Mokhtar, 2018). IRBM aims to develop and implement a holistic framework of 

assessment, planning, decision-making, coordination, and policy development with active 

stakeholder involvement (Mostert et al., 2007). By using the expertise of the scientific community, 

the good governance of the decision-making body, and valuable inputs from the stakeholders, a 

balanced approach to water resource management is achieved. IRBM identifies the community’s 

best river management practices with respect to land use management, agriculture, economics, 

urban planning, etc. In addition, it prioritizes the river's health, which is beneficial to the 

ecosystems, communities, economies, and biological processes within it. A crucial output of a 

system of IRBM is the development of plans in which water quantity, quality, and environmental 

integrity are integrated at the highest level (Jaspers, 2003).  

Effective implementation of IRBM can alleviate the communities from poverty, help 

prepare the communities against the disasters caused by extreme events, provide perennial water 

sources, and achieve sustainable development with healthy ecosystems. Though the concept of 

IRBM is clear and widely accepted, its practical application is challenging. To ensure sustainable 

river basin development, it is pertinent to address the interests of various actors within the basin 

and plan for demands at different scales. This is often not considered in IRBM. One should also 

take into consideration the topographical and resource limitations. These issues can be addressed 
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from a systems viewpoint by prioritizing the relationship between the system components rather 

than addressing them separately (Ravesteijn et al., 2009).  

Another impediment faced during the practical application of IRBM is the implementation 

of management plans. In many cases, it is attributed to institutional factors (Watson, 2004). This 

can be overcome by opting for collaborative approaches to solve problems by involving all 

stakeholders during the decision-making process. For effective IRBM, institutions must be flexible 

and adaptable in order to respond tactfully to changes in knowledge, circumstances and needs of 

the stakeholders. The success of IRBM depends on the institutional alliance and the ability of 

participants to reach a consensus through effective negotiation. 

IRBM has been made prominent in the European Union (EU) by two directives — the 

Floods Directive (FD, 2007/60/EC) in 2007 and the Water Framework Directive (WFD, 

2000/60/EC) in 2000 (Evers, 2016). WFD is by far the most comprehensive environmental 

legislation that consolidates the previous water legislation and extends to include the concepts of 

river basin management to entire European Union. According to WFD, the Member States must 

identify and assign water bodies to River Basin Districts (RBD) based on hydrological basins (with 

coastal and ground waters assigned to the most appropriate District). Furthermore, a competent 

authority is assigned to each RBD to coordinate the implementation of the Directive within the 

RBD. The competent authority is responsible for identifying critical water management issues and 

for the development of the River Basin Management Plan (RBMP) for that basin (Griffiths, 2002). 

The RBMP provides a detailed account of how the objectives of WFD (ecological status, 

quantitative status, chemical status, and protected area objectives) will be achieved for the river 

basin within the given period. The EU Member States must achieve ‘good status’ in all surface 

water and groundwater bodies by 2015 and 2027, respectively, at the latest. The plan includes an 

analysis of river basin characteristics, anthropogenic impacts on the status of waters in the basin, 

evaluation of the influence of the existing legislation and identification of the ‘gap’ to meet the 

set-out objectives, strategies to fill the gap, and evaluation of the cost-effectiveness of the 

measures.  

Such analysis is performed using modelling systems to quantify the nutrient loads and 

interactions in the river basin. Over the years, many models have been developed, coupling the 

concepts of hydrology and crop growth to understand nitrogen dynamics in basins. Some of these 
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models include but are not limited to Chemicals, Runoff, and Erosion from Agricultural 

Management Systems (CREAMS, Kinsel, 1980), Generalized Watershed Loading Function 

(GWLF, Haith and Shoemaker, 1987), SOIL Nitrogen model (SOILN, Johnsson et al., 1987), 

DeNitrification DeComposition (DNDC, Li et al., 1992), Leaching Estimation and CHemistry 

model N version (LEACHN, Hutson and Wagenet 1992); Water and Agrochemicals in the soil 

and Vadose Environment (WAVE, Vanclooster et al., 1995), Soil and Water Assessment Tool 

(SWAT, Arnold et al., 1998), Soil and Water Integrated Model (SWIM, Krysanova et al., 1998), 

Watershed Analysis Risk Management Framework (WARMF, Herr and Chen, 2012), 

Hydrological Simulation Program – Fortran (HSPF, Duda et al., 2012), MIKE Système 

Hydrologique Européen (MIKE-SHE, Jaber and Shukla, 2012) and Hydrological Predictions for 

the Environment model (HYPE, Lindström et al., 2010). A detailed review of different models 

used is given by Bouraoui and Grizzetti (2013). These models require a large amount of observed 

data sets and must be calibrated. An alternative to the physical-based models is the use of artificial 

neural networks (ANN) to simulate and predict nitrogen concentration in river basins (Suen and 

Eheart, 2003).  

According to Lek et al. (1999), ANN can assimilate the knowledge about the relationship 

between basin characteristics and nitrogen levels in river reaches and, therefore, predict the 

concentration levels. They developed an ANN approach and tested it on 927 tributary sites. Kim 

et al. (2012) used multilayered ANN to predict the pollutant load from the West Branch Delaware 

River basin and compared it with two hydrological models, GWLF and SWAT. The feed-forward 

ANN could predict pollutant load better than the two hydrological models. Suen and Eheart (2003) 

compared the abilities of back-propagation neural networks and radial basis function neural 

networks against SWAT to model water quality with a focus on nitrate concentrations. Their 

results indicated that both neural networks perform better than SWAT, and radial basis function 

neural networks achieve the best results. Kim and Gilley (2008) used ANN to estimate the soil 

erosion and nutrient concentration from croplands successfully. Wagh et al. (2017) used a back 

propagated ANN to predict groundwater quality and tested it on 40 sampling sites in the Kadava 

river basin for nitrate pollution. A satisfactory fit was obtained for the ANN results against the 

experimental data obtained from sampling sites. They concluded that with the proposed ANN, 

groundwater resources could be better managed. These models can be coupled with decision 
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support systems to provide insight into the critical aspects of decision-making and run various 

scenarios to analyze what works best for the given basin.  

A river system faces many uncertainties, such as variability in water availability, 

technological advancements, fluctuations in demand, and complex interdependent processes like 

pollution from point and non-point sources, surface runoff, storm runoff, water reuse and recycle 

etc. These uncertainties pose a tremendous challenge for water management and can be addressed 

by optimization. Optimization refers to the process of effective use of a resource under the given 

circumstances or constraints. In the early 1960s, the use of optimization in water resources 

planning and management started with linear and dynamic programming (Tayfur, 2017). Some of 

the applications of these methods include reservoir operation and management (Faber and 

Stedinger, 2001), flood control (Needham et al., 2000), water allocation optimization for 

conflicting demands (Meng et al., 2018), optimal pump scheduling (Nace et al. 2001; Pasha and 

Lansey 2009; Chiu et al., 2010), water supply system (Hsu and Cheng, 2002), multi-reservoir 

modeling (Chandramouli and Raman 2001), and hydropower reservoir operation (Yoo, 2009; Zhao 

et al. 2014). The application of conventional optimization techniques in water resources 

management has been reviewed by Singh (2012). Although classical mathematical optimization 

techniques can solve water resources management problems, they have a specific formulation 

requirement for defining the problem, objective function, and constraints. To do this, users will 

have to simplify the formulation of complex water resource management problems, which could 

introduce system discrepancies (Horne et al., 2016).  

With the advancement in computational sciences in the last few decades, many intelligent 

optimization algorithms have been developed for data processing, planning, and decision-making. 

In the last decade, bio-inspired optimization has been widely applied to solve problems across 

multiple fields like vehicle routing, traffic management, operation scheduling, and sustainable 

energy management (Darwish, 2018). In water resource management, these algorithms have been 

applied to flood control and mitigation, reservoir operation, irrigation, flood routing, parameter 

optimization of rainfall-runoff processes, sediment transport, groundwater management, water 

quality monitoring, and land-use allocation. State of the art on bio-inspired optimization 

techniques is discussed/ provided in Chapter 2.  
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1.2 Motivation and Objectives  

  This research aims to demonstrate the ability of different bio-inspired optimization 

algorithms for various aspects of IRBM. It intends to encourage other researchers to utilize the 

available well-established bio-inspired optimization techniques in the field of IRBM. In this thesis, 

bio-inspired optimization techniques have been applied to two different aspects of IRBM. The 

objectives of this research are as follows: 

First, to spatially distribute the mitigation measures in a river basin using bio-inspired 

optimization. Though bio-inspired algorithms have been used for land-use allocation, this research 

is the first time to use them in mitigation measures distribution. Two bio-inspired optimization 

algorithms, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), are used to 

spatially distribute mitigation measures to reduce long-term annual mean total nitrogen (TN) 

concentration to achieve maximum reduction. According to the Lower Saxony water body 

monitoring system (GÜN), 63% of measuring stations in Germany recorded TN concentrations 

greater than 2.8 mg/l. The Peine gauging station located at the upper Fuhse river basin outlet is 

one of them and, therefore, used as a case study in this research. 

Second, to develop a socio-hydrological framework in order to evaluate the perspective of 

stakeholders (farmers) on implementing a mitigation measure in a river basin. The essential aspect 

of IRBM is collaboration to ensure that the environmental policies developed are tailored to 

improve the environmental status while optimizing the stakeholders’ and their economic interests. 

Valuable information, knowledge, or practical resources outside the realms of scientists and 

managers are vital to enable problems to be defined clearly, propose alternatives or management 

options, and assess the potential policies that best fit the circumstances. Through agent-based 

modelling (ABM), one could model the behavior of actors within the basin in order to find 

optimum solutions. A case study is conducted with farmers from the Larqui river basin, Chile, to 

understand their standpoint on the use of vegetative filter strips as a measure to reduce soil loss in 

their agricultural fields and protect water bodies. An ABM is developed using the behavioral 

categorization derived from an on-site survey of the farmers, related decision rules, and utility 

functions of agricultural activities. 
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1.3 Thesis Structure and Overview 

This thesis highlights the application of bio-inspired optimization techniques in different 

aspects of IRBM. Chapters 3 and 4 are scientifically complete by themselves, consisting of the 

introduction, state of art, methodology, and result and discussions corresponding to the objectives 

described. These chapters are under one umbrella; however, the results of each chapter stand-

alone. Chapter 3 will be submitted to a journal as a scientific article, and Chapter 4 has already 

been published by the researcher as a first author during her Ph.D. period. This thesis is structured 

as follows:  

1. Chapter 1 describes the motivation behind this study and explains the two objectives 

involved.  

2. Chapter 2 provides an overview of the state of art in the field of bio-inspired optimization 

in integrated river basin management.  

3. Chapter 3 introduces the novel application of two bio-inspired algorithms, Ant Colony 

Optimization (ACO) and Particle Swarm Optimization (PSO), to spatially distribute 

mitigation measures to reduce TN concentration in the river basin.  

4. Chapter 4 presents an innovative socio-hydrological modeling framework for developing 

environmental policies using agent-based modelling. A behavior model is developed 

based on a modified Theory of Planned Behavior (TPB) (published as Kasargodu 

Anebagilu, P., Dietrich, J., Prado-Stuardo, L., Morales, B., Winter, E., and Arumi, J. L, 

(2021). Application of the theory of planned behavior with agent-based modeling for 

sustainable management of vegetative filter strips, Journal of Environmental 

Management, 284, 112014, ISSN 0301-4797. 

https://doi.org/10.1016/j.jenvman.2021.112014).  

For the fulfillment of this objective, the author contributed to the conceptualization, 

survey analysis, modelling, coding, writing and revising of the manuscript.  

5. Chapter 5 is the final chapter that provides the synopsis of the results obtained and presents 

the main findings from the three research objectives. It also summarizes the future 

research propositions that could be considered while using bio-inspired optimization for 

IRBM and the area in which more research is required in the near future.  
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2. State of Art 

2.1 Optimization  

Optimization techniques are used by people worldwide to solve problems and select the 

best option under the given circumstances from many available options. Until the late 1980s, 

classical mathematical techniques (deterministic) were successfully used in engineering, planning, 

and management. These include linear (LP, Kantorovich, 1939), nonlinear (NLP) and dynamic 

programming (DP). However, when they were used to solve complex problems with large-scale 

combinatorial and highly nonlinear optimization, these techniques exhibited poor performance 

(Memmah et al., 2015; Silveira et al., 2021). The poor performance has been attributed to the 

limitations of conventional optimization techniques in dealing with the following two aspects: 

1) Nonlinear objectives and constraints: mathematical techniques have predefined 

objectives and constraints formulation. However, complex problems like those in IRBM often 

have numerous nonlinear objectives and constraints, which will have to be simplified to fit the 

formulation, thus, adding bias to the optimization process;  

2) Many variables: mathematical techniques struggle to deal with problems with many 

variables. As the search space's dimensionality increases exponentially with the number of 

variables, the techniques cannot perform an exhaustive search within a reasonable time (Memmah 

et al., 2015; Kumar and Yadav, 2022).  

In this regard, stochastic approaches are considered more flexible and efficient in solving 

large and complex optimization problems. Two main stochastic approaches were developed in the 

late 1970s to overcome the limitations of deterministic optimization techniques: heuristic and 

metaheuristic optimization (Rao and Keesari, 2018). While a heuristic algorithm is aimed to solve 

a problem faster, it does not guarantee a global optimal solution. However, to solve a complex 

problem in a reasonable computational time, a heuristic algorithm is better than an impractical 

exhaustive search (Sörensen, 2013). Classification of the optimization techniques is shown in 

Figure 2.1. 
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2.2 Metaheuristics Optimization 

The term metaheuristic was coined by Glover (1986), and Sörensen and Glover (2013) 

defined metaheuristics as ‘a high-level problem-independent algorithmic framework that provides 

a set of guidelines or strategies to develop heuristic optimization algorithms. The term is also used 

to refer to a problem-specific implementation of a heuristic optimization algorithm according to 

the guidelines expressed in such a framework’. It is a higher-level adaptive computing technique 

that provides a ‘sufficiently good solution’ to an optimization problem offering a better trade-off 

in terms of computational time and solution quality. The critical point to achieving this is finding 

the perfect balance between exploration and exploitation. Exploration distinguishes the most 

promising regions in a search space where the optimal solution could be positioned; exploitation 

amplifies local search in the identified region.  

The use of metaheuristic algorithms started in the 1980s with Simulated Annealing 

(Kirkpatrick, 1983) and Tabu Search (Glover, 1989). Research in metaheuristic algorithms started 

to thrive in the 1990s due to the successful widespread applications of algorithms like genetic and 

swarm intelligence-based algorithms. Since then, more than hundreds of metaheuristic algorithms 

have been developed inspired by various disciplines of science and everyday activities. In spite of 

Optimisation 

Deterministic Stochastic 

Heuristics Metaheuristics 

Biological Physics/Chemistry Others 

Swarm Intelligence based Non-Swarm Intelligence based 

Figure 2.1 Classification of optimization techniques 
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the extensive research in the field of metaheuristics, Sörensen et al. (2017) estimate that the field 

of metaheuristics hasn’t reached maturity, and there is still a long road ahead. Though a large 

percentage of algorithms are derived from the discipline of biology, algorithms have been 

developed inspired by the fields of science such as physics, chemistry, mathematics, psychology 

and other fields like economics, music, sports etc. (Hussain et al., 2018) (Figure 2.2). 

 

Figure 2.2 Disciplines inspiring metaheuristic algorithms (Hussain et al., 2018) 

The success of metaheuristics is attributed to its simple and flexible structure, derivation-

free mechanism, and ability to avoid local optima and tune in practice (Memmah et al., 2015). 

They are inspired by very simple concepts that are easy to understand and adapt to the problem at 

hand. The metaheuristic algorithms do not require significant changes to the algorithm’s structure. 

This also enables the researchers to modify or hybridize two or more different concepts (Mirjalili 

et al., 2014). Users are required to know only how to represent their problem to the algorithm 

(input). They require no gradient information; therefore, they are widely applied to non-analytic, 

black-box or simulation-based objective functions. Since metaheuristic algorithms are solved 

stochastically, the algorithms typically start with random initial solutions without any derivative 

information about the search space. Also, due to the stochasticity of the algorithms, they avoid 
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local optima and explore the search space extensively. In most cases, complex real-life problems 

have expensive derivate information and many local optima, so metaheuristic algorithms are a 

good option to solve them (Bandru and Deb, 2016).  

Metaheuristic algorithms have been extensively used to solve problems in various fields 

like health care (Monga et al., 2021), power systems operations and control (Balaci and 

Valenzuela, 2004; Varol and Bingul, 2004), renewable energy systems (de Valle et al., 2008), 

chemical processes (Johnston and Cartwright, 2004), job scheduling problems (Wu et al., 2008), 

transportation (Teodorovic and DellOrco, 2005), vehicle routing problems (Elshaer and Awad, 

2020), telecommunication networks (Ducatelle et al., 2010), batch process scheduling, image 

processing and pattern recognition problems (Kumar et al., 2021), data mining and analysis (Cheng 

et al., 2013), and cloud computing (Kalra and Singh, 2015). 

The classification of metaheuristics can be done based on inspiration, structure, population, 

neighborhood, etc. Furthermore, metaheuristics algorithms can be distinguished as nature-inspired 

or inspired by other sources, population-based vs. single entity solution-based methods, single 

neighborhood vs. various neighborhood structures, and greedy vs. non-greedy (Behesti and 

Shamsuddin 2013). This thesis classified the algorithms based on inspiration, focusing on nature-

inspired. Nature is a rich source of inspiration, and many researchers have used nature as a 

reference to derive new methods. Nature-inspired algorithms refer to optimization techniques 

inspired by one or the other process in nature. Amongst the nature-inspired algorithms, some of 

the most successful characteristics have been that of the biological system. Therefore, the largest 

group of nature-inspired algorithms are bio-inspired (Mirjalili et al., 2017; Fister et al., 2013). The 

physics/chemistry-based and other categories are beyond the scope of this research and will not be 

discussed here. For further reading on the disciplines used by researchers to develop metaheuristics 

algorithms and sources of inspiration, readers are referred to Fister et al. (2013), Slowik et al. 

(2018), and Hussain et al. (2019). 
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2.3 Bio-inspired Optimization 

Bio-inspired metaheuristic algorithms are based on the formation of biological systems, 

such as genes, evolution process, the social behavior of organisms, foraging, hunting etc. Though 

bio-inspired metaheuristic techniques may not always yield global optimal results, one can often 

make a better trade-off between solution quality (optimal solution) and computational time. They 

have proved to be a suitable, versatile alternative to solve complex, nonlinear practical problems 

with a broad application base. They are adaptable and provide open-ended, unrestricted problem 

formulation (no predefined relationship between objective function, decision variables and 

constraints) (Glover and Sörensen, 2015). These algorithms are further sub-categorized into 

swarm-intelligence (SI) based and non-SI based algorithms. SI-based algorithms imitate 

organisms' social/group behavior (like ants, bees, cats, dolphins, fireflies, frogs, glow worms, 

spiders, wasps, etc.). 

On the other hand, non-SI-based bio-inspired algorithms are based on the properties of 

organisms other than the swarming behavior (such as pollination of flower, evolutionary strategies, 

genetics etc.). Other nature-inspired SI-based algorithms (such as Rainfall Optimization 

Algorithm, Ray Optimization, Gravitational Search Algorithm etc.) have been excluded from this 

categorization as they are inspired by natural phenomena and not from the discipline of biology. 

Some of the SI and non-SI-based bio-inspired algorithms are chronologically presented in Figure 

2.3. A list with the full name of the algorithms and their reference is provided in Appendix A. 

2.3.1 Swarm Intelligence (SI) based algorithms 

The term ‘swam intelligence’ was coined by Beni and Wang (1993). SI algorithms are 

developed based on learnings from the collective behavior of swarms in nature and their complex 

interaction with no supervision. SI-based algorithms are inspired by social insects’ collective 

behavior, like ants, termites, bees, wasps, swarms, herd, flock, and shoal of fish, birds or wolves 

(Olariu and Zomaya, 2005). Many organisms, in nature, live in a community, interacting with each 

other without centralized decision-making. An organism makes a decision based on its local 

environment and its interaction with other organisms in the community. The interaction among the 

organism is believed to be the cause of emergent social intelligence (Yang et al., 2018). SI 
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approach constitutes an efficient and robust model that simplifies the design of solutions to 

different problems (Olariu and Zomaya, 2005).  

One of the reasons for the popularity of SI-based algorithms is that the information is shared 

amongst the community members so that the members can accordingly organize, evolve and learn 

(collective behavior) (Chakraborty and Kar, 2017). The members of a community store the 

information about the search space over the course of the iterations. SI algorithms usually have 

fewer parameters to tune (Mirjalili et al., 2014). The self-learning ability and adaptability to 

environmental variations are significant features that have fascinated researchers and have been 

recognized in several fields of application for SI algorithms (Fister et al., 2013). Most importantly, 

SI algorithms are flexible, versatile, and easy to implement, and multiple agents can be parallelized 

to solve large-scale optimization problems. Many SI-based algorithms are continuously developed, 

applied, improved and hybridized. Since 2015, more than 21 algorithms have been developed. In 

the following sections, only some of the most popular, well-established algorithms are described 

in this thesis. 
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(red line: SI-based techniques; green line: non-SI-based techniques) 

Particle Swarm Optimization (PSO) 

Particle Swarm Optimization, developed by Kennedy and Eberhart (1995), is inspired by 

the movement of a flock of birds or a school of fish to find food sources or shelters. In the 

algorithm, the particles are initialized with a random solution, and they improve their solution 

based on the particle’s best solution and the global best solution. Each particle is also assigned a 

velocity vector that contributes to finding the next location of the particle in the search space. 

Evolution over the iterations occurs due to cooperation between the particles and competition 

amongst them (Tayfur, 2017). A detailed description of the algorithm is provided in Chapter 3. It 

is very simple, converges fast and therefore, has gained wide popularity. However, it requires 

parameter tuning to achieve the global optimal solution. Some of the applications of PSO and its 

variants in water resources management include reservoir operation (Jahandideh-Tehrani et al., 

2020; Chen et al., 2020; Spiliotis et al., 2016), solve optimal cropping and water allocation (Habibi 

Figure 2.3 Chronology of various bio-inspired optimization techniques developed 

ALO, JA, MFOA, 

PPA, ABO, SSA 

2020 

MBO 

EHA 

SWA 

WOA 

DA, BSA, CSA, RDA 

CA MFO 

PIO 

GOA KA 

KWA SSA 

MIA, CBA MRA 

SSA* EPC 

HHA SO 

ChoA 

WSA, BWOA MOA 

COA 

HHOA 

ACVO 

2015 



 

16 

 

Davijani et al., 2016), parameter optimization of rainfall-runoff model (Liu, 2009), parameter 

optimization of water quality model (Afshar et al., 2011), parameter estimation of Muskigham 

model (Orouji et al., 2012; Moghaddam et al., 2016), non-linear Muskingum model (Chu and 

Chang, 2009), management of groundwater resources  (Gaur et al., 2013), flood control operation 

(Jahandideh-Tehrani et al., 2020), and land-use allocation (Liu et al., 2014; Ma et al., 2011; 

Masoomi et al., 2012). 

Ant Colony Optimization (ACO) 

Ant colony optimization, developed by Dorigo and Caro (1999), is one of the most popular 

SI-based algorithms based on the foraging behavior of ants using stigmergy. Ants are well-known 

for their ability to find the shortest paths between their nest and the food source without visual and 

direct communication. They instead use pheromone deposition on the path to communicate with 

the other ants. This helps the other ants decide probabilistically to choose the path. They are very 

flexible animals; when they encounter an obstacle or change in the environment, or if the food 

source is no longer feasible, they are quick to adapt and scour the space for other food sources. 

ACO and its variants have been applied in designing water distribution systems (Maier et al., 

2003), reservoir operations (Jalali et al., 2005, 2006a and 2006b; Dariane and Moradi, 2008; Guo 

and Wang, 2010; Yu et al., 2011), derive operating policies for a multi-purpose reservoir (Kumar 

and Reddy, 2006), parameter estimation in groundwater (Li et al., 2006), optimal control of pumps 

in water distribution networks (Ibanez et al., 2008), optimal irrigation systems (Nguyen et al., 

2017; Tu et al., 2011), and land-use allocation (Liu et al., 2014). A detailed description of the 

algorithm is provided in Chapter 3. A review of the application of ACO in water resources 

management can be found in Afshar et al. (2015).  

Shuffled Frog Leaping Algorithm (SFLA) 

The Shuffled Frog Leaping Algorithm, developed by Eusuff and Lansey (2003), is inspired 

by a group of frogs searching for food in a swamp. There are many stones next to which the food 

is usually located in a swamp. Frogs work in groups and share information via memes to quickly 

locate the maximum food source (Kumar and Yadav, 2022). There are three main stages adopted 

in the algorithm: portioning, local search and shuffling. In the algorithm, the frogs in the swamp 

are portioned into small groups called memeplexes to perform a local search. They are ranked from 
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best to worst fitness level based on their location. A frog can be influenced by the other frogs and 

evolve through memetic evolution within the memeplex – the worst frogs are directed to leap 

towards the location of the best frog. Then the memeplexes are shuffled, thus increasing the 

probability that all frogs move towards the best solution. The advantages of using SFLA are that 

it combines the benefits of the memetic algorithm, PSO-based local search, and shares information 

parallelly during local search (Du and Swamy, 2016). Many variants of SFLA have been 

developed over the years, as described by Sarkheyli et al. (2015) and Maaroof et al. (2022) . SFLA 

has been applied to designing water distribution networks (Eusuff and Lansey, 2003), groundwater 

modelling and water distribution systems (Eusuff et al., 2006), large-scale water supply systems 

(Chung, 2009), to solve optimal reservoir operation (Li et al., 2018; Sun et al., 2016; Yang et al., 

2019), and optimal allocation of water resources (Fang et al., 2018).  

Artificial Bee Colony (ABC) 

Artificial Bee Colony, developed by Karaboga (2005), is based on honeybee swarms’ 

foraging behavior. In a bee colony, bees leave the hive in search of a food source (nectar). After 

finding nectar, the bees store it temporarily in their stomach. Upon returning to the hive, they 

unload the nectar into the hive and perform a waggle dance indicating the location and nectar 

quantity at the food source. This is a way to recruit new bees to explore the richest food sources. 

Four types of bees are identified in a colony – employed bees, unemployed bees, scout bees, and 

onlooker bees. In the algorithm, the food sources represent the probable solution, the number of 

employees bees is the same as the number of probable solutions, and the quality of nectar from a 

food source is used to evaluate the fitness of a bee (Schiezaro and Pedrini, 2013). It is the job of 

employed bees to search for the food source and then inform the location and quality of the 

onlooker bees. The better the quality of the food source, the higher the number of times the 

information is shared, thus increasing the probability of recruiting onlooker bees to choose the 

food source. Once an onlooker bee picks a food source to explore, it becomes an employed bee. 

And when an employed bee exhausts search for a better quality of food but can’t find it anymore, 

the food source is abandoned, and the bee becomes a scout bee and searches for a new food source 

randomly. This process is repeated until an optimal food source is found.  

ABC is flexible, simple, robust, easy to implement and capable of performing a local and 

global search. However, the sequential processing of ABC is slow, and tuning parameters such as 
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scout, onlooker and employed bees are required to use the algorithm (Li and Feng, 2020). Some 

of the well-known variants of bee colony include Bee Colony Optimization proposed by 

Teodorovic and Dell’Orco (2005), Bee Algorithm proposed by Pham et al. (2007), Bee Swarm 

Optimization by Akbari et al. (2010), Weighted Bee Colony Optimization by Moayedikia et al. 

(2015), and improved Artificial bee colony (iABC) by Mann and Singh (2019). ABC and its 

variants have been applied in the fields of groundwater management (Boddula and E, 2018), 

groundwater prediction (Li et al., 2019), reservoir optimization (Ahmad et al., 2016; Moeini and 

Soghrati, 2020), and designing water distribution networks (Li and Feng 2020). 

Cuckoo Search (CS) 

Cuckoo search is based on the specific egg-laying (parasitism) and breeding of some 

cuckoo species. It is developed by Yang and Deb (2009). Cuckoo birds lay their eggs in some other 

birds’ nests, and as long as these are not recognized by the host bird as a foreign substance and 

destroyed or abandoned, they grow up to become cuckoo birds. Therefore, cuckoo birds must find 

the best environmental features and groups that allow the best breeding (Rajabioun, 2011). To 

simplify the search, in the CS algorithm, three conditions are assumed: 1) a cuckoo bird lays only 

one egg at a time in a random nest (solution), 2) the nest containing the best egg is the best nest, 

and only the best nest is accepted to the next generation, and 3) discovering of the cuckoo eggs by 

the host bird is dependent on probability; if discovered, the host bird either deserts the nest or 

destroys the egg. Also, the number of host nests is initialized at the beginning of the algorithm. 

This ensures that each bird has only one solution and better solutions are carried over to the next 

generations, thus, guiding all the birds towards the optimal solution (Yang and Deb, 2014). The 

formulation can be modified for a complex problem to allow several eggs to be laid in a nest. The 

fitness of a solution is proportional to the value of the objective function of the solution (Yang, 

2014).  

CS uses a combination of random local walk and global exploration. The random walk is 

similar to the Markov Chain, where the next position depends on the current position and the 

transition probability. An entry-wise product of Lévy flight is also used, which utilizes Lévy 

distribution to select random step lengths. The most significant advantage of CS is the use of Lévy 

flight for global search. This yields infinite mean and variance, thus, enabling CS to explore the 

search space more efficiently than other standard processes. The local search of CS is very 
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intensive, and search space is explored more efficiently on the global scale; consequently, the 

global optimal solution is found with a higher probability (Yang and Deb, 2014). Rajabioun (2011) 

developed a variant of CS, the Cuckoo Optimization Algorithm. It performs a continuous 

awareness search based on a cuckoo bird. CS has been applied in multiple fields of water resources 

management, including calibration of a groundwater flow model (Valetov et al., 2019), reservoir 

operation (Boindala and Arunachalam, 2019; Yasar, 2016), design of water distribution networks 

(Pankaj et al., 2020), water productivity (Upadhyaya and Upadhyaya, 2021) and crop planning 

(Mohammadrezapour et al., 2017; Rath et al., 2019) etc. Detailed information on CS, its 

development, and recent applications can be found in the review articles by Joshi et al. (2017) and 

Guerrero-Luis et al. (2021).  

Firefly Algorithm (FA)  

The firefly algorithm, developed by Yang (2009), is based on the flashing behavior of 

swarming tropical fireflies in nature. The flashing behavior fulfills two fundamental functions — 

attract prey and mating partners; protect the firefly from predators. FA is a simple, flexible, easy-

to-implement algorithm (Slowik et al., 2018). It finds the optimal solution using greedy search 

with randomness introduced into the search function. FA works with three assumptions: 1) all 

fireflies are unisex (attraction irrespective of the sex of a firefly), 2) the attractiveness of a firefly 

is proportional to its brightness, and it decreases with increased distance, and 3) the objective 

function determines the brightness of a firefly. Decentralized decision-making and self-organizing 

behavior are two key characteristics of the firefly algorithm. The flies’ social life is dedicated to 

the reproduction of fireflies and foraging, which depends on the fireflies' flashing. However, it 

doesn’t mean they are autonomous; the collective decision is related to the fireflies’ flashing 

pattern, which is the most important biological function used in the firefly algorithm (Verma, 

2020). 

In this algorithm, the brightness of the flash is used to evaluate the fitness of a firefly. The 

fireflies are initialized with random solutions, and the fitness is evaluated. A firefly with low fitness 

tries to improve by moving towards the fittest firefly. The best firefly at the end of the algorithm 

would be the optimal solution. It is capable of finding both global and local solutions 

synchronically and effectively. It is especially convenient for parallel implementation as fireflies 

work independently (Kumar and Yadav, 2022). FA has many parameters that require fine-tuning, 
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including the maximum number of iterations, number of fireflies, random parameters based on a 

distribution, absorption coefficient, attractiveness parameter, and scaling factor (Wang et al. 2018). 

Many variants of FA have been developed over the years to increase the algorithm’s applicability 

in terms of modification or hybridization. A detailed account can be found in Verma (2020). In 

water resources management, FA has been applied to estimate water demand (Wang et al., 2017a, 

Wang et al., 2018), water allocation (Wang et al., 2017b), water distribution system (Tahershamsi 

et al., 2014), evaporation prediction (Moazenzadeh et al., 2018), optimal reservoir management 

(Garousi-Nejad et al., 2016; Kangrang et al. 2019), and groundwater management (Kazemzadeh-

Parsi et al., 2015) amongst others.  

Bacterial Foraging Optimization (BFO) 

Bacterial Foraging Optimization, developed by Passino et al. (2010), is based on the 

foraging of the bacteria using chemotaxis. Bacteria undergo chemotaxis to move towards a 

landscape of nutrients and avoid environmental toxins. When the bacteria encounter a food source 

that is sufficient, it reproduces itself by binary fission. If it encounters an attack or change in the 

environment, it gets destroyed, or a group gets dispersed into a different place. In the algorithm, 

each bacterium moves towards global optimum using tumble or swim in the chemotaxis. When a 

bacterium swims, it changes the location but moves in the same direction, whereas when it tumbles, 

it chooses a random direction. Each bacterium signals other bacteria to swarm together upon 

finding a food source. Since this process may be stuck at local optima, some bacteria (low fitness) 

are dispersed or killed after a threshold number of reproductions by the fittest bacteria. The 

dispersion and elimination are dependent on the user-defined probability of elimination parameter. 

This keeps the swarm size constant and ensures only the fit bacteria move forward in the iteration 

towards nutrient-rich food sources. Many variants of BFO have been developed and discussed in 

detail by Das et al. (2009). In water resources, it has been applied to detect groundwater possibility 

(Kapoor et al., 2012), predict water resource demand (Zhang et al., 2019), and solve conjunctive 

use of surface and groundwater resources (Sampathkumar et al., 2021). 
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Bat Algorithm (BA) 

The bat algorithm, developed by Yang and Gandomi (2012), is based on the foraging by 

the microbats using echolocation. They emit a loud pulse and hear the echo that bounces back from 

their prey, obstacles, and roosting crevices. In the algorithm, three assumptions have been made: 

1) all bats use echolocation to locate the distance, and they are aware of the difference between 

prey, obstacles and background barrier, 2) bats search for prey with a random velocity, fixed 

frequency, varying wavelength, and loudness, and they adjust the wavelength and rate of pulse 

emission depending on the prey proximity, 3) range of variation in loudness is provided. The bats 

are initialized with pulse rates and loudness; pulse frequency for every location is also defined. 

Each location is a candidate solution, and the objective is to find the best location. The bats move 

to new locations by adjusting the frequency and calculating the velocity of the subsequent position 

based on the current velocity and location. The algorithm uses a local random walk to increase the 

ability of the bats to search.  

BA is easy to implement and flexible. It has fast convergence and yields the best solution 

in less time. However, it requires parameter tuning as convergence depends on wavelength and 

emission coefficient (Gandomi et al., 2013). The convergence is affected if the proper tuning 

parameters, such as wavelength and emission coefficient, are not done. Yang and He (2013) 

discuss its application in various fields. BA has been used in reservoir operation (Bozorgg-Haddad 

et al., 2014; Ethteram et al., 2018a; Zarei et al., 2019), rainfall forecast (Kuok et al., 2019), 

suspended sediment predictions in a river (Banadkooki et al., 2019), and improving Muskingum 

flood routing (Ethteram et al., 2018b). 

Grey Wolf Optimizer (GWO) 

The Grey wolf optimizer, developed by Mirjalili et al. (2014), is based on the hunting and 

social hierarchy of the grey wolves. The wolves are divided into four classes – alpha (leader of the 

pack), beta (subordinate to alpha and assists in decision-making), delta (subordinate to alpha and 

beta), and omega (submits to the other three classes of wolves). While hunting, grey wolves circle 

their prey, and the hunting is guided by the alpha wolf and assisted by beta and delta wolves. In 

the algorithm, the first three best solutions are assigned the alpha, beta and delta positions and the 

rest of the solutions are assumed to be omega. The omega solutions are updated based on the alpha, 
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beta and delta locations in the search space. Vector coefficients are introduced in the algorithm to 

ensure divergence of the pack to find better solutions and introduce random behavior. Thus, 

avoiding local optima and ensuring exploration of the search space. Hybridization of GWO with 

other well-established algorithms has been developed by Wang and Li (2019). In water resources 

management, GWO has been applied to water quality assessment and classification (Sweidan et 

al., 2015), optimization of irrigation water distribution (Choopan and Emami, 2019; Shahverdi and 

Maestre, 2022), and prediction of water storage in a dam (Emami et al., 2020). 

Other popular SI-based algorithms include Fish Swarm Optimization (Li et al., 2002), Cat 

Swarm (Chu et al., 2006), Bumblebees Optimization (Comellas and Matrinez, 2009), Krill Herd 

(Gandomi and Alavi, 2012), Social Spider Optimization (Cuevas et al., 2013), Teaching Learning 

Based Optimization (Rao et al., 2011), Moth-flame optimization algorithm (Mirjalili, 2015a) and 

Whale Optimization Algorithm (Mirjalili and Lewis, 2016).  

2.3.2 Non-SI-based algorithms 

Amongst the non-SI-based algorithms, the most prevalent are the evolutionary algorithms 

(EA). They are inspired by the ‘neo-Darwinian paradigm for simulating the natural evolution of 

biological systems’ (Du and Swamy, 2016). Though these algorithms were developed in the 1960s, 

they remained un-investigated until the mid-1980s (Coello Coello, 2001). These algorithms have 

three basic operators named crossover, mutation, and selection. Evolutionary algorithms are 

further classified into genetic algorithms, genetic programming, evolution strategies, evolution 

programming, and differential evolution. Only a brief explanation of these classifications is 

provided in this section. 

Evolutionary Strategies (ES) 

Evolutionary Strategies, introduced by Schwefel, Rechenberg and Bienert in the 1960s, are 

inspired by mutation and recombination processes similar to GA (Rudolph, 2012). The key 

difference between the two algorithms is the self-adaptive mutation rates. While GA explores the 

search space by recombining the solutions and preserves a genetic link, ES works on an individual 

solution and its offspring level. Its selection process is deterministic (Ab Wahab et al., 2015). 

There are three different types of adaptive mutation processes available. a) (1+1)-ES – only one 

offspring is produced by a parent; if the offspring performs better than the parent, it becomes a 
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parent in the next generation; otherwise, it is eliminated; b) (1+λ)-ES produces λ offsprings, only 

the best out of λ offsprings can become a parent in the next generation, everything else is 

eliminated; c) (μ/ρ +, λ)-ES is often used as standard ES process where λ offsprings are produced 

by ρ parents. If ‘+’ is selected, the parent generation competes with the offsprings; if ‘,’ is selected, 

they are eliminated, and only offsprings compete amongst themselves to be selected for the next 

generation (Hansen et al., 2015). Different adaptation strategies to yield better performance have 

resulted in the development of multiple variants of ES. 

Evolutionary Programming (EP) 

Fogel proposed the idea of evolutionary programming in the 1960s (Fogel, 2012). EP’s 

initialization, mutation, and evaluation processes are the same as GA. The difference between EP 

and GA is that EP does not undergo the crossover process to create offspring. The selection process 

in EP is stochastic. A chromosome competes against a user-defined number of other chromosomes, 

and the weak chromosomes are eliminated. EP is apt to solve problems with many local optimal 

solutions (Lee and El-Sharkawi, 2008). The concepts of ES and EP were used to develop Genetic 

Algorithms. 

Genetic algorithm (GA) 

Developed by Holland (1975), the Genetic Algorithm is one of the most famous EAs. It is 

based on the Darwinian principle of natural selection, a process of genetic evolution. A 

chromosome is filled with genes. Parent chromosomes create the offsprings through the crossover 

operation (mix and match of genes). If the offspring chromosome is strong, it has better 

adaptability, will survive and be selected to pass on the genes to the next generation. Chromosomes 

that aren’t suitable are removed. In the algorithm, the problem parameters are regarded as the genes 

of a chromosome. A fitness value (highly related and proportional to the objective function) is 

used to reflect a strong chromosome. Three genetic operators- selection, crossover, and mutation, 

are used to improve the current solutions chosen from the initial generation and select the best 

offspring to carry over to the next generations. This is repeated until the stopping criteria is met. 

One of the notable improvements/ modifications of GA is the Non-dominated Sorting Genetic 

Algorithm II (NSGA II, Deb et al., 2002). Variants of GA has been successfully applied to solve 

groundwater monitoring and management (McKinney and Lin, 1994; Kollat and Reed, 2006), 
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irrigation water management (Chen, 1997), designing water distribution network or pipelines 

(Goldberg and Kuo, 1987; Haghighi and Bakhshipour, 2012), reservoir management (Sharif and 

Wardlaw, 2000; Reddy and Kumar, 2006; Kim et al., 2008), selection of agricultural BMPs (Liu 

et al., 2013b), water management (Gino Sophia et al., 2020) in water resources management. A 

review of the application of GA and its variants in water resources management is provided by 

Nicklow et al. (2010) and Rani et al. (2013).  

Genetic Programming (GP) 

David Goldberg coined the term Genetic Programming, and the algorithm was developed 

by Koza (1992) and is similar to the workings of GA. The difference between the two is the 

solution and selection operation representation. The term chromosome represents a solution to the 

problem in GA, whereas in GP, it represents a solution program. To reproduce, GA selects the 

user-defined percentage of robust candidate solutions (based on fitness). In contrast, in GP, the 

selection is based on the probability given to each program of GP is dependent on the program’s 

fitness level and based on the objective function one or more programs are selected (Ab Wahab et 

al., 2015). GP is often used to solve problems where the variables of the problem are not fixed 

values. The application of GP in water resource management was kick-started by developing the 

weights matrix for ANN to study the rainfall-runoff (Savic et al., 1999). It has since been applied 

in parameter optimization of models (Pelletier et al., 2006), to optimize ANN modelling of the 

rainfall-runoff process (Nourani et al., 2011), pan evaporation modelling (Guven and Kisi, 2013), 

designing low-impact urban development (Zhang et al., 2013), reservoir operation (Akbari-Alashti 

et al., 2015), flow routing (Fallah-Mehdipour et al., 2016), groundwater monitoring (Prakash and 

Datta, 2014; Cobaner et al., 2016), prediction of monthly streamflow (Ravansalar et al., 2017), and 

runoff modelling (Heřmanovský et al., 2017). Mehr et al. (2018) and Mohammad-Azari et al. 

(2020) provide a detailed review of the application of GP in water resources management. 

Differential Evolution (DE)  

Differential Evolution, developed by Storn and Price (1997), is inspired by the self-

organization of the simplex search algorithm (Nelder and Mead, 1965) and reproduction strategy. 

Every generation in DE is created based on the classical EA operators to evolve a randomly 

generated initial population to a final solution. The mutation is the first operation performed by 
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DE, followed by crossover to increase the diversity of the population. Selection of the best 

offspring is the next operation until the stopping criteria is reached. Many modifications and 

hybridization of DE have been developed over the years, including Differential Evolution Markov 

Chain (DEMC by Braak, 2006). The Swedish Meteorological and Hydrological Institute adopted 

DEMC as an auto-calibration method in their hydrological model. However, the first application 

of DE in water resources management was on reservoir operation by Reddy and Kumar (2006). 

Other applications include but are not limited to the water distribution network (Vasan and 

Simonovic, 2010; Zheng et al., 2012; Moosavian and Lence, 2017), irrigation planning (Raju et 

al., 2012), optimal cropping pattern (Otieno and Adeyemo, 2010), reservoir optimization 

(Ahmadianfar et al., 2017; Nwankwor et al., 2013; Regulwar et al., 2010), coastal subsurface water 

management (Karterakis et al., 2007), and groundwater management (Gurarslan and Karahan, 

2015).   

The application of some more non-SI-based algorithms like Dolphin Echolocation 

Optimization and Invasive Weed Optimization is being evaluated by researchers but is not covered 

in this thesis. It can be seen from the extensive review of the literature presented in the 

aforementioned sections that bio-inspired optimization techniques are highly versatile. They can 

solve complex problems by using the emergent intelligent behavior of the population. This is a 

very critical functional aspect of bio-inspired optimization that can be applied to various problems 

at different stages of IRBM. 

2.4 Agent-based model (ABM) 

Apart from system component optimization, it is critical to understand the human 

aspects/influence on the system components. Rather than defining the problem as a global 

function, the results would depend on the community's actions and interactions. In this regard, the 

agent-based model serves as a tool through which optimized management policies that suit the 

river basins can be developed with contributions from the stakeholders of the basin. ABM is a 

powerful simulation technique that explores agents' behavior in a real-life system. ABM has three 

main components – agents (autonomous with behavioral rules), the environment (that enables 

action) and their interaction. ABM simulates the emergent behavior of the agents based on the 

user-defined behavioral rules and their interaction with the environment. It provides micro-level 

assessments considering the specific river basin constraints, capacities and stakeholders’ behavior. 
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With ABM, behavioral aspects of the stakeholders can be incorporated to find optimal policies 

from a planning and policy development perspective. A framework developed with ABM can 

capture individual interaction and response from society with respect to the policy or 

infrastructural changes suggested by the decision-making body.  It has been applied to model the 

behavior of water users and managers on a catchment scale (Huber et al., 2021), adoption of water-

saving methods (Galán et al., 2009), simulate and the effect of water use and land use on regional 

groundwater (Reeves and Zellner, 2010), adoption of green infrastructure (Montalto et al., 2013) 

to name a few. A detailed review of the application of ABM in environmental applications like 

rural water management, flood mitigation, and agricultural land use can be found in the review 

articles by Hare and Deadman (2004) and, recently, by Berglund (2015).  

To summarise, the field of bio-inspired algorithms is an emerging branch of computational 

optimization. It is based on the concept and inspiration of the evolution of biological creatures in 

nature. Though bio-inspired algorithms have been well established for the last few decades, it is 

still an evolving field with new robust and competing techniques and hybridization of the existing 

algorithms being developed and tested day-by-day (Kar, 2016).  Their high performance has 

received particular attention over the past few years. They can solve real-world high-dimensional 

complex problems resourcefully and with high accuracy and therefore find the wide application 

(Selvaraj et al., 2015). This thesis explores the application of bio-inspired algorithms with respect 

to IRBM.  
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3. Spatial distribution of mitigation measures to reduce total 

nitrogen concentration using Ant Colony Optimization and 

Particle Swarm Optimization 

Abstract 

In this study, an attempt has been made to explore the effectiveness of metaheuristic bio-inspired 

algorithms in performing discrete combinatorial optimization. The study aims to spatially 

distribute mitigation measures to reduce long-term annual mean TN concentration at the river 

basin’s outlet. Two well-known and established bio-inspired algorithms, Ant Colony Optimization 

(ACO) and Particle Swarm Optimization (PSO) are used to distribute the measures within the 

basin. A case study of the Fuhse river basin simulated in HYPE is used. Nine different measures 

under four categories are provided to the algorithms to distribute at crop and subbasin levels to 

address point and non-point source pollution. The measures include reducing fertilizer and manure 

application, reducing tillage and increasing the efficiency of wastewater treatment plants. The 

results show that both algorithms have successfully distributed the measures within the basin to 

reduce long-term annual mean TN concentration. Their performance is on par with each other and 

achieved an annual mean reduction of 0.9 mg/l (18.26 %) over six years. With this study, we prove 

the strength and flexibility of bio-inspired algorithms to be applied in the spatial distribution of 

measures addressing river basin management. 

Keywords: ant colony optimization, particle swarm optimization, total nitrogen management, 

spatial distribution, mitigation measures. 

Highlights: 

• Two popular, well-established bio-inspired algorithms were tested for a single objective 

combinatorial discrete optimization problem in IWRM; 

• The objective of the study was to maximize long-term total nitrogen reduction at the 

basin outlet by spatially distributing mitigation measures within the river basin; 

• Ant colony optimization and Particle swarm optimization can successfully address spatial 

distribution problems in a river basin. 
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3.1 Introduction 

According to European Environment Agency, the two primary sources of total nitrogen (TN) 

are anthropogenic diffused and point sources. In the anthropogenic diffused sources, 50-80% of 

the total nitrogen load is attributed to agricultural activities, while municipal wastewater 

constitutes 75% of the point source discharges (European Environment Agency, 2005). The 

adverse impacts of nitrogen on the ecosystem and human health are well known and are discussed 

in detail by de Vries (2021). To abate the pollution caused by nitrogen at the catchment scale, the 

Water Framework Directive (WFD, Directive, 2000/60/EC) and the Nitrates Directive (Council 

Directive 91/676/EEC) have issued mitigation measures or best management practices. Fassio et 

al. (2005) used a GIS environment on agricultural land to investigate the impact of alternative 

policy measures developed at a European scale to reduce nitrogen pressure from European 

agricultural lands. Their study adopted the European Environmental Agency’s DPSIR approach 

(Driving force, Pressure, State, Impact, Response) of a multi-criteria decision support system to 

evaluate possible alternative solutions for policy implementation. Volk et al. (2009) modeled the 

upper Ems River basin in Germany using SWAT and assessed the impacts of eight consecutive 

land use and management scenarios. They concluded that regional landscape and land use 

distinctions are required to reach the target TN concentration limit for the basin.  

Laurent and Ruelland (2011) modeled the Oudon river basin in France to assess the impact of 

seven alternative best management practices (BMPs) on nitrogen flow through the basin. Reduced 

fertilization showed a maximum reduction of nitrate flow, followed by no-tillage, conversion to 

catch crops, and the use of filter strips. They concluded that modeling at different catchment scales 

aids in analyzing the impacts of the practices. However, a combination of BMPs is required to 

improve water quality drastically. Panagopoulos et al. (2011) also reached a similar conclusion 

from their study on the Arachtos basin in Greece using SWAT. They analyzed the establishment 

of filter strips and reduction of fertilization combined with contour framing and no-tillage as BMPs 

to reduce sediment, nitrate-nitrogen, and total phosphorus input to surface waters. They inferred 

that only combined measures in small catchments could considerably reduce several pollutants. 

The long-term impact of point and non-point sources of pollution and the effectiveness of BMPs 

to improve water quality were analyzed for the Kielstau catchment in Germany by Lam et al. 

(2011). Their results indicated that up to 20 % reduction in average annual load of nitrate and total 
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nitrogen was achieved by implementing one BMP at a time, and up to 53.9% reduction of nitrate 

was achieved by the combination of BMPs. According to Merriman et al. (2019), implementing 

multiple BMPs in combination (like filter strips and grassed waterways) significantly reduced 

sediment and nutrient loads compared to a single BMP implementation. 

The efficacy of the combinations of measures to achieve the target limits depends on their 

spatial distribution in the river basin. However, this can be tricky as the river basin is a complex 

entity where the hydrological process is affected by the number of sub-basins, multiple land-use 

characteristics, pollutant sources, hydro morphological modifications, farming practices, and 

climate in each sub-basin, to name a few. Dietrich and Funke (2009) discussed integrating 

catchment models into a long-term iterative strategic planning and decision-making process. They 

analyzed four strategic scenarios for the spatial distribution of measures to reduce total phosphorus 

from point and non-point sources in the Werra River basin in Germany.  

Panagopoulos et al. (2013) used a decision support tool with multi-objective optimization using 

an elitist Genetic Algorithm (Deb et al., 2002) to identify the distribution of low-cost BMPs in a 

basin to ensure good water quality. They used a BMP database containing the sum of annual total 

phosphorus (TP) concentration, NO3-N losses and cost of implementation. Their study yielded one 

hundred optimal solutions, which were then simulated in SWAT to evaluate the TP and NO3-N 

concentration in the river. Policymakers, stakeholders, and resource managers need mechanisms 

to assess which combination of measures can be adopted to achieve the target limits for their basin 

(reducing the total nitrogen). In this regard, metaheuristic algorithms constitute an extensive 

collection of optimization techniques inspired by concepts of natural phenomena. They are 

increasingly used to solve challenging tasks like model calibration, planning, design and operation 

of water resources systems due to the versatility and adaptability of the algorithms (Maier et al., 

2019). Their ability to solve complex, non-linear problems with a significant degree of complexity 

is advantageous to solve the optimal spatial distribution of measures in a river basin. Amongst the 

metaheuristic algorithms, swarm intelligence-based algorithms are popular among researchers as 

they are robust, flexible, and scalable to complex problems (Oliveira et al., 2020). This paper 

considers two well-established algorithms: Ant Colony Optimization (ACO) and Particle Swarm 

Optimization (PSO).  
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Dorigo and Caro (1999) developed the metaheuristic ACO technique from their multiple works 

on ant systems. The first application of ACO in water resources was by Abbaspour et al. (2001) to 

estimate the hydraulic parameters of unsaturated soils. From then on, ACO has been widely 

applied to numerous water resources management problems like reservoir operation and 

scheduling (Jalali et al., 2006; Kumar and Reddy, 2006), design of water distribution networks 

(Maier et al., 2003; Zecchin et al., 2007), stormwater and sewer systems (Afshar, 2010), 

environmental flow management (Szemis et al., 2012; 2014) etc. Madadgar and Afshar (2008) 

developed an improved continuous ACO for specific water resources requiring continuous 

domains or decision spaces. Their algorithm robustly identified the optimal solution for a single 

hydropower reservoir operation problem. Liu et al. (2012) used Multiple-type Ant Colony 

Optimization for optimal Multiple Land Allocations (MACO-MLA) to a large-scale catchment in 

China to optimize the land-use allocation with conflicting objectives. They compared it with the 

Genetic Algorithm (GA, Holland, 1975) and Simulated Annealing (SA, Kirkpatrick et al., 1983). 

They concluded that MACO-MLA generates better utility values than SA and GA.  

Skardi et al. (2013) used ACO to evaluate wet ponds’ efficient sizing and location for a 

minimum cost to reduce sediment yield. They simulated a hypothetical basin in SWAT. They 

determined that ACO performed well and yielded the best location and size of the ponds for 

minimum cost to reduce sediment yield at the outlet of the wet ponds. Nguyen et al. (2016) applied 

a combination of static and dynamic decision variable options with ACO to optimize crop and 

water allocation. The authors used a graph structure to represent the decision space. Their study 

concluded that the ACO with dynamic decision variable options consistently performed better and 

was computationally efficient than static decision variable options and linear programming. 

Ostfeld (2011) reviewed the application of ACO for water resources system analysis and the 

challenges faced by researchers. A more recent review of ACO in water resources management is 

discussed by Afshar et al. (2015). 

The reliability and robustness of ACO has been well established in solving benchmark 

problems of water distribution networks (Maier et al., 2003; López-Ibáñez et al., 2008; Zecchin et 

al., 2003). Analogy can be drawn from the water distribution network problem (nodes, pipe sizes 

and connections) to the current study (mitigation measures) as it also involves discrete 
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combinatorial optimization. Therefore, in the attmept to apply bio-inspired algorithms for IRBM 

aspects, ACO has been chosen to be used in this study. 

PSO, proposed by Kennedy and Eberhart (1995), is a stochastic optimization technique based 

on the swarm’s cooperation to find the optimal solution. Due to its easy-to-implement and 

straightforward structure and fast convergence, PSO has gained popularity to solve complex real-

world problems. PSO and its variants have been applied to various problems in water resources 

management, like training an artificial neural network to predict real-time water levels in a river 

(Chau, 2004) and reservoir operation (Baltar and Fontane, 2008; Fallah-Mehdipour et al., 2011; 

Ostadrahimi et al., 2012; SaberChenari et al., 2016), parameter optimization of hydrological model 

(Zakermoshfegh et al., 2008), stormwater network design (Afshar, 2010), land-use spatial 

optimization (Ma et al., 2011), design and optimization of water distribution networks (Ezzeldin 

et al., 2014; Surco et al., 2018), and modeling and predicting water quality parameters (Aghel et 

al., 2019). Liu et al. (2012) used multi-objective PSO to solve the land use zoning problem at a 

county level. They concluded that integrating the GIS information with multi-objective PSO is a 

promising and efficient approach to solve the land use zoning problem. Liu et al. (2013a) used 

hybrid PSO and system dynamics to solve urban land use allocation at a macro-level, considering 

the socio-economic variables. They concluded that their combined model reproduces the complex 

land use behavior at multiple scales and develops alternative land-use patterns based on user-

generated scenarios. A comprehensive overview of PSO and its variants is discussed by Zhang et 

al. (2015), Wang et al. (2018), and Jain et al. (2018). Jahandideh-Tehrani et al. (2020) discussed 

the application of PSO in water management. Due to a wide range of applications in water 

resources problems, including spatial optimization of land use, PSO and ACO are selected to be 

evaluated in this study. PSO is a versatile and flexible algorithm with simple straightforward 

equations and fast convergence. Due to its ease of implementation and it being a swarm 

intelligence-based optimization algorithm similar to ACO, it has been used in this study to compare 

or contrast the results of ACO. 

This study explores the effectiveness of metaheuristic bio-inspired algorithms in performing a 

discrete combinatorial optimization of the spatial distribution of mitigation measures to reduce 

long-term TN concentration at the river basin’s outlet. We adopt an approach where the simulation 

results of the selection of measures by the algorithms are not pre-determined but instead unfold 
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during the iteration process based on the hydrological model computation, which to our 

knowledge, has been attempted for the first time. This enables the algorithms to be used on other 

catchments with minimal code revision. Section 3.2 describes the study area, measures to be 

distributed, implementation level in the search space and a brief description and adaptation of ACO 

and PSO to distribute the measures spatially. The results are presented and discussed in Section 

3.3, while conclusions and recommendations are given in Section 3.4. 

3.2 Materials and Methods 

3.2.1 Study Area 

In this study, the upper part of the Fuhse River basin in Lower Saxony, Germany, with a 

catchment area of 385 km2 is simulated (Figure 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Upper Fuhse river basin, Germany 
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According to the Bundesanstalt für Gewässerkunde (BfG – German Federal Institute of 

Hydrology), the ecological and chemical status of the Fuhse River as of December 2015 is 

categorized as ‘bad.’ The deterioration of the river is attributed to diffused pollution from 

agricultural activities, the discharge from the wastewater treatment plants in the basin, the mixing 

of rainwater runoff and sewage, and heavy hydro morphological modifications of the river. 

Therefore, the upper Fuhse river basin is an apt location for a case study to analyze the spatial 

distribution of measures to reduce total nitrogen (TN) concentration in the river. 

The basin is simulated in the Hydrological Predictions for the Environment model (HYPE, 

https://www.smhi.se/en/research/research-departments/hydrology/hype-our-hydrological-model-

1.7994). HYPE is a dynamic, semi-distributed, and process-based hydrological and nutrient 

transport model developed by the Swedish Meteorological and Hydrological Institute (Lindström 

et al., 2010). The climate in the study area is influenced by the oceanic conditions of the North 

Sea. The average annual precipitation of 718 mm and 645 mm was recorded in stations Salzgitter-

Lichtenberg and Lengede, respectively, between 2000 and 2016, with July and August being the 

wettest months of the year. The climate data for the study area was collected from the German 

weather service (Deutscher Wetterdienst). Data from 26 rainfall stations within a 25 km radius 

around the basin was used to derive interpolated rainfall for the subbasins using the Inverse 

Distance Weighting method (IDW). And for temperature, solar radiation, relative humidity and 

wind speed, data from stations within a 30 km radius was interpolated using the IDW method.  

The national medium-scale soil map and database, BÜK 200, describes the varieties of soils in 

the catchment. The various soil types identified within the basin are podosol (arenic), regosol, 

luvisol, pseudogley (stagnosols), moor soil, gley and black soil. The most prominent soil type in 

the basin is podosol and black soil. The major land-use types, according to the 2006 CORINE 

landcover map, are agriculture (67.2%), urban settlements (14.2%), and forest (13%). There are 

also some pastures (3.4%), natural grassland (1.1%) and water bodies (1.1%) in the basin. 

Statistical agrarian information published by the Agricultural Chamber of Lower Saxony 

(Landwirtschaftskammer Niedersachsen) is used to estimate the crop distribution in the basin. 

Major crops grown in the basin include winter wheat, winter barley, sugarbeet, summer barley, 

rapeseeds, potatoes and corn silage. Data on streamflow, water quality and discharge from 
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wastewater/sewage treatment plants (STP) were provided by the Lower Saxony Water 

Management, Coastal Defense and Nature Conservation Agency (NLWKN).  

The Fuhse river shows pollution by nutrients, mainly attributed to inflow from wastewater 

treatment plants (point sources) and agricultural activities (non-point sources). This study 

considers seven wastewater treatment plants that discharge their treated wastewater into the Fuhse 

River network. Since no data on the amount of fertilizer applied and the application time were 

available, recommendations of the Agricultural Chamber of Lower Saxony are used in the model, 

assuming non-point nutrient inputs from “good agricultural practice.”  

A global sensitivity analysis of the HYPE model parameters using Brogonov’s Delta Moment-

Independent Analysis (Brogonov, 2006) is performed to determine the most sensitive parameters 

of HYPE. These parameters are calibrated to obtain model performance of Kling-Gupta Efficiency 

(KGE, Gupta et al., 2009) = 0.66, Percentage bias (PBIAS) = 3.14 for streamflow, and PBIAS = -

0.03 for TN concentration at the basin outlet for the calibration period. The simulated TN 

concentration is taken as the initial TN concentration for the study, and the long-term annual mean 

TN concentration at the outlet of the calibrated model is 4.963 mg/l. The description of the 

measures, their level of implementation, modification of relevant HYPE files, and parameters that 

are changed to implement the measures are listed in Table 3.1. The measures are implemented at 

the beginning of the simulation, and their effect is evaluated after a two-year warm-up period for 

six years. Nine measures under four categories are provided to the algorithms to distribute in the 

basin. A condition to not repeat the measure from the same category is applied to ensure no 

reiteration of a measure in policy development. 
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Table 3.1 Mitigation measures to reduce TN and their level of implementation in HYPE 

Category Description Parameter(s) File 
Level of 

implementation 

I 

A. 30% Reduction in amount 

of N in fertilizer 
fn1; fn2 

CropData.txt crop 

B. 10% Reduction in amount 

of N in fertilizer  
fn1; fn2 

II 

A. 30% Reduction in amount 

of N in manure 
mn1 

B. 10% Reduction in amount 

of N in manure 
mn1 

III 

A. Tillage using Harrow tines 

cultivator 

fdown1; 

mdown1; 

mdown2; 

B. No-tillage   

IV 

A. 100% efficiency of STP to 

remove TN 

B. 20% increase in efficiency 

of STP to remove TN 

ps_tnconc 

PointSourceData.txt sub-basin 

C. 50% increase in efficiency 

of STP to remove TN 
 

The objective function of the study is defined as follows: 

 max 𝑓(𝐶) =  
∑ �̅�𝑛

𝑖=0

𝑛
−  

∑ �̅� (𝐶)𝑛
𝑖=0

𝑛
 (3.1) 

𝑖 = 1, 2, … 𝑛  

where 𝑓(𝐶) is the long-term annual mean TN reduction achieved by 𝐶, �̅� is the annual mean TN 

concentration at the outlet of the calibrated model, �̅� is the annual mean TN concentration at the 

outlet of the model achieved by 𝐶, 𝐶 is the combination of measures from the four categories and 

their respective levels of implementation, and  𝑛 indicates the years of simulation. 

3.2.2 Ant Colony Optimization (ACO) 

ACO is inspired by the foraging behavior of ants using stigmergy. When the ants search for 

food, the initial path taken by an individual ant is essentially random. Once the ants find a food 
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source, they deposit pheromones to indicate a favorable path for other colony members to follow. 

When another ant encounters the path during its search, it will most likely follow an existing 

pheromone trail and enforce the path with its pheromone deposition. Thus, increasing the 

probability of other ants selecting the specific path. The shortest path will have a higher pheromone 

deposition than the longer path and attracts more ants. In this way, ants can find the shortest path 

to food sources using pheromone information (Dorigo and Stützle, 2004). 

In the optimization technique, the colony of artificial ants is equipped with heuristic 

information and knowledge of searching for optimal solutions in the decision space. They 

communicate indirectly using pheromones. Pheromones are evaporated over time to avoid ants 

being stuck at the local optima. Multiple methods of pheromone updating are prescribed by 

researchers (Dorigo et al., 1996; Bullnheimer et al., 1997; Stützle and Hoos, 2000). In this study, 

pheromone update is done per the MAX-MIN ant system (MMAS, Stützle and Hoos, 2000) as it 

has proven to be the best performing variant of the Ant System (Dorigo and Stützle, 2004).  

Adaptation to the spatial distribution 

Figure 3.2 demonstrates the ACO process adopted in this study. In optimizing the spatial 

distribution of mitigation measures, the objective function is to maximize the TN reduction at the 

basin outlet. Along with the measures and their level of implementation, the algorithm is initialized 

with a maximum number of iterations (𝑖𝑡𝑒𝑟𝑀𝑎𝑥), number of ants (antNo), heuristic information 

(η), evaporation rate (ρ) and initial pheromone concentration (𝜏0).  

In the first step, an artificial ant randomly selects a measure and its level of implementation. 

The pair is implemented in the hydrological model HYPE, and the resulting TN reduction is 

calculated. The next pair is selected based on probability, which is dependent on the pheromone 

trial (τ𝑆𝐿) and heuristics information (𝜂𝑆𝐿). 

The transition probability (𝑃𝑆𝐿
𝑘 (𝑖𝑡𝑒𝑟)) for 𝑘𝑡ℎ ant to select the next pair (𝑆𝐿) is defined as: 

 𝑃𝑆𝐿
𝑘 (𝑖𝑡𝑒𝑟) =

[τ𝑆𝐿
𝑖𝑡𝑒𝑟]

𝛼
 [𝜂𝑆𝐿

𝑖𝑡𝑒𝑟]
𝛽

∑[τ𝑆𝐿
𝑖𝑡𝑒𝑟]

𝛼
 [𝜂𝑆𝐿

𝑖𝑡𝑒𝑟]
𝛽

 (3.2) 
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where τ𝑆𝐿
𝑖𝑡𝑒𝑟 is the value of the pheromone trial in the current iteration 𝑖𝑡𝑒𝑟, 𝜂𝑆𝐿

𝑖𝑡𝑒𝑟 is the heuristic 

function (individual TN reduction), α is the pheromone exponential parameter, and β is the 

desirability exponential parameter. 

At each iteration 𝑖𝑡𝑒𝑟 , the pheromone trail is updated according to MMAS (Stützle and Hoos, 

2000) as follows: 

 τ𝑆𝐿
𝑖𝑡𝑒𝑟+1 = ρ ∗  τ𝑆𝐿

𝑖𝑡𝑒𝑟 +  ∆ τ𝑆𝐿
𝑏𝑒𝑠𝑡 (3.3) 

where ρ is the pheromone evaporation rate, ∆ τ𝑆𝐿
𝑏𝑒𝑠𝑡 = 𝑓(𝑠𝑏𝑒𝑠𝑡) , and 𝑓(𝑠𝑏𝑒𝑠𝑡) is the solution 

achieved by either the iteration-best ant (𝑠𝑖𝑏) or the global-best ant (𝑠𝑔𝑏) depending on 𝑖𝑡𝑒𝑟 value. 
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Figure 3.2 Flowchart of Ant Colony Optimization for spatial distribution of measures  



 

39 

 

According to Stützle and Hoos (2000), the use of either 𝑠𝑖𝑏  or 𝑠𝑔𝑏  solution in the pheromone 

update ensures a more vigorous exploration of the search space in the earlier iterations and more 

vigorous exploration of the overall best solution during the later iterations. And to avoid stagnation 

of the search range of pheromones, explicit limits are placed on pheromone trials such that, 

 τ𝑚𝑖𝑛 ≤ τ𝑆𝐿
𝑖𝑡𝑒𝑟 ≤  τ𝑚𝑎𝑥 (3.4) 

where τ𝑚𝑖𝑛 is the minimum τ value and τ𝑚𝑎𝑥 is the maximum τ value. In this study, the minimum 

τ value is assigned 0, while the maximum τ value for an iteration is calculated using the following 

equation: 

 τ𝑚𝑎𝑥
𝑖𝑡𝑒𝑟 = (1 − 𝜌) ∗ 𝑓(𝑠𝑔𝑏) (3.5) 

where 𝑓(𝑠𝑔𝑏) is the solution achieved by the global-best ant. At the end of the optimization, the 

final selection of the ants forms an optimal spatial distribution of mitigation measures and their 

level of implementation. Detailed information on ACO and MMAS can be found in Dorigo and 

Stützle (2004). 

3.2.3 Particle Swarm Optimization (PSO) 

PSO is inspired by the social behavior of a school of fish or flock of birds to find food or 

shelter (Kennedy and Eberhart,1995). The birds or fish (particles) base their search on the 

knowledge of their own experience and the swarms’ experience. Thus, the entire swarm reaches 

the destination at a quick pace. According to Kennedy and Eberhart (1995), the particles are 

assigned initial location and velocity in the optimization technique. Each particle determines the 

best location depending on the evaluation of the objective function. New velocities are computed 

based on the current velocity, particle’s best location so far and swarm’s best location so far. The 

next location is iteratively computed based on the current location and the new velocity. 

Adaptation to the spatial distribution 

Figure 3.3 demonstrates the PSO process adopted in this study. Similar to ACO, PSO is 

also initialized with the maximum number of iterations (iterMax) and the number of particles 

(pNo). In the first step, particles are initialized with a combination of a random measure and their 

level of implementation. These measures are implemented in HYPE, and the resulting TN 
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reduction is calculated. The best selection of a pair by the particle so far (IbestP) and the swarm’s 

best selection of pair so far (GbestP) are calculated. The velocity of a particle for the next iteration, 

𝑉𝑆𝐿
𝑖𝑡𝑒𝑟+1, is computed as follows: 

 

𝑉𝑆𝐿
𝑖𝑡𝑒𝑟+1 =  𝑤 ∗ 𝑉𝑆𝐿

𝑖𝑡𝑒𝑟 + 𝑐1 ∗ 𝑟1 ∗ (𝐼𝑏𝑒𝑠𝑡𝑃𝑆𝐿 − 𝑃𝑆𝐿) + 𝑐2 ∗ 𝑟2

∗ (𝐺𝑏𝑒𝑠𝑡𝑃𝑆𝐿 − 𝑃𝑆𝐿) 

(3.6) 

where 𝑤 is the variable inertia weight, 𝑉𝑆𝐿
𝑖𝑡𝑒𝑟 is the velocity of the particle in the current iteration, 

𝑖𝑡𝑒𝑟, 𝑐1 and 𝑐2 are the cognitive and social parameters of the particle (in this study, 𝑐1 = 𝑐2 = 2 is 

used (Ozcan and Mohan, 1999)),  𝑟1 and 𝑟2 are the random numbers, 𝐼𝑏𝑒𝑠𝑡𝑃𝑆𝐿 is the best selection 

by the particle so far, 𝐺𝑏𝑒𝑠𝑡𝑃𝑆𝐿 is the swarm’s best selection so far, 𝑃𝑆𝐿 is the current selection. 

The value 𝑤 is computed using the formula given by Shi and Eberhart (1999), 

 𝑤 =  (𝑤1 − 𝑤2) 
𝑖𝑡𝑒𝑟𝑀𝑎𝑥 −  𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑀𝑎𝑥
+ 𝑤2 (3.7) 

where 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 is the maximum number of iterations, 𝑖𝑡𝑒𝑟 is the current iteration and the values 

of 𝑤1  and 𝑤2  are 0.9 and 0.4, which is widely accepted by researchers for PSO applications 

(Jordehi and Jasni, 2013). The following equation calculates the next pair: 

 𝑃𝑆𝐿
𝑖𝑡𝑒𝑟+1 = 𝑃𝑆𝐿 +  𝑉𝑆𝐿

𝑖𝑡𝑒𝑟+1 (3.8) 

where, 𝑃𝑆𝐿
(𝑖𝑡𝑒𝑟+1)

 is the selection of pair for the next iteration, 𝑃𝑆𝐿 is the current selection, 𝑉𝑆𝐿
(𝑖𝑡𝑒𝑟+1)

 

is the velocity of a particle for the next iteration. 

Thus, to seek the optimal solution, each particle derives its next selection from its previous 

best (IbestP) selection and the swarm’s best (GbestP) selection. At the end of the optimization, the 

final selection of the particles forms a selection of optimally distributed mitigation measures and 

their level of implementation. A penalty function is introduced to ensure the search of particles 

stays within the feasible region. A reduction of 0.01 in the solution achieved by the particle is 

applied, and the particle is randomly assigned the next pair. 
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Figure 3.3 Flowchart of Particle Swarm Optimization for spatial distribution of measures  
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3.3 Results and Discussion 

3.3.1 Parameter selection  

In this study, ACO is parameterized by α, β, ρ, number of ants and maximum iteration. Since 

the approach used in the optimization of the water distribution network is similar to the one used 

in this study, the values of α = 1, β = 0.5 and ρ = 0.98 from Zecchin et al. (2003). The algorithm 

was run for 100 iterations with a varied number of ants (10, 20, 30, 40, 50). It can be seen from 

Table 3.2 that even with only 10 ants, the global best solution achieved by the ACO is on par with 

those achieved by a higher number of ants. The difference lies in the computational time required 

to run a larger number of ants to accomplish the best solution. Similar results can also be seen for 

PSO when the algorithm is run for 100 iterations with 10, 20, 30, 40, and 50 particles. The number 

of ants selected for ACO is 10, and 30 particles are selected for PSO.  

Table 3.2 Results for ACO and PSO 

Number of 

ants/particles 

ACO PSO 

Global best 

solution (C) 

Iteration 

number 

Global best 

solution (C) 

Iteration 

number 

10 0.907 57 0.904 13 

20 0.905 66 0.905 20 

30 0.907 38 0.906 7 

40 0.907 18 0.906 29 

50 0.905 12 0.905 66 

3.3.2 Spatial distribution of mitigation measures 

The measures selected by ACO and PSO are shown in Table 3.3. The maximum long-term 

annual mean TN reduction achieved by ACO is 0.907 mg/l (18.26 % reduction), while PSO 

achieved 0.906 mg/l (18.25 %). In this study, we see that both algorithms are on par with slightly 

better performance by ACO.  
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Table 3.3 Measures selected by ACO and PSO 

Algorithm  Selection (level, measure) 

ACO [(5, IA), (1, IIA), (1, IIIB), (1015, IVA)] 

PSO [(5, IA), (5, IIB), (1, IIIB), (1015, IVA)]   

The crop-level measures chosen by ACO and PSO can be visualized in Figures 3.4 and 3.5, 

respectively. The final set of measures selected by ACO includes, 

i) 100% efficiency of sewage treatment plants at subbasin 1015 (Kläranlage Salzgitter-Nord) 

to reduce TN,  

ii) reduce 30% of N fertilizer application from the current application level in the sugarbeet 

fields (Category I),  

iii) reduce 30% manure application from the current application level in the winter wheat fields 

(Category II), and  

iv) adopt no-tillage (100% reduction in tillage) in the winter wheat fields in the basin (Category 

III). 



 

44 

 

 

Figure 3.4 Selection of crop-level measures by ACO  

(downward arrow indicates reduction) 

The final set of measures selected by PSO includes,  

(i) 100% efficiency of sewage treatment plants at subbasin 1015 (Kläranlage Salzgitter-

Nord) to reduce TN, 

(ii) reduce 30% of N fertilizer application to sugarbeet fields from the current application 

level (Category I), 

(iii) reduce 10% of manure application to sugarbeet fields from the current application level 

(Category II), and  

(iv) adopt no-tillage (100% reduction in tillage) in winter wheat fields in the basin (Category 

III). 

100

30

30

0 20 40 60 80 100

Winter

Wheat

Winter

Barley

Barley

Potato

Sugarbeet

Rapeseeds

Corn Sillage

% of application from current status

C
ro

p
s

Crop level measures selected by ACO

Category I Category II Category III



 

45 

 

 

Figure 3.5 Selection of crop-level measures by PSO 

(downward arrow indicates reduction) 

The annual reduction achieved by the measures selected by the algorithms is compared with 

the initial annual mean TN concentration at the Peine gauging station. As seen in Figure 3.6, both 

algorithms are on par with each other and successfully reduce total nitrogen concentration at the 

basin outlet. Both algorithms achieved a maximum annual mean reduction of 1.18 mg/l of TN for 

2011, while the minimum annual mean reduction of 0.53 mg/l of TN in 2007 in terms of absolute 

value. The maximum percentage reduction of annual mean TN was achieved in 2008 (31%), and 

the minimum percentage reduction of annual mean TN was achieved in 2010 (11%). 
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Figure 3.6 Annual mean TN achieved by ACO and PSO 

The effects of implementing the measures chosen by ACO and PSO on river reaches in 

long-term annual mean TN percentage reduction are shown in Figures 3.7 and 3.8, respectively. 

The reach in subbasin 15 shows the highest reduction (43.8%) by both algorithms, indicating the 

high contribution of TN by the wastewater treatment plant. The subbasins downstream of 15 – 14, 

13, 11, 09 and 07 also show a substantial reduction in long-term annual mean TN of greater than 

10%. Other critical reductions can be seen in subbasins 06, 10 and 12 for both algorithms. A 

detailed table with the reduction achieved by the algorithms for each reach in a subbasin is 

provided in Appendix B. 
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Figure 3.7 Long-term annual mean percentage reduction of TN by ACO 
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Figure 3.8 Long-term annual mean percentage reduction of TN by PSO 
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A binary map to indicate the reaches on which ACO achieved slightly better long-term 

reduction than PSO is shown in Figure 3.9. The orange-colored reaches indicate better 

performance by ACO, while blue-colored reaches indicate the same performance by both 

algorithms. Better spatial performance of ACO over PSO can be seen. 

 

Figure 3.9 Performance indicator map 
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3.4 Conclusions 

This research explores the application of ACO and PSO to distribute the mitigation measures 

in a river basin spatially. Both algorithms can distribute measures in the river basin to achieve 

long-term TN reduction. The reduction achieved by the algorithms is similar to each other though 

the measures selected by them slightly vary. Provided that the implementation of multiple 

measures at various sub-basins forms a strategy, the solution generated by the algorithm may yield 

more than one strategy as optimal strategy. In such cases, it is the discretion of the decision-makers 

to choose what works best for their basin conditions. 

This study indicates the forte of bio-inspired algorithms in selecting measures and distributing 

them on multiple implementation levels. ACO and PSO are able to achieve an 18.26 % and 18.25 

% reduction of long-term annual mean TN concentration at the outlet of the basin, respectively. 

The considered algorithms have high practical significance as they are reliable, simple and can be 

easily implemented for solving problems on a basin-scale by optimizing integrated river basin 

management plans. ACO conatins a mixture of descriptive procedures and equations, while PSO 

is mainly based on dynamic velocity equations (Yang et al., 2018). To guarantee the particles 

stayed within the feasible region, a penalty function had to be used for PSO, while ACO did not 

require a penalty function. 

Basic algorithms of ACO and PSO are used in this study to optimize the spatial distribution of 

mitigation measures to indicate the ability of bio-inspired algorithms in IRBM. In future works, it 

is highly recommended to consider the application of bio-inspired algorithms with parallelization, 

integration with local search operators and hybridization with other bio-inspired algorithms like 

GA. Also, with respect to problem formulation, a single objective function is used in this study, 

i.e., maximum reduction of long-term annual mean total nitrogen concentration. In future works, 

it is recommended to use multi-criteria, multi-constraints problems with social acceptance, and 

ecological significance, which is closer to real-world application.  

The hydrological model HYPE was chosen in this study because of its low computational cost. 

However, to evaluate the effects of measures in detail across the subbasins and assess the emission 

and immission aspects within the basin, future studies can use a comprehensive agro-hydrological 

model, urban hydrological model and crop models. Future studies can also include daily data of 
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discharge and TN concentration from wastewater treatment plants and continuous long-term series 

of observed TN concentration, and actual data of fertilizers applied in the fields. Other mitigation 

measures like hydro-morphological mitigation measures, implementation of buffer strips, use of 

catch crops and crop rotation schemes can also be analyzed to achieve higher reduction.  

The spatial distribution of measures helps the decision-makers evaluate the extent to which 

such measures effectively reduce the total nitrogen concentration in surface waters. However, a 

comprehensive understanding of the spatial restrictions and conflicts in implementing the 

measures like intertwined objectives should be evaluated too. They will differ from basin to basin 

based on the local ecological, socioeconomic status, and stakeholders, and therefore, each 

catchment needs to be evaluated separately. 
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4. Application of the theory of planned behavior with agent-

based modeling for sustainable management of vegetative filter 

strips 

This chapter is an edited version of Kasargodu Anebagilu, P., Dietrich, J., Prado-Stuardo, L., 

Morales, B., Winter, E., Arumi, J. L. (2021). Application of the theory of planned behavior with 

agent-based modeling for sustainable management of vegetative filter strips. Journal of 

Environmental Management 284, 112014. 

 

Abstract 

This study proposes an innovative socio-hydrological modeling framework for the 

development of environmental policies that are tailored to farmers’ attitudes and economic 

interests but also optimize environmental criteria. From a farmers’ on-site survey, a behavior 

model is developed based on a modified Theory of Planned Behavior (TPB). The dynamics of the 

social and environmental system are implemented by coupling an agent-based model (ABM) with 

an agro-hydrological model for vegetative filter strips (VFS). A case study is conducted with 

farmers from the Larqui river basin, Chile, to understand their standpoint on VFS to reduce soil 

loss in their agricultural fields and protect water bodies. Partial least square structural equation 

modeling is used to analyze the survey on farmers’ aspirations and attitudes. It showed that the 

constructs added to TPB (behavioral morality, behavioral willingness, knowledge) had a 

significant effect on modeling the intention and behavior of farmers to have VFS. Based on the 

survey, the farmers were categorized into perceptive, proactive, bounded rational and interactive 

agents. An ABM was developed using the behavioral categorization, related decision rules, and 

utility functions of agricultural activities, including the VFS implementation and management. The 

results of the ABM corroborate with the survey of the farmers. The survey supports the view that 

the decision on the width of VFS is not solely dependent on the utility generated and the reduction 

in soil losses but also on the behavior of farmers. This behavioral sociohydrological modeling 

framework is capable of supporting policy-makers in developing tailored environmental policies 

that might improve the acceptance of sustainable agricultural practices by farmers. 

Keywords: Agent-based modeling, Theory of planned behavior, Vegetative filter strip, NetLogo, 

Socio-hydrology, Farmer survey. 
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4.1. Introduction 

In environmental management, the interplay between humans and natural resources is a 

dynamic system of natural processes and human behavior under institutional and legal boundaries. 

Environmental management does not only integrate different disciplines but focuses on the 

interface between humans and nature. The emerging research in socio-hydrology is an example of 

water resources management (Sivapalan et al., 2012; Di Baldassarre et al., 2015). Coupling human 

behavior with economic and environmental models is essential in order to develop tailored policies 

for stakeholders (Jager et al., 2000; Allred and Gary, 2019; Granco et al., 2019; Dessart et al., 

2019). In the agricultural sector, there is extensive research on the adoption of technological and 

environmental innovations, and several tools support the evaluation of their impacts on livelihoods 

and the environment (Berthet et al., 2016; Llewellyn and Brown, 2020). 

Vegetative filter/buffer strips (VFS) are natural or managed structures at the interface 

between agricultural land and water bodies. VFS provides multiple benefits and is thus considered 

an effective environmental management measure (Lovell and Sullivan, 2006). They remove 

sediments and pollutants from overland flow (Dillaha et al., 1989; Deletic and Fletcher, 2006), 

stabilize streambanks (Dosskey et al., 1997), conserve wildlife habitats (Boulet et al., 2003), 

provide extra yield if they can be harvested (Borin et al., 2010), and they add aesthetic value to the 

field (Klein et al., 2015). Lowerance et al. (2002) and Abu-Zreig et al. (2004) reported sediment 

removal of up to 97% in a well-maintained VFS. VFS reduced runoff volume up to 90%, sediment 

up to 94%, nitrate concentration by 88% and phosphate concentration by 95% (Saleh et al., 2017). 

The trapping efficiency of VFS is majorly influenced by their width (Abu-Zreig, 2001; Akan and 

Atabay, 2016; Campo-Bescos et al., 2015). The effects of VFS policies, including regulations 

about their width, need to be examined at the farm and catchment level (Dosskey et al., 2008). 

Chile recommends the use of VFS to prevent the movement of eroded soils into nearby 

waterbodies. However, the use of VSF is only mandatory for forest plantations (Romero et al., 

2014) and voluntary in the case of animal farms depending on their environmental licenses (Flores 

et al., 2010). There is no particular directive for the implementation or protection of VFS in 

agricultural fields. Developments in other countries show that riparian areas have been converted 

for crop production with the consequence of conflicts between farmers and environmentalists. 

Often, measures were later done to restore at least a small VFS. This study investigates if the 
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interplay between the attitudes and behavior of farmers, on the one hand, and the natural 

environment, on the other hand, can be described by a coupled system of a VFS model and an 

agent-based model (ABM) based on the social theory of planned behavior. 

Studying and understanding human behavior is important to comprehend, develop and 

improve decision-making processes. Neoclassical decision theory assumes that rational actors 

introduce new technology when the benefits exceed the costs of introduction and that relative 

prices determine the optimum in the new equilibrium. Simon (1957) extended decision theory with 

behavioral aspects by introducing the ‘satisficing concept’ as a base of a new ‘bounded rationality’ 

paradigm, which accepts compromise solutions for complex decision problems rather than search 

for optimum solutions. Recent theories consider psychological and sociological factors that 

influence decision-making behavior, namely aspirations, risk attitudes, cultural norms and peer 

group influence (Kahneman, 2003; Weersink and Fulton, 2020). While humans have different 

individual thinking and behavioral processes, societal and environmental elements also influence 

decision-making (Miyasaka et al., 2017). Schulze et al. (2017) classified the most influential 

factors of a human decision-making model as monetary returns, social groups, impact on others, 

environmental altruism, and environmental/ non-economic benefits such as aesthetic values or 

recreation. Human responses with respect to policies that recommend field-level changes require 

multi-disciplinary knowledge and understanding of not only the policy and the effects of it on the 

environment but also the effect of the policy’s outcome on stakeholders like farmers (Smajgl et 

al., 2011). 

In 1991, Ajzen developed the Theory of Planned Behavior (TPB) as a successor to the 

Theory of Reasoned Action by Fishbein and Ajzen (1975). He theorized that the likeliness to 

perform a behavior stems from the strength of the intention and willingness to try and exert effort 

towards the task at hand (Ajzen, 1991; Suh and Hsieh, 2016). According to TPB, the intention to 

perform is dependent upon attitude, subjective norms and perceived behavioral control. The simple 

and efficient framework of TPB makes it easier to analyze behavior from the background 

information collected on-site in the form of local interactions or in-depth surveys (Russo et al., 

2015). 

Zubair and Garforth (2006) have studied farmers’ behavior to different aspects related to 

adopting agroforestry practices using TPB. They concluded that TPB provides a structural 
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framework to identify the outcomes based on beliefs, social interaction and behavioral control 

factors. Cooper (2017) evaluated the application of TPB to ensure compliance with urban water 

restrictions and concluded that behavioral compliance is significantly influenced by the constructs 

- attitude, social norms and behavioral control as explained by the TPB model. Caffaro et al. (2019) 

assessed different paths using which the information environment affects the adoption of 

sustainable measures by the farmers based on the TPB constructs. They concluded that attitude 

and perceived behavioral control were the dominant constructs that influenced farmers’ behavior. 

The farmers’ decision was not influenced by subjective norms in that study. Understanding the 

different aspects of behavioral theory can give an insight into the decision-making process of the 

farmers, capturing different dynamics and feedbacks as seen in a socio-ecological system (Liu et 

al., 2008; Allred and Gray, 2019). Due to the presence of clarity of constructs and correlational 

confirmation (Skår et al., 2008), TPB is used in the current study. 

Agent-based models (ABM) emulate the internal behavior of agents in a system, their 

interaction amongst each other, as well as their interaction with the environment. Enrico Fermi, a 

physicist in the 1930s, incited upon the concept of ABM whilst trying to transport neutrons through 

matter (Turrell, 2016). However, the very first economic ABM was developed to analyze agents’ 

preference for the location to live by Schelling (1971). The agents and their environment are 

represented explicitly in ABM, thus modeling local interactions in a straightforward manner 

(Izquierdo et al., 2019). Internal conditions for behaviors can also be encoded to express real-world 

conditions (Matthews et al., 2007). The ability of ABM to be analogs of real behavior makes it 

suitable to model the heterogeneous and complex structure of socio-environmental and socio-

hydrological systems. The agent’s behavior is modeled using the knowledge extracted from the 

context information without the use of training datasets. ABM is considered as a decision support 

tool through which, in an environment, an agent’s interaction is simulated, which would be 

expensive to analyze in the real world (Castilla-Rho et al., 2015). 

Although the application of ABM was initially used in computer simulations (An, 2012), 

in recent years, ABM is applied to diverse studies. ABM has been applied for studies involving 

the farmers’ behavior with respect to the application of landscape, economics (Guillem et al., 

2015), environmental effects (Heckbert et al., 2010), socio-hydrology (Pouladi et al., 2019), and 

policy development (Happe et al., 2006; Brady et al., 2012; Granco et al., 2019). One of the 
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prominent merits of using ABM is to deal with public involvement in the representation of 

scientific formulations in the form of ‘soft sentences’ that is comprehensible and easily understood 

by all the stakeholders (Rixon et al., 2007). Rounsevell et al. (2012) discuss the suitability of ABM 

with qualitative social-survey data. According to Etienne et al. (2002), the analysis of different 

viewpoints for representing the agent’s perception is important in their simulation to encourage 

the agents to act collectively. Sengupta et al. (2005) investigated the acceptance of a conservation 

program by farmers to avoid the cultivation in endangered land due to erosion in exchange for 

monetary value. The ABM developed in their study is combined with a geographical information 

system to provide spatial effects of land use policies which are then used in decision-making with 

the help of a decision tree. Some case studies where an agent-based simulation model has been 

used in environmental studies have been documented by Hare and Deadman (2004). Therefore, 

ABM is chosen to be adopted in this study to model farmers’ decision-making process in the 

economic, social and environmental context. 

The overall aim of this work is to demonstrate the importance of developing coupled social 

and technical models based on social behavioral theories when investigating human-environment 

feedbacks. For this, we follow these main objectives: 

(a) Development of a model of farmers’ behavior under the social and environmental influence by 

an empirical survey and an extension of the TPB;  

(b) Investigation of environmental and social factors that motivate farmers to keep or implement 

a certain width of VFS by coupling a VFS model and an ABM;  

(c) Discussion of implications for effective agricultural and water policy-making based on results 

from a case study in Chile. 

4.2. Materials and methods  

4.2.1. Study area  

This study has been carried out in the district of Diguillín, which is part of Regiόn de ̃ Nuble 

in Chile. It has a flat topography with an elevation range of 65–163 m.a.s.l. The catchment is in 

the upstream of River Larqui between Latitude 36°41’ – 36°48’ S and Longitude 72°16’ – 72°06’ 

W. The basin has an area of 101 km2. River Larqui receives water from the nearby streams and 
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flows into River Itata. It receives an annual average rainfall of 1000 mm, and the mean temperature 

varies from 20°C in summer to 7°C in winter. Volcanic soil is predominant in the region leading 

to the formation of fertile Bulnes soil (red clay-loam) majorly in the basin. The basin shows strong 

agricultural activity, mainly based on annual crops, sugar beet, orchards along with meadows, 

thickets, forests and livestock. The basin experiences soil erosion, reduced crop yields and 

increased cost of production (Flores et al., 2010). Bonilla and Vidal (2011) have revealed that 

furrow irrigation systems adopted by farmers can also be one of the factors that hike the rate of 

soil erosion.  

According to Centro de Informaciόn de Recursos Naturales (CIREN) report (2010), major 

parts of the study area experience moderate to light erosion. Moderate soil erosion refers to erosion 

that has exposed the subsoil surface and, in some cases, results in the formation of grooves. Light 

erosion refers to the loss of soil that occurs on surfaces with slope and semi-dense vegetation cover 

of 50–75% that would slightly alter the thickness and texture of the soil. Thus, the conservation 

and management of VFS are suitable measures to tackle erosion and finally reduce sediment 

transport in the region. 

4.2.2. Modeling framework  

To understand and model the decision-making process of farmers regarding VFS, a socio-

hydrological chain of experiments and models is developed, as shown in Figure 4.1:  

(i) a field survey is carried out with random sampling method to investigate the field 

conditions and attitudes of a group of farmers belonging to the Larqui river basin;  

(ii) the constructs of the TPB are extended for socio-environmental problems, and the 

survey is evaluated using partial least squared structural equation modeling (PLS-

SEM);  

(iii) decision rules and utility functions are developed to describe farmers’ behavior and 

decision processes based on TPB and monetary benefits from agricultural activities 

and VFS;  

(iv) an ABM using the NetLogo software is created with decision rules for agents based 

on their behavioral categorization; 
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(v) soil erosion for the full combination of different field classes and widths of VFS is 

computed by the model VFSMOD-W, the results of which are coupled with ABM 

to implement human-environment feedbacks;  

(vi) the results of ABM are evaluated, and factors influencing the decision-making of 

farmers to ensure a certain width of VFS along their fields are examined.  

 

Figure 4.1 Schematic representation of the workflow 

4.2.2.1. Field survey and behavioral analysis with an extended TPB  

For the survey, a population of 120 farmers was identified, who own farms that are adjacent 

to River Larqui and are registered with The National Irrigation Commission of Chile (Comisiόn 

Nacional de Riego, CNR) as consumers of water from River Larqui at the time when the survey 

was conducted. A simple random sampling method is adopted to collect the survey of 92 farmers, 

who agreed to participate in the study. The questionnaire focused on farmers who cultivate crops 

and vegetables on their land. It is inspired by Armstrong and Stedman (2012). In this study, a five-

point Likert scale is used, which allows the farmers to express how much they agree or disagree 

with a given statement. The survey is designed to gather information on the agricultural practices 

of the farmers, their perspective on the environment, water resources and vegetative filter strips. 

The survey includes questions that support the evaluation of different constructs of TPB to analyze 

the factors influencing the decision-making of the farmers and is part of supplementary material 

(Appendix C). It is divided into five sections. The first section contains questions to gather basic 
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information about the agricultural field, like size, layout, the crop grown, and irrigation techniques 

used, etc. The next sections were divided to address questions related to TPB.  

The assumptions used in TPB are that human behavior is goal-oriented, influenced by 

society and peers, and decisions are made with a logical and rational approach (Ajzen, 1985; 

Sandberg and Conner, 2008). The constructs of TPB are as shown in Figure 4.2. Ajzen (1991) 

defined behavioral intention as ‘the amount of effort one is willing to exert to attain a goal.’ The 

intention is steered by the attitude towards the behavior and subjective norm (Menozzi et al., 2015). 

Subjective norm refers to societal pressure perceived by an individual on whether to perform or 

not perform the said act (Bijttebier et al., 2018). It refers to the perception of the ability or difficulty 

that a respondent may face towards executing the behavior. This may be impacted by previous 

experiences, information received from peers and friends (Ajzen, 1991). Please refer to Ajzen 

(1991) for detailed information on the development of the original constructs.  

To encompass the overall field situation, an extended TPB is used in this study as shown 

in Figure 4.2. Along with the constructs from the basic TPB, three additional constructs are used 

in this study – knowledge, behavioral willingness and behavioral morality that describe individual 

norms. One of the key factors that influence behavior and decision-making is knowledge (Michie 

et al., 2008). The construct knowledge enables to understand environmental, VFS related 

knowledge the respondents have and the influence it has on the decision-making behavior. The 

knowledge of VFS and its benefits on water, flora, fauna, reduction of sediment and pollutant 

transport via overland flow and economy of the farmers are usually known only to 

environmental/agricultural experts and organizations despite VFS being recommended as one of 

the best management practices. Introducing the construct knowledge is based on the assumption 

that farmers do not have this knowledge which is crucial for them to decide on the width of VFS 

in their agricultural fields. 
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Figure 4.2 Extended Theory of Planned Behavior model 

(The original TPB model from Ajzen, 1991 is highlighted with a grey background) 

Gerrad and Gibbons (1997) defined behavioral willingness as ‘openness to risk 

opportunity.’ It entails how far the respondent is willing to enact a particular behavior under certain 

conditions. In this study, this construct is used to find the influencing factors that would motivate 

the farmers to overcome the existing prejudice to retain and widen VFS. It is assumed that the 

influencing factors could be neighbors, association with agricultural organizations, improvements 

to the environment, an increase of income, monetary compensation, etc. Behavioral morality is 

another factor that is an integral part of decision-making that has been empirically proven to have 

a significant effect (Garrigan et al., 2018). With this construct, we attempt to find the thinking of 

farmers on a personal level about bigger issues of the environment, water, their importance, and 

protection for the future generation. We try to appeal to farmers’ determination to safeguard the 

environment on an individual level. With the inclusion of all the different constructs influencing 

decision-making, an extended TPB, as shown in Figure 4.2, is used in this study. The weights of 

the constructs of the extended TPB provide information to the policy-makers as to which 

constructs are most important to ensure the widening widths/keeping VFS in the agricultural fields 

within the basin. 
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4.2.2.2. Behavior categorization, development of utility function and decision rules  

The farmers are represented as agents in NetLogo with the behavioral change factors 

implemented in utility functions. The farmers were classified into different types depending on 

their response to the survey questions to factor in the personality or behavioral category. This 

classification helps to identify the agents, observe the change in the behavior of the agents, the 

interaction of the agents amongst themselves and the environment from a socio-economic context. 

These are important factors as they affect farmers’ decision-making (van Dijk et al., 2016). In most 

of the socio-environmental systems, the agents follow a bounded rational decision or a profit-

maximizing decision by taking into account the environmental information. Besides, agents are 

social learners that imitate other agents (Schlüter et al., 2017). Therefore, the agents in this study 

are classified as a) proactive (having a particular goal to achieve – maximization of profit), b) 

perceptive (pro-environment – cares and is inclined to take actions to safeguard the environment; 

opt for managed VFS instead of natural), c) bounded rational (rational optimizers that act with 

the limited collected information and also take into account selected neighbor actions) d) 

interactive (communicates with other agents and is easily influenced by neighbor actions). To 

explain the selection criteria for the different types of agents, the utility function U is defined as, 

 U = PUF + EUF (4.1) 

PUF represents the monetary benefit from the agricultural activities and EUF represents 

environmental benefits in monetary terms from having VFS. EUF is further elucidated as, 

 EUF = [L*W](IncentiveVFS + Be) (4.2) 

The incentive (IncentiveVFS) received for the width of VFS and saving water resources, the 

long-term benefit (Be), which entails the application of nutrients saved and harvest from VFS 

would vary depending on the length (L) and width (W) of VFS chosen by the farmer. The 

monetary benefit from agricultural activities, PUF, is further composed of several terms as 

elucidated in Eq.4.3.  

 

PUF = ProfitAGRI – LossAGRI – [L*W] InvVFS – [L*W] MtVFS + [L*W] 

(NPs + HarvestVFS) 
(4.3) 
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where ProfitAGRI is defined as the profit earned by the farmer from the agricultural field except for 

the area of VFS, and it is calculated by multiplying the active area (Q) with net income (N) as 

shown in Eq. 4.4. LossAGRI is defined as the loss in monetary value caused by soil loss due to 

erosion, and it is computed Eq. 4.5, where SL is the soil loss, N is the income from agricultural 

production; CSL is the cost of soil losses. PUF  also takes into consideration the loss, which the 

farmer would face in terms of the initial investment, and the cost of annual maintenance of VFS 

as well as the financial saving done in terms of nutrients saved by VFS and the financial gaining 

from harvesting the produce of VFS.  

 ProfitAGRI  = Q * N  (4.4) 

 LossAGRI = SL* N + SL * CSL  (4.5) 

The different parameters and their values in the utility function for this study are listed in Table 

4.1. 

Based on the behavioral types, different decision-making rules are defined with respect to 

the utility for future actions. It is factored within decision-making rules that some cases of having 

of VFS may cause negative utility. Therefore, care is taken to ensure that agents do not accept the 

economic loss and reject a width of VFS if it has a negative impact on their economic situation. 

Even the perceptive agents who favor increasing the width of VFS would not go ahead with the 

width that results in a negative income in any of the three years. All the rules for each type of 

agent classified are tabulated in Table 4.2. 
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Table 4.1 Parameters of the utility function 

Parameter Description Units Value References 

Q Productive agricultural field m2 Variable 

according to 

the field class 

From field 

survey L Length of VFS m 

N Net income from the agricultural 

activity 

CLP/ yr / m2 

Variable 

according to 

the year 

FAO, 2017 

SL Soil loss kg/ yr / m2 From 

VFSMOD-W; 

CSL Cost of soil losses  CLP/ yr / kg  Tapia and 

Villavicencio, 

2007 

W Width of VFS m [2, 5, 10, 20] - 

InvVFS Investment cost (one-time) for 

implementing VFS 

CLP/ m2 58.4 Tapia and 

Villavicencio, 

2007 MtVFS Annual maintenance cost  CLP/ yr / m2 103.3 

NPs Cost of nutrients saved by VFS CLP/ yr / m2 1.79 Geza et al., 

2009 HarvestVFS Profit from harvesting VFS 

produce 

CLP/ yr /  m2 6.63 

IncentiveVFS Monetary incentives from the 

State including water incentives 

CLP/ yr / m2 15.4 Artacho et al., 

2009; Geza et 

al., 2009 

Be Long-term environmental 

benefit 

CLP/ yr / m2 20.67 USDA 

Program Aid, 

2000 

Monetary units expressed in Chilean Pesos (CLP) 
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Table 4.2 Decision-making rules for different types of agents 

Type of agent Basic characteristics Decision-making Rule 

Pro-active agent Maximize profit 
Max U considering W = 2, 5,10 or 20 m 

Perceptive agent 

 

Favorable to the environment as long 

as utilities are positive 

Case1: U > 0; new U >= 0 change W 

Case2: U < 0; decrease W to keep U > 0  

Case 3: U = 0; retain W  

Bounded 

rational 

Favorable to the environment as long 

as utilities are better, take into 

account peer influence as well as 

information collected 

Case1: U > 0; new U >= U change W 

Case2: U < 0; decrease W to keep U > 0  

Case 3: U = 0; retain W 

Interactive Decision under peer influence but 

will ensure utilities stay positive 

Case 1:  new U < U; retain W 

Case 2: new U > U; change W 

4.2.2.3 VFS modeling with VFSMOD-W 

Several models can be used to assess the efficiency and characteristics of VFS. VFSMOD-

W (Muñoz-Carpena et al., 1999) (https://abe.ufl.edu/faculty/carpena/vfsmod/index.shtml) was 

selected in this study, as it requires a limited number of input parameters and can be coupled with 

the ABM in NetLogo. VFSMOD-W is an event-based model that simulates infiltration, outflow, 

and sediment retention efficiency for VFS of different characteristics (Abu-Zreig, 2001; Dosskey 

et al., 2002). To simulate soil losses with the VFSMOD-W, a combination of unsteady storm, 

incoming hydrograph, VFS spatial distribution, and incoming sediment’s characteristics have to 

be introduced. The results of VFSMOD-W include water outflow, infiltration volume and 

sediment trapping in the VFS amongst other parameters (Abu-Zreig, 2001). Due to the non-

availability of hourly precipitation data, UdeC - Chillán station which is approximately 50 km 

away from the study area is used. For ease of soil loss simulation and incorporation into the ABM, 

the agricultural fields of the farmers are divided into 6 classes depending on the area. Accordingly, 

the source area flow path length (Slength) and source area width (Swidth) are defined for each 

field class. The slope of the source of the area was considered as 1%.  
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4.2.2.4 ABM using NetLogo 

Modeling the socio-environmental-economic system of how farmers decide on which 

width of VFS to provide on their farms, depending on the utility incurred by them with active 

environmental interaction and interaction between the farmers themselves is examined in the 

current study by an ABM. Each agent represents a farmer who is the owner of a field. Agents are 

categorized according to their behavioral type as described in 4.2.2.2. A field is represented as 

one grid cell, independent of the real size of the field. Each tick represents a single day in the 

simulation period between 1998-2008.  It is designed in such a way that; the agents receive 

information about the soil losses in their fields and the amount of soil retained by the VFS, and 

the current condition at the end of every year as simulated by VFSMOD-W. An internal parameter 

(Erosion Problems parameter, EPP) is defined and assigned a value of 1 to indicate that the soil 

losses in a calendar year are greater than the threshold value, else it is assigned 0. A one-time 

investment is made by perceptive agents to convert the existing natural VFS into managed VFS 

based on the knowledge of soil erosion and retention by both managed and natural VFS at the 

start of the simulation based on the response to the survey.  

At the end of every three years of simulation (2000, 2003, 2006 and 2009), the agents are 

asked to analyze the utility generated, and a decision is made width of VFS for the next three 

years. This decision is governed by the decision-making rules set for each agent category as 

described in Table 4.2. During the simulation period, bounded rational and interactive agents are 

enabled to exchange information via interaction. At the end of the simulation period, the decision 

of farmers from each category is analyzed to see what width is chosen by them.  

Technically, the ABM was implemented in the NetLogo software developed by Uri 

Wilensky in 1999 (http://ccl.northwestern.edu/netlogo/). It is a free and open-source software 

platform with a simplified and flexible programming language (Castilla-Rho et al., 2015). Hence, 

it is chosen to be used for the current study. For detailed information, the ODD+D protocol 

developed by Müller et al. (2013) to describe human decision-making in ABM for the current 

study is provided in supplementary materials (Appendix C).  
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4.3. Results and Discussion 

4.3.1 Statistical analysis of the field survey and the theoretical model 

From the population size of 120 farmers, 92 agreed to participate but 18 farmers did not 

complete the survey. The resulting sample size of 74 leads to an error margin of 7.1% for the 

desired confidence level of 95%. The sample size is the upper limit posed by the constraints of 

the study area and problem, even though a smaller error would be desirable. From the analysis of 

the survey, it is found that 48% of the respondents reported that they use stream water for 

irrigation (13%-always; 12%-seasonally; 19%-most of the times; 4% -few days) and more than 

50% responded that the water quality ranged between bad to extremely bad based on their 

observation. However, 95% responded that they had buffer strips on their farm. 72 out of the 74 

respondents said they had ‘natural’ vegetation in their buffer, and only 1 respondent indicated 

having a manmade buffer strip. Natural buffers are not taken care of or are managed to ensure 

erosion reduction and the common response for the question as to why they do have it was that 

‘it is just there’.  

Though in the survey it is seen that 54% of the farmers thought that their land is not 

affected by erosion, this is taken into account as not having knowledge of erosion as erosion is a 

gradual process. Since the farmers had very little knowledge about buffer strips in general, they 

had little knowledge about buffer strip programs and how they operate and are beneficial to them. 

This is seen with 50% of the respondents’ replying ‘don’t know’; 40% agreeing that VFS is 

beneficial and 9% disagreeing with the benefits of such programs. From the responses provided 

by the farmers in the survey, the farmers who were motivated only by monetary benefits of VFS 

are classified into proactive agents (11). The farmers that actively wanted to have VFS in their 

fields and were concerned about water and environment are classified into perceptive agents (4). 

The farmers who were aware of the soil erosion in their fields, had knowledge on the quality of 

water they received and the benefits of buffer are categorized into bounded rational agents (10). 

The farmers who were willing to have VFS because of their neighbors or friends are categorized 

into interactive agents (49). 

To analyze the causal relationship of the TPB, structural equation modeling (SEM) was 

performed using partial least square (PLS-SEM) method with SmartPLS 3 

(https://www.smartpls.com/) (Hair et al., 2014). 15 questions from the survey were used to 
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develop the formative-formative type higher-order construct model using the embedded two-

stage approach, as shown in Figure 4.3. Each item contributes to the formation of the construct, 

and they are not interchangeable, therefore, a formative-formative type model is used in the study. 

The lower-order constructs of the model are attitude (ATT), subjective norm (SN), perceived 

behavioral control (PBC), behavioral morality (BM), behavioral willingness (BW) and 

knowledge (KNO). Intention (INT) and behavior (BEH) are the general higher-order constructs. 

In the embedded approach, the scores of the lower-order constructs are added as variables to the 

higher-order constructs. 

 

Figure 4.3 Formative-formative type model of the extended TPB 

 (embedded two-stage approach) 

To validate the formative-formative type higher-order construct, the measurement model 

is evaluated in a two-step procedure. In the first step, collinearity issues are checked. There are no 

collinearity issues with the items (questions) of lower-order constructs, as the VIF values are all 

lower than the conservative threshold of 3, as shown in Table 4.3.  
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Table 4.3 VIF, outer loading, t and p-value of constructs 

Constructs - Items  VIF t-value  Outer 

loading  

p-value 

Attitude  7.482  0 

I want to conserve stream for the future 

generation 

1.329 1.62 0.48  

I will be upset if my activities harmed stream 1.833 3.6 0.81  

The stream is the lifeline of the region 1.537 1.32 0.55  

I have benefitted from VFS 1.308 2.01 0.46  

Subjective Norm  0.90  0.367 

Neighbors are my close friends 1.468 3.15 (-0.45)  

I will implement VFS if most of my neighbors 

do 

1.899 9.91 0.87  

Perceived Behavioral Control  4.26  0 

VFS improves the aesthetics of my property 1.71 1.67 0.79  

VFS improves wildlife habitat in the region 2.028 3.95 0.94  

Knowledge  3.88  0 

I have heard about VFS 1.77 5.19 0.91  

I know about stream water quality 1.395 1.73 0.59  

Behavioral Morality  4.84  0 

Protecting the environment is important to me  2.199 2.46 0.96  

I have a moral obligation to maintain good water 

quality 

2.041 1.07 0.82  

Behavioral Willingness  7.78  0 

I will implement VFS if volunteers plant it 1.592 3.73 0.75  

I will implement VFS for cleaner runoff  1.313 2.76 0.65  

I will if I can plant fruit trees in VFS 1.652 1.04 0.61  
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In the second step, the test statistic t and its significance p of the indicator outer weights 

(relative) and outer loading (absolute) are evaluated by running a bootstrap of 5000 samples. Items 

with significant outer weight (p<0.1) and/or outer loading greater than 0.5 are retained (Hair et al., 

2014). These outcomes support the validity of the formative-formative type construct. The 

redundancy analysis to confirm convergent validity could not be performed, as global single items 

for the constructs were not considered in the questionnaire. 

In the structural model, a conservatively significant (p<0.1) path coefficient of 0.593 with 

a t-value of 7.95 is obtained by bootstrapping 5000 samples between INT and BEH. The predictive 

power of the structural model is assessed by the coefficient of determination, Radj
2 that is 0.342 

with a t-value of 3.649, which suggests the significant extent of the model effect. Out of sample 

predictive power is assessed using the blindfolding method in SmartPLS 3. Using the blindfolding 

method, Q2 of 22% is recorded for both BEH and INT, which depicts medium predictive relevance 

of the model. 

 

Figure 4.4 Simplified higher-order formative-formative type PLS-SEM model of 

extended TPB results 

*Total effects of extended repeated indicator approach 
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As shown in Figure 4.4, the attitude of the farmers has the highest effect on whether or 

not they will retain or extend the width of VFS. They also perceive there exist some benefits of 

VFS that could improve the character of their field, which is evident by the PBC having a higher 

effect on intention (0.225).  The farmers are not majorly influenced by the decision of their peers 

as it showed a non-significant effect on intention (0.05). From the extended constructs, it can be 

seen that farmers are more willing to have VFS on their fields if support is provided to them in 

the form of volunteers to help with the VFS and if farmers can yield fruits from VFS. The 

impression of VFS being capable of generating cleaner runoff (overland flow) from their fields 

also makes it agreeable for the farmers to have VFS in their fields. The moral inclination to protect 

the environment for future generations and to maintain good water quality is also strong amongst 

the farmers, as recorded by a high effect of BM on intention (0.214). Knowledge scored the least 

significant effect (0.198) on intention. It goes on to prove that depending on the task at hand, 

knowing does not always transcend into an intent to act. The loading of intention on behavior is 

0.593, which identifies with the positive outlook farmers have towards VFS by the end of the 

survey. 

4.3.2 VFSMOD-W Modeling 

Six different classes of fields are analyzed for four widths of VFS: 2, 5, 10, and 20 m. 

There exist natural buffers in the agricultural fields in the study area, which are not managed. This 

has been modeled in VFSMOD-W as an ‘actual’ case by using alfalfa as vegetation. The effect 

of VFS is simulated by using tall fescue as the VFS vegetation. Two cases ‘actual’ and ‘VFS’ are 

simulated to help the agents decide the comparison of soil losses. Simulations are performed for 

all the rainfall events during the period between 1998 – 2008.  

As shown in Figure 4.5, VFS of 20 m width performs consistently better compared to 

smaller widths. This indicates that opting for a VFS with larger width is the optimal solution to 

prevent soil losses in the agricultural fields. However, it should be noted that in ABM, the choice 

of width of VFS by agents is not solely dependent on retention efficiency.  

VFSMOD-W is used in this study as a tool to obtain the difference in soil erosion and 

retention by a managed VFS and natural case only. The complete removal of VFS is not foreseen, 

as the conversion of riparian land without VFS into managed or natural VFS is not. Such cases 

may be of interest in other studies with different land use characteristics. If a study is entirely 
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dependent on a detailed design of VFS including vegetation, more sophisticated modeling with 

relevant sensitivity analysis; calibration and validation are recommended to be performed.  

 

Figure 4.5 Performance efficiency of different widths of VFS in soil retention for all 

classes combined together 

4.3.3 ABM Modeling 

The agents in ABM are assigned an initial buffer width same as the actual width reported 

by the farmers in the survey. Though it is evident from Figure 4.5 that a larger width of VFS will 

reduce soil loss to a greater extent, it may not be the preferred choice of the farmers. This is 

because a larger width would imply loss of productive land and, subsequently, crop yield and 

income for the farmers. Farmers will also have to consider the annual maintenance cost that VFS 

would incur. Here, the behavioral classification and respective utility functions of farmers come 

into focus.  

Based on the behavioral categorization and the utility function, the agents decide on the 

width of VFS once every three years, as shown in Figure 4.6. At the beginning of the simulation, 

9% of the agents have a VFS width of 2 m, 37% of 5 m, 20% of 10 m and 33% of 20 m. By the 
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end of the simulation period, based on the utility generated over the years from the activities, 20% 

of agents opt to have a VFS of 2 m width, 26% of 5 m, 12% of 10 m and 42% of 20 m.  

 

Figure 4.6 Decision of the agents on the width of VFS at the end of every three years 

Depending on the willingness to manage the VFS based on the different benefits, 40 (54%) 

farmers expressed strong agreement, and 34 (46%) farmers showed a mild agreement to ‘don’t 

know’ in the onsite survey. In the developed ABM, by the end of the simulation period, 39 agents 

were convinced of the benefits of VFS and hence have opted for larger (10 m and 20 m) widths 

of VFS and those agents that showed milder agreement have chosen the smaller (2 m and 5 m) 

widths of VFS as seen in Table 4.4. 
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Table 4.4 Agent decision depending on the behavioral categorization 

Agent behavioral type Width of 

VFS 

1998 2000 2003 2006 2009 

Perceptive 

2 m 0 0 0 0 0 

5 m 1 0 0 0 0 

10 m 1 1 0 0 0 

20 m 2 3 4 4 4 

Proactive 

2 m 1 11 11 11 11 

5 m 5 0 0 0 0 

10 m 1 0 0 0 0 

20 m 4 0 0 0 0 

Interactive 

2 m 5 5 5 5 5 

5 m 19 19 19 19 19 

10 m 9 9 9 9 9 

20 m 16 16 16 16 16 

Bounded rational 

2 m 1 0 0 0 0 

5 m 2 1 0 0 0 

10 m 4 2 1 0 0 

20 m 3 7 9 10 10 

 

During the survey, perceptive farmers expressed their intention to have managed VFS in 

their agricultural field. They understand the long-term environmental benefits of having VFS in 

the region and their field. This can be seen in Table 4.4, which represents the change in the agents’ 

decisions with respect to behavioral categorization. The decision rule of perceptive agents allows 

them to increase the width of VFS unless they have a negative utility. It can be seen that as per 

their behavioral description, 2 of the perceptive agents have increased the width of VFS to 20 m 

by the end of the simulation period.  A similar condition is observed from the bounded rational 

agents. These agents comprehend not only the utilities generated but also the short-term and long-

term rewards of having larger widths of VFS. Since these agents perceive both monetary and 

environmental benefits, they gravitate towards larger widths of VFS. 
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We observe that the proactive agents adopt 2m as their width of VFS by the end of the 

simulation period. Proactive farmers would try to maximize their profit and hence adopt the 

minimum possible option as simulated. The lesser the width of the VFS, the more active the field 

for agriculture is made available, which increases their income. The decision rule for proactive 

agents lets them retain their initial width unless the current utility is less than the previous period’s 

utility upon increasing the width of VFS. Being profit-oriented is the characteristic choice of 

proactive agents. 

 Proactive farmers encourage interactive farmers to decrease the width of VFS, while 

perceptive farmers encourage them to increase the width. Since the number of perceptive farmers 

in the study area is less, the proactive farmers sway the interactive farmers. However, it should 

be noted that interactive farmers are also subjected to the influence of bounded rational farmers. 

The number of bounded rational and proactive farmers is similar, thus putting the interactive 

farmers in a state of limbo. Therefore, in ABM, interactive agents have maintained their initial 

width until the end of the simulation period exhibiting no change. If bounded rational agents are 

well made aware of the environmental benefits of having wider VFS, they are also expected to 

increase the width of VFS as the combined effect of the subjective norm and morality is greater 

than perceived behavioral control.  

The varying degrees of the area owned by the respondents, along with their behavioral alignment 

have led the agents to not make a definite choice of a single VFS width which can also be 

witnessed in the real world. It must be noted that this study is modeled for the current generation 

of landowners and their current land-use practices only. This cannot be transferred to their 

offspring or the next generation as the behavioral orientation, market, economics could be 

completely different. 

4.4 Conclusions 

The results of VFSMOD-W show that having a managed VFS is more effective in 

retaining soil loss occurring in the agricultural field when compared to the natural case, which is 

the current situation of the farmers in the Larqui river basin, Chile. The larger width of VFS 

performs the best, which is evident from evaluating different VFS widths between 2 - 20m. This 

study revealed that the farmers in the Larqui basin are not opposed to the idea of having a VFS 
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as long as the utility generated stays positive. This has been proved from the developed 

interdisciplinary ABM and the on-site survey.  

Farmer behavior whether individual or as a community, is difficult and complex to 

capture. Patterns from the empirical data derived from a survey are used to form explicit 

assumptions about the behavioral categories of the farmers and behavioral observations from the 

real world with the backing of the theoretical perspective of TPB. ABM corroborates the complex 

network of understanding farmer behavior by TPB. It provides a great insight into the policies 

that could be developed in the future for the farmers to motivate them to prevent soil erosion using 

VFS as a sustainable approach. The understanding from this study could be further used to 

develop policies that motivate farmers to adopt sustainable agricultural and water management 

practices. The developed approach of combining the observed data, theoretical behavior model 

and agent-based modeling coupled with an environmental model can also be extended to other 

socio-hydrological or socio-environmental studies for developing tailor-made management 

policies. 

However, it should be noted that economic, political and social dynamics affects the 

decision-making process. Re-creating the same response from the same set of the population at a 

different time duration would not yield the same results due to the changes in the economy, social 

awareness, and personal evolvement experienced by the respondents in the time between the two 

surveys (Öhlmer et al., 1998). In addition, human behavior is said to be non-predictable as it 

involves non-rational aspects as well. This makes it difficult to validate a specific ABM developed 

for a particular dataset with an alternative dataset. This can be partially overcome by introducing 

a relevant proven theoretical framework to ABM, as in this study, which will improve the 

foundation of an integrated, complex quantitative framework, thus can make it more robust. 

Additionally, the commitment to perform the behavior would lean out with time, that is 

not considered in this study. If the decision is to be made within a short time duration or if the 

implementation in itself has a short-term existential duration, then it has better chances of being 

attained compared to the long-term commitment. If the time given to decide is too much, then a 

significant difference in the behavior can be observed. The temporal effect on the decision-

making behavior of farmers can be analyzed in future studies. Anxiety to carry out a decision 

tendency to not follow through will also affect the implementation of a behavioral intention in 
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reality. This can be analyzed and reduced by the policymakers by frequently interacting with the 

farmers and motivating them. Results of such efforts can also be evaluated in future studies. 

One of the restrictions of such studies with a limited population is a relatively low 

statistical robustness due to the low sample size, which was overcome by using expert-based 

knowledge. Low sample size can be attributed to the combined aspects of geographical limitation, 

farmer population who had fields adjacent to the river and were dependent on the river, the 

willingness of farmers to participate in a survey, limited time to name a few. Since this paper 

addressed socio-hydrological aspects and not pure social science, an interdisciplinary attempt was 

done to develop a balanced combination of social scientific and natural scientific tools for 

modeling human-environmental feedbacks. The case study may serve as a proof of concept but 

not yet a general solution. In future studies, a large sample size collection to prove the statistical 

stability of the theoretical model should be ensured by choosing a study area with a large sample 

population. Furthermore, other fields of environmental management and other socio-economic 

conditions could be investigated.  
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5. Conclusions and Outlook 

Integrated river basin management (IRBM) involves the management of the river and its 

basin from a cross and inter-disciplinary perspective. It aims to maximize the socio-economic 

aspects while maintaining/conserving/protecting the quality and biodiversity of the ecosystem. 

Implementation of IRBM has become crucial with decreasing water quality, declining water 

resources and the collapse of the balance of ecosystems worldwide. As discussed, the physical 

implementation of IRBM faces challenges that can be overcome by considering the river basin as 

a system. Under such consideration, optimization becomes a powerful tool with which multi-level, 

integrated aspects can be analyzed, and decisions can be made in the best interest of the river basin 

and its entities. An optimization model acts as an educative tool in decision-making adaptable 

under different conditions (Horne et al., 2016). Different variations in the application of bio-

inspired optimization algorithms to optimize different aspects of IRBM are covered in this thesis. 

The thesis starts with a case study showcasing the ability of bio-inspired optimization algorithms 

to distribute mitigation measures within a basin to reduce long-term mean annual total nitrogen 

(TN) concentration by coupling the algorithms with the hydrological model. Furthermore, the 

prospect of developing an optimized tailor-made policy with stakeholder involvement is evaluated. 

This entails an agent-based model coupled with a vegetative filter strip model backed by a social 

behavioral theory. 

Though extensive research on the application of bio-inspired optimization techniques on 

land use and urban development planning has been carried out, application in the field of 

optimizing river basin management plans or spatial distribution of measures is still at its nascent 

stage. In Chapter 3, ACO and PSO are used to optimize the distribution of mitigation measures in 

a river basin. The algorithms evaluate different combinations of measures for the upper Fuhse 

model. It emphasizes on the aspect of identifying the applicable measures to improve the water 

quality status in IRBM. The objective function of the algorithms was to maximize long-term 

annual mean TN reduction at the Peine gauging station (basin outlet) from 2006 to 2011. Measures 

on crop and sewage treatment plant management are considered as these are identified to be the 

primary sources of TN pollution in the Fuhse river. The combination of measures selected by ACO 

and PSO reduced the long-term annual mean TN concentration by 18.26 and 18.25 %, respectively. 
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By evaluating the TN concentration on river reaches at the subbasin level, it can be seen that ACO 

performs slightly better than PSO though overall, they are on par with each other.  

It is essential to evaluate which measures or practices work best for a river basin as each 

has different land use patterns, hydrological processes and stakeholder practices. Only after such 

an evaluation can a customized river basin management plan be developed. Multiple combinations 

of measures could yield the reduction achieved by the algorithm selected combination. This can 

be contained by developing a multi-criteria optimization considering costs, benefits, nutrient 

management, and ecological evaluation as criteria in the algorithms. This study should be 

considered a ‘stepping-stone’ research to explore the abilities of bio-inspired techniques in a 

hydrological model coupled with the spatial distribution of mitigation measures. In this study, only 

a few agricultural measures on crop management and the efficiency of sewage treatment plants 

were considered for the spatial distribution of measures as it is the first of its kind. Future studies 

could include multi-objective, multi-constraint combinatorial aspects of the IRBM measures. This 

could include cost, benefits and social acceptance of measures (environmental and monetary), 

hydro-morphological measures, ecosystem services, agricultural yield etc. 

The complex nature of human behavior has been of interest for many years. Many 

researchers have studied research on modeling and predicting human behavior from past behavior. 

In Chapter 5, Optimization from a planning and decision-making perspective is undertaken using 

theoretical social-behavioral models. In this study, data on the attitude, knowledge, subjective 

norm, perceived behavioral control, morality, and willingness of farmers from the Larqui river 

basin, Chile, is collected by performing an onsite survey. Using data from the survey, a behavioral 

model is developed based on the modified Theory of Planned Behavior (TPB). An agent-based 

model (ABM, in NetLogo) to simulate social and environmental interaction is developed by 

coupling it with a vegetative filter strip model (VFSMOD-W). This framework is used to find the 

optimized width of VFS and the adoption of VFS to prevent soil erosion from agricultural fields 

by the farmers. The results showed that the farmers in the basin would adopt VFS if it prevented 

soil losses and their utility stayed positive. Though some farmers know the current environmental 

condition, further awareness could be created by involving them in framer organizations. However, 

one should note that knowledge doesn’t always transcend into implementation, and some form of 

positive incentives should be provided to motivate farmers to adopt sustainable practices. Because 
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of multiple underlying circumstances, intricate and interrelated aspects, reproducing similar results 

from human behavior is complex. This study proves that combining meteorological, hydrological, 

and agricultural data with a theoretical social model and ABM could be used to develop specific 

plans or management policies for river basins addressing environmental issues. 

Without active stakeholder involvement and cooperative working with decision-makers, as 

proved time and again, it would be impossible to change the water bodies’ status. Eventually, plans 

or policies developed without stakeholders will run into the enforcement problem (Jaspers, 2003). 

Therefore, one of the crucial issues of IRBM is stakeholder participation. Though lessons could 

be learned from other river basins, the basin characteristics, key issues, and plans to overcome 

them are unique to each river basin and must be addressed accordingly. Interactive decision-

support systems with faster converging algorithms (short computational time) that allow real-time 

computation of various scenarios are required. And the bountiful field of flexible, adaptable bio-

inspired algorithms is the apt optimization tool for such complex applications.  

However, one should remember the No Free Lunch Theorems for optimization (Wolpert 

and Macready, 1996). According to this theorem, there exists no one best universal algorithm that 

can be applied to all optimization problems. If one algorithm works better, the better-performing 

algorithm’s accomplishment cannot be guaranteed for a completely different data set or problem. 

And the worse-performing algorithm could efficiently perform better for a different problem. The 

reason can be attributed to the fact that the inference is drawn from a sample data set, and the result 

is probabilistic in nature. Also, the sample dataset could differ for different problems, thus altering 

the performance of the algorithm. This makes the field of metaheuristic bio-inspired optimization 

very attractive, opens the door for the invention of new algorithms, and improves the performance 

of existing algorithms through modification and hybridization. The focal point of the thesis is to 

demonstrate the versatility and adaptability of bio-inspired optimization techniques and to inspire 

more researchers to gain better insight into efficient bio-inspired algorithms to solve large-scale 

real-world IRBM issues. 

 

  



 

80 

 

Software availability: The input data used in Chapters 3 and 4 are publicly available via the 

websites of the providers. Climate data were collected from the German weather service 

(Deutscher Wetterdienst). The national medium-scale soil map and database (BÜK 200) was 

published by the Federal Institute for Geosciences and Natural Resources (Bundesanstalt für 

Geowissenschaften und Rohstoffe). The Lower Saxony Water Management, Coastal Defense and 

Nature Conservation Agency (NLWKN) provided the data on streamflow, water quality, and 

discharge from sewage treatment plants. The HYPE model used in this study was published by 

Lindström et al., 2010 at https://doi.org/10.2166/nh.2010.007. The source code can be downloaded 

on the SourceForge website (https://sourceforge.net/projects/hype/files/). The code for the ACO 

and PSO optimization techniques was written in python 3.6.  

 

 

  



 

81 

 

  



 

82 

 

6. Bibliography 

Abbaspour, K. C., Schulin, R., and van Genuchten, M. T. (2001). Estimating unsaturated soil 

hydraulic parameters using ant colony optimization. Advances in Water Resources, 24(8): 

827–841. https://doi.org/10.1016/S0309-1708(01)00018-5. 

Ab Wahab, M. N., Nefti-Meziani, S. and Atyabi, A. (2015). A comprehensive review of swarm 

optimization algorithms. PLoS ONE, 10(5): e0122827. 

http://doi.org/10.1371/journal.pone.0122827. 

Abu-Zreig, M. (2001). Factors affecting sediment trapping in vegetated filter strips: a simulation 

study using VFSMOD. Hydrological Processes, 15: 1477–1488. 

https://doi.org/10.1002/hyp.220. 

Abu-Zreig, M., Rudra, R. P., Lalonde, M. N., Whiteley, H. R. and Kaushik, N. (2004). 

Experimental investigation of runoff reduction and sediment removal by vegetated filter strips. 

Hydrological Processes, 18 (11): 2029–2037. https://doi.org/10.1002/hyp.1400. 

Afshar, A. (2010). A parameter-free continuous ant colony optimization algorithm for the optimal 

design of storm sewer networks: Constrained and unconstrained approach. Advances in 

Engineering Software, 41: 188–195. https://doi.org/10.1016/j.advengsoft.2009.09.009. 

Afshar, A., Bozorg Haddad, O., Mariño, M. A. and Adams, B. J. (2007). Honey-bee mating 

optimization (HBMO) algorithm for optimal reservoir operation. Journal of the Franklin 

Institute, 344(5): 452–462. https://doi.org/10.1016/j.jfranklin.2006.06.001. 

Afshar, A., Kazemi, H. and Saadatpour, M. (2011). Particle swarm optimization for automatic 

calibration of large scale water quality model (ce-qual-w2): application to Karkheh reservoir, 

Iran. Water Resources Management, 25: 2613–2632. https://doi.org/10.1007/s11269-011-

9829-7. 

Afshar, A., Massoumi, F., Afshar, A. and Marino, M. A. (2015). State of the Art Review of Ant 

Colony Optimization Applications in Water Resource Management. Water Resources 

Management, 29: 3891–3904. https://doi.org/10.1007/s11269-015-1016-9. 

Aghel, B., Rezaei, A. and Mohadesi, M. (2019). Modeling and prediction of water quality 

parameters using a hybrid particle swarm optimization–neural fuzzy approach. International 

Journal of Environmental Science and Technology, 16: 4823–4832. 

https://doi.org/10.1007/s13762-018-1896-3. 



 

83 

 

Ahmad, A., Razali, S. F. M. and Mohamed, Z. S. (2016). The Application of Artificial Bee Colony 

and Gravitational Search Algorithm in Reservoir Optimization. Water Resources 

Management, 30: 2497–2516. https://doi.org/10.1007/s11269-016-1304-z. 

Ahmadi-Javid, A. (2011). Anarchic Society Optimization: A human-inspired method. In IEEE 

Congress of Evolutionary Computation (CEC), 2586–2592. 

https://doi.org/10.1109/CEC.2011.5949940. 

Ahmadianfar, I., Samadi-Koucheksaraee, A. and Bozorg-Haddad, O. (2017). Extracting optimal 

policies of hydropower multi-reservoir systems utilising enhanced differential evolution 

algorithm. Water Resources Management., 31(14): 4375–4397. 

https://doi.org/10.1007/s11269-017-1753-z. 

Ajzen, I. (1985). From intentions to action: a theory of planned behavior. In Kuhl, J., Beckman, J. 

(Eds.), In Action Control: from Cognition to Behaviors (11–39). 

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision 

Process, 50 (2): 179–211. https://doi.org/10.1016/0749-5978(91)90020-T. 

Akan, A. O. and Atabay, S. (2016). Suspended sediment trap efficiency of vegetative filter strips. 

Journal of Hydrologic Engineering, 22(3): 06016018. 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001469. 

Akbari-Alashti, H., Bozorg Haddad, O. and Mariño, M. A. (2015). Application of fixed length 

gene genetic programming (FLGGP) in hydropower reservoir operation. Water Resources 

Management, 29(9): 3357–3370. https://doi.org/10.1007/s11269-015-1003-1. 

Akbari, R., Mohammadi, A. and Ziarati, K. (2010). A novel bee swarm optimization algorithm for 

numerical function optimization. Communications in Nonlinear Science and Numerical 

Simulation, 15(10): 3142–3155. https://doi.org/10.1016/j.cnsns.2009.11.003. 

Alauddin, M. (2016). Mosquito-flying-optimization (MFO). In International Conference on 

Electrical, Electronics, and Optimization Techniques (ICEEOT): 79–84, IEEE. 



 

84 

 

Allred, S. and Gary, G. (2019). Riparian landowner decision-making in the context of flooding: an 

application of the theory of planned behavior. Environment Systems and Decisions, 39(4): 

396–408. https://doi.org/10.1007/s10669-019-09735-1. 

Al-Obaidi, A. T. S., Abdullah, H. S. and Ahmed, Z. O. (2018). Meerkat clan algorithm: a new 

swarm intelligence algorithm. Indonesian Journal of Electrical Engineering and Computer 

Science, 10(1): 354–360. 

An, L. (2012). Modeling human decisions in coupled human and natural systems: review of agent-

based models. Ecological Modelling, 229: 25–36. 

https://doi.org/10.1016/j.ecolmodel.2011.07.010. 

Armstrong, A. and Stedman, R. C. (2012). Landowner willingness to implement riparian buffers 

in a transitioning watershed. Landscape and Urban Planning, 105(3): 211–220. 

https://doi.org/10.1016/j.landurbplan.2011.12.011. 

Arnold, J., Williams, J., Srinivasan, R. and King, K. (1996). SWAT: soil and water assessment 

tool. Temple Texas: USDA–ARS Grassland Soil and Water Research Laboratory. 

Artacho, P., Bonomelli, C., Gonzalez, C. and Araya, E. (2009). Revista agronomia y forestal UC: 

evaluacion SIRSD. Sistema de Incentivos para la Recuperacion de Suelos Degradados, 38(6). 

Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering 

optimization problems: crow search algorithm. Computers & Structures, 169: 1–12. 

https://doi.org/10.1016/j.compstruc.2016.03.001. 

Atashpaz-Gargari, E. and Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for 

optimization inspired by imperialistic competition. IEEE Congress on Evolutionary 

Computation, 4661–4667. https://doi.org/10.1109/CEC.2007.4425083. 

Bairathi, D., and Gopalani, D. (2018). A novel swarm intelligence based optimization method: 

Harris’ hawk optimization. In International Conference on Intelligent Systems Design and 

Applications, 832–842. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_81. 



 

85 

 

Balaci, H. H. and Valenzuela, J. F. (2004). Scheduling electric power generators using particle 

swarm optimization combined with Lagrangian relaxation method. International Journal of 

Applied Mathematics and Computer Science, 14 :411–421. 

Baltar, M. A. and Fontane, D. G. (2008). Use of Multiobjective Particle Swarm Optimization in 

Water Resources Management. Journal of Water Resources Planning and Management, 

134(3): 257-265. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(257). 

Banadkooki, F. B., Ehteram, M., Ahmed, A.N., Teo, F. Y., Ebrahimi, M., Fai, C. M., Huang, Y. 

F. and El-Shafie, A. (2020). Suspended sediment load prediction using artificial neural network 

and ant lion optimization algorithm. Environmental Science and Pollution Research, 27(30): 

38094–38116. https://doi.org/10.1007/s11356-020-09876-w. 

Bandaragoda, D. J. and Babel, M. S. (2010). Institutional development for IWRM: an international 

perspective. International Journal of River Basin Management, 8(3–4):215–224. 

https://doi.org/10.1080/15715124.2010.496707. 

Bandru, S. and Deb, K. (2016). Metaheuristic techniques. Decision Sciences: Theory and Practice. 

In: Sengupta, R. N., Gupta A. and Dutta, J. (Eds.), CRC Press, Taylor & Francis Group, 693–

750. 

Bansal, J. C., Sharma, H., Jadon, S. S. and Clerc, M. (2014). Spider Monkey Optimization 

algorithm for numerical optimization. Memetic Computing, 6(1): 31–47.  

https://doi.org/10.1007/s12293-013-0128-0. 

Behesti, Z. and Shamsuddin, S. M. (2013). A review of population based metaheuristic algorithm. 

International Journal of Advances in Soft Computing and its Applications, 5(1): 1–35. 

Beni, G. and Wang, J. (1993). Swarm intelligence in cellular robotic systems. In Dario, P., Sandini, 

G., Aebischer, P. (Eds), Robots and biological systems: towards a new bionics? ( 703–712), 

Springer, Berlin, Heidelberg. 

Berglund, E. Z. (2015). Using agent-based modeling for water resources planning and 

management. Journal of Water Resources Planning and Management. 141(11): 04015025. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000544. 



 

86 

 

Berthet, E.T., Segrestin, B. and Hickey, G. M. (2016). Considering agro-ecosystems as ecological 

funds for collective design: new perspectives for environmental policy. Environment Science 

and Policy, 61: 108–115. https://doi.org/10.1016/j.envsci.2016.04.005. 

Bidar, M., Kanan, H. R., Mouhoub, M. and Sadaoui, S. (2018). Mushroom Reproduction 

Optimization (MRO): A Novel Nature-Inspired Evolutionary Algorithm. In IEEE Congress on 

Evolutionary Computation (CEC), 1–10. 10.1109/CEC.2018.8477837. 

Bijttebier, J., Ruysschaert, G., Hijbeek, R., Werner, M., Pronk, A. A., Zavattaro, L., Bechini, L., 

Grignani, C., ten Berge, H., Marchand, F. and Wauters, E. (2018). Adoption of non-inversion 

tillage across Europe: use of a behavioral approach in understanding the decision-making of 

farmers. Land Use Policy, 78: 460–471. https://doi.org/10.1016/j.landusepol.2018.05.044. 

Bishop, J. M. (1989). Stochastic searching networks. In First IEE International Conference on 

Artificial Neural Networks, 313: 329–331. 

Biyanto, T. R., Matradji, Irawan, S., Febrianto, H. Y., Afdanny, N., Rahman, A. H., Gunawan, K. 

S., Pratama, J. A. D. and Bethiana, T. N. (2017). Killer whale algorithm: an algorithm inspired 

by the life of killer whale. Procedia Computer Science, 124: 151–157. 

https://doi.org/10.1016/j.procs.2017.12.141. 

Boddula, S. and T.I., E. (2018). Groundwater management using a new coupled model of meshless 

local Petrov-Galerkin method and modified artificial bee colony algorithm. Computer 

Geosciences, 22(3): 657–675. https://doi.org/10.1007/s10596-018-9718-8. 

Boindala, S. P. and Arunachalam, V. (2019). Optimal irrigation planning and operation of reservoir 

using self-adaptive cuckoo search algorithm (SACSA). In 3rd World Irrigation Forum (WIF3), 

1–7 September 2019, Bali, Indonesia. 

Bonilla, C. A. and Vidal, K. L. (2011). Rainfall erosivity in Central Chile. Journal of Hydrology, 

410(1-2): 126–133. https://doi.org/10.1016/j.jhydrol.2011.09.022. 

Borin, M., Passoni, M., Thiene, M. and Tempesta, T. (2010). Multiple functions of buffer strips in 

farming areas. European Journal of Agronomy, 32(1): 103–111. 

https://doi.org/10.1016/j.eja.2009.05.003. 



 

87 

 

Boulet, M., Darveau, M. and Belanger, L. (2003). Nest predation and breeding activity of 

songbirds in riparian and non-riparian black spruce strips of central Quebec. Canadian Journal 

of Forest Research, 33(5): 922–930. https://doi.org/10.1139/x03-029. 

Bouraoui, F. and Grizzetti, B. (2013). Modelling mitigation options to reduce diffuse nitrogen 

water pollution from agriculture. Science of Total Environment. 468–469:1267–77. 

https://doi.org/10.1016/j.scitotenv.2013.07.066. 

Bozorgg-Haddad, O., Azad, M., Fallah-Mehdipour, E., Delpasand, M. and Chu, X. (2021). 

Verification of FPA and PSO algorithms for rule curve extraction and optimization of single- 

and multi-reservoir systems’ operations considering their specific purposes. Water Supply, 

21(1): 166-188. https://doi.org/10.2166/ws.2020.274. 

Bozorgg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S. and Loaiciga, H. (2014). 

Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir 

Systems. Journal of Water Resources Planning and Management, 141(8): 04014097. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000498. 

Braak, C. J. T. (2006). A Markov Chain Monte Carlo version of the genetic algorithm differential 

evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 

16(3): 239–249. https://doi.org/10.1007/s11222-006-8769-1. 

Brady, M.V., Sahrbacher, C., Kellermann, K. and Happe, K. (2012). An agent-based approach to 

modeling impacts of agricultural policy on land use, biodiversity and ecosystem services. 

Landsape Ecology., 27(9):1363–1381. https://doi.org/10.1007/s10980-012-9787-3. 

Bullnheimer, B., Hartl, R. F. and Strauss, C. (1999). A New Rank Based Version of the Ant System 

- A Computational Study. Central European Journal of Operations Research, 7: 25–38. 

Caffaro, F., Roccato, M., Cremasco, M. M. and Cavallo, E. (2019). An ergonomic approach to 

sustainable development: the role of the information environment and social psychological 

variables in the adoption of agri-environmental innovations. Sustainable Developments, 27(6): 

1049–1062. https://doi.org/10.1002/sd.1956. 



 

88 

 

Campo-Bescos, M. A., Munoz-Carpena, R., Kiker, G. A., Bodah, B. W. and Ullman, J. L. (2015). 

Watering or buffering? Runoff and sediment pollution control from furrow irrigated fields in 

arid environments. Agriculture, Ecosystems & Environment, 205: 90–101. 

https://doi.org/10.1016/j.agee.2015.03.010. 

Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. and Kelly, B. F. J. (2015). An agent-

based platform for simulating complex human–aquifer interactions in managed groundwater 

systems. Environment Modelling & Software, 73: 305–323. 

https://doi.org/10.1016/j.envsoft.2015.08.018. 

Centro de Informaciόn de Recursos Naturales (CIREN) Report, December 2010. Determination 

of current and potential erosion of Chilean soil Bio-Bio region. Summary of Results. 

Publication No. 148. 

Chakraborty, A. and Kar, A. K. (2017). Swarm intelligence: A review of algorithms. Nature-

inspired Computing and Optimization, 475–494. https://doi.org/10.1007/978-3-319-50920-

4_19. 

Chandramouli, V. and Raman, H. (2001) Multi-reservoir modeling with dynamic programming 

and neural networks. Journal of Water Resources Planning and Management, 127(2):89–98. 

https://doi.org/10.1061/(ASCE)0733-9496(2001)127:2(89). 

Chau, K. (2004). River stage forecasting with particle swarm optimization. In International 

Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 

Springer, Berlin, Heidelberg, 1166–1173. 

Chen, C. C., Tsai, Y. C., Liu, I. I., Lai, C. C., Yeh, Y. T., Kuo, S. Y. and Chou, Y. H. (2015). A 

novel metaheuristic: jaguar algorithm with learning behavior. IEEE International Conference 

on Systems, Man, and Cybernetics, Kowloon, China, 1595–1600. 

Chen, H. T., Wang, W. C., Chen, X. N. and Qiu, L. (2020). Multi-objective reservoir operation 

using particle swarm optimization with adaptive random inertia weights. Water Science and 

Engineering, 13(2): 136–144. https://doi.org/10.1016/j.wse.2020.06.005. 



 

89 

 

Chen, Y. M. (1997). Management of water resources using improved genetic algorithms. 

Computers and Electronics in Agriculture, 18(2–3): 117–127. https://doi.org/10.1016/S0168-

1699(97)00024-0. 

Cheng, M. Y. and Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic 

optimization algorithm. Computers & Structures, 139: 98–112. 

https://doi.org/10.1016/j.compstruc.2014.03.007. 

Cheng, S., Shi, Y., Qin, Q. and Bai, R. (2013). Swarm intelligence in big data analytics. In 

International Conference on Intelligent Data Engineering and Automated Learning, 8206: 

417–426. 

Chiu, Y. C., Nishikawa, T. and Yeh, W. W. G. (2010). Optimal pump and recharge management 

model for nitrate removal in the Warren Groundwater basin, California. Journal of Water 

Resources Planning and Management, 136(3): 299–308. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000034. 

Choopan, Y. and Emami, S. (2019). Optimal operation of dam reservoir using gray wolf optimizer 

algorithm (case study: Urmia Shaharchay Dam in Iran). Journal of Soft Computing in Civil 

Engineering, 3(3): 47–61. https://doi.org/10.22115/SCCE.2020.189429.1112. 

Chu, H. J. and Chang, L. C. (2009). Applying particle swarm optimization to parameter estimation 

of the non-linear Muskingum model. Journal of Hydrologic Engineering, 14(9): 1024–1027. 

https://doi.org/10.1061/_ASCE_HE.1943-5584.0000070. 

Chu, S. C., Tsai, P. and Pan, J. (2006). Cat swarm optimization. In Pacific Rim International 

Conference on Artificial Intelligence, 854-858. https://doi.org/10.1007/11801603_94. 

Chu, Y., Mi, H., Liao, H., Ji, Z. and Wu, Q. H. (2008). A Fast Bacterial Swarming Algorithm for 

high-dimensional function optimization. IEEE World Congress on Computational Intelligence, 

Hong Kong, China, 3135–3140. https://doi.org/10.1109/CEC.2008.4631222. 

Chung, G. and Lansey, K. (2009). Application of the shuffled frog leaping algorithm for the 

optimization of a general large-scale water supply system. Water Resources Management, 

23(4): 797–823. https://doi.org/10.1007/s11269-008-9300-6. 



 

90 

 

Cobaner, M., Babayigit, B. and Dogan, A. (2016). Estimation of groundwater levels with surface 

observations via genetic programming. Journal American Water Works Association, 108(6): 

E335–E348. https://doi.org/10.5942/jawwa.2016.108.0078. 

Coello, C. and Coello, C. A. (2001). A short tutorial on evolutionary multiobjective optimization. 

In International Conference on evolutionary multi-criterion optimization, Springer, Berlin, 21–

40. 

Comellas, F. and Martinez-Navarro, J. (2009). Bumblebees: a multiagent combinatorial 

optimization algorithm inspired by social insect behaviour. In Proceedings of the first 

ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 811–814. 

Cooper, B. (2017). What drives compliance? an application of the theory of planned behavior to 

urban water restrictions using structural equation modeling. Applied Economics, 49(14): 

1426–1439. https://doi.org/10.1080/00036846.2016.1218430. 

Cuevas, E., Cienfuegos, M., ZaldíVar, D. and Pérez-Cisneros, M. (2013). A swarm optimization 

algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 

40(16): 6374– 6384. https://doi.org/10.1016/j.eswa.2013.05.041. 

Dariane, A. B. and Moradi, A. M. (2008). reservoir operating by ant colony optimization for 

continuous domains (ACOR) case study: Dez reservoir. International Journal of Mathematical, 

Physical and Engineering Sciences, 3(2): 125-129. 

Darwish, A. (2018). Bio-inspired computing: algorithms review, deep analysis, and the scope of 

applications. Future Computing and Informatics Journal, 3(2): 231-246. 

Das, S., Biswas, A., Dasgupta, S. and Abraham, A. (2009). Bacterial foraging optimization 

algorithm: theoretical foundations, analysis, and applications. In Foundations of 

Computational Intelligence, 3: 23-55, Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-642-01085-9_2. 

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective genetic 

algorithm: NSGA-II. In IEEE Transactions on Evolutionary Computation, 6(2): 182–197. 

10.1109/4235.996017. 



 

91 

 

de Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C. and Harley, R. G. (2008). 

Particle swarm optimization: basic concepts, variants and applications in power systems. In 

IEEE Transactions on Evolutionary Computation, 12(2): 171–195. 

10.1109/TEVC.2007.896686. 

Deletic, A. and Fletcher, T. D. (2006). Performance of grass filters used for stormwater treatment 

-a field and modelling study. Journal of Hydrology, 317: 261–275. 

https://doi.org/10.1016/j.jhydrol.2005.05.021. 

Dessart, F. J., Barreiro-Hurlé, J. and van Bavel, R. (2019). Behavioral factors affecting the 

adoption of sustainable farming practices: a policy-oriented review. European Review of 

Agricultural Economics, 46(3): 417–471. https://doi.org/10.1093/erae/jbz019. 

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L. and Blöschl, G. 

(2015). Debates— perspectives on socio-hydrology: capturing feedbacks between physical and 

social processes. Water Resources Research, 51(6): 4770–4781. 

https://doi.org/10.1002/2014WR016416. 

Dietrich, J. and Funke, M. (2009). Integrated catchment modelling within a strategic planning and 

decision making process: Werra case study. Physics and Chemistry of the Earth., 34(8-9): 580–

588. https://doi.org/10.1016/j.pce.2008.11.001. 

Dillaha, T. A., Reneau, R. B., Mostaghimi, S. and Lee, D. (1989). Vegetative filter strips for 

agricultural nonpoint source pollution control. Transactions of the ASAE, 32(2): 513–519. 

Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a new meta-heuristics. Proceedings 

of the 1999 Congress on Evolutionary Computation-CEC99, 2: 1470–1477.  

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge, MA, USA. 

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a colony of 

cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1): 29–41. 

https://doi.org/10.1109/3477.484436. 

Dosskey, M. G., Helmers, M. J. and Eisenhauer, D. E. (2008). A Design Aid for Determining the 

Width of Filter Strips. Journal of Soil and Water Conservation, 63(4): 232-241. 



 

92 

 

Dosskey, M. G., Helmers, M. J., Eisenhauer, D. E., Franti, T. G. and Hoagland, K. D. (2002). 

Assessment of concentrated flow through riparian buffers. Journal of Soil and Water 

Conservation, 57(6): 336–343. 

Dosskey, M., Schultz, D. and Isenhart, T. (1997). How to Design a Riparian Buffer for Agricultural 

Land.  

Downs, P. W., Gregory, K. J. and Brookes, A. (1991). How integrated is river basin management?. 

Environmental Management 15:299–309. https://doi.org/10.1007/BF02393876. 

Du K. L. and Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics, Techniques 

and Algorithms Inspired by Nature. https://doi.org/10.1007/978-3-319-41192-7. 

Duda, P. B., Hummel, P. R., Donigian Jr., A. S. and Imhoff, J. C. (2012). BASINS/HSPF: model 

use, calibration, and validation. Trans. ASABE, 55 (4): 1523–1547. 

http://dx.doi.org/10.13031/2013.42261. 

Duan, H. and Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer 

for air robot path planning. International journal of intelligent computing and cybernetics. 

Duan, Q. Y., Gupta, V. K. and Sorooshian, S. (1993). Shuffled complex evolution approach for 

effective and efficient global minimization. Journal of Optimization Theory and Applications., 

76(3): 501–521. https://doi.org/10.1007/BF00939380. 

Ducatelle, F., G. A. Di Caro, and L. M. Gambardella. (2010). Principles and applications of swarm 

intelligence for adaptive routing in telecom munications networks. Swarm Intelligence, 4(3): 

173–198. https://doi.org/10.1007/s11721-010-0040-x. 

Ebrahimi, A., and Khamehchi, E. (2016). Sperm whale algorithm: An effective metaheuristic 

algorithm for production optimization problems. Journal of Natural Gas Science and 

Engineering, 29: 211–222. https://doi.org/10.1016/j.jngse.2016.01.001. 

Eesa, A. S., Addulazeez, A. M. and Orman, Z. (2014). A novel bio-inspired optimization 

Algorithm. International Journal of Scientific and Engineering Research, 4(9): 1978–1986.  



 

93 

 

Elfithri, R. and Mokhtar, M. B. (2018). Integrated Water Resources Management in Malaysia: 

Some Initiatives at the Basin Level. In: Singh, V., Yadav, S., Yadava, R. (Eds.) Water 

Resources Management. Water Science and Technology Library, 78. 

https://doi.org/10.1007/978-981-10-5711-3_16. 

Elshaer, R. and Awad, H. (2020). A taxonomic review of metaheuristic algorithms for solving the 

vehicle routing problem and its variants. Computers & Industrial Engineering, 140: 106242. 

https://doi.org/10.1016/j.cie.2019.106242. 

Emami, H. (2022). Anti-coronavirus optimization algorithm. Soft Computing, 26(11): 4991-5023. 

10.1007/s00500-022-06903-5. 

Emami, S., Choopan, Y. and Salmasi, F. (2020). Presentation of a method based on gray wolf 

optimizer and imperialist competitive algorithms in optimal operation of dam reservoir 

amirkabir. Journal of Civil Engineering, 52(5): 261–264. 

https://doi.org/10.22060/ceej.2018.15049.5818. 

Ethteram, M., Mousavi, S. F., Karami, H., Farzin, S. Ravinesh Deo, R., Othman, F. B., Chau, K. 

W., Sarkamaryan, S., Singh, V. P. and El‑Shafie, A. (2018a). Bat algorithm for dam–reservoir 

operation. Environmental Earth Sciences, 77(13): 1–15. https://doi.org/10.1007/s12665-018-

7662-5. 

Ethteram, M., Othman, F. B., Yaseen, Z. M., Afan, H. A., Allawi, M. F, Malek, M. B. A., Ahmed, 

A. N., Shahid, S., Singh, V. P. and El-Shafie, A. (2018b). Improving the Muskingum Flood 

Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm. Water, 

10(6): 807. https://doi.org/10.3390/w10060807. 

Etienne, M., Cohen, M. and Christophe, L. P. (2002). A step-by-step approach to build-up land 

management scenarios based on multiple viewpoints on multi-agent system simulations. 

International Congress on Environmental Modelling and Software, 170. 

Eusuff, M. M. and Lansey, K. E. (2003). Optimization of water distribution network design using 

the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 

129(3): 210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210). 



 

94 

 

Eusuff, M., Lansey, K. and Pasha, F. (2006). Shuffled frog-leaping algorithm: a memetic 

metaheuristic for discrete optimization. Engineering Optimization, 38(2): 129–154.  

Evers, M. (2016). Integrative river basin management: challenges and methodologies within the 

German planning system. Environmental Earth Sciences, 75(14): 1–13. 

https://doi.org/10.1007/s12665-016-5871-3. 

Ezzeldin, R., Djebedjian, B. and Saafan, T. (2014). Integer discrete particle swarm optimization 

of water distribution networks. Journal of Pipeline Systems Engineering and Practice, 5(1): 

04013013. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000154. 

Faber, B. A. and Stedinger, J. R. (2001). Reservoir optimization using sampling SDP with 

ensemble streamflow prediction (ESP) forecasts. Journal of Hydrology, 249(1-4): 113–133. 

https://doi.org/10.1016/S0022-1694(01)00419-X. 

Fallah-Mehdipour, E., Bozorg-Haddad, O. B., O. and Mariño, M. A. (2011).  MOPSO algorithm 

and its application in multipurpose multireservoir operations. Journal of Hydroinformatics, 

13(4): 794–811. https://doi.org/10.2166/hydro.2010.105. 

Fallah-Mehdipour, E., Bozorg-Haddad, O., Orouji, H. and Mariño, M. A. (2016). Application of 

genetic programming to flow routing in simple and compound channels. Journal of Irrigation 

and Drainage Engineering, 142(12): 04016066. https://doi.org/10.1061/(ASCE)IR.1943-

4774.0001109. 

Fang, G., Guo, Y., Wen, X., Fu, X., Lei, X., Tian, Y. and Wang, T. (2018). Multi-objective 

differential evolution-chaos shuffled frog leaping algorithm for water resources system 

optimization. Water Resources Management, 32(12): 3835–3852. 

https://doi.org/10.1007/s11269-018-2021-6. 

Fard, A. F. and Hajiaghaei-Keshteli, M. (2016). Red Deer Algorithm (RDA): a new optimization 

algorithm inspired by Red Deers’ mating. In International conference on industrial 

engineering, IEEE, 33–34. 

Fassio, A., Giupponi, C., Hiederer, R. and Simota, C. (2005). A decision support tool for 

simulating the effects of alternative policies affecting water resources: an application at 



 

95 

 

European scale. Journal of Hydrology, 304(1-4): 462–476. 

https://doi.org/10.1016/j.jhydrol.2004.07.048. 

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving 

problems. Complex Systems, 13(2): 87–129. 

Fischbein, M. and Ajzen, I. (1975). Belief, attitude, intention, and behavior – an introduction to 

theory and research. Addison-Wesley Publishing Company, USA. 

Flores Espinoza, J. P., Ahumada, F., Avendaño, V., Espinosa, T., Henríquez, A., Martínez, H. and 

Torres, F. (2010). Determinación de la erosión actual y potencial de los suelos de Chile. 

Fogel G. B. (2012). Evolutionary Programming. In Rozenberg G., Bäck T. and Kok J. N. (Eds.) 

Handbook of Natural Computing. Springer. https://doi.org/10.1007/978-3-540-92910-9_23. 

Fogel, L. J., Owens, A. J. and Walsh, M. J. (1966). Intelligent decision making through a 

simulation of evolution. Behavioral Science, 11(4): 253–272. 

Fogel, L., Owens, A. J. and Walsh, M. (1966). Artificial intelligence through simulated evolution. 

New York: Wiley. 

Food and agriculture organization (FAO), (2017). FAOSTAT. Retrieved from: 

http://www.fao.org/faostat/en/#data/PP. 

Galán, J. M., Lόpez-Paredes, A. and del Olmo, R. (2009). An agent-based model for domestic 

water management in Valladolid metropolitan area. Water Resources Research, 45(5): 

W05401. https://doi.org/10.1029/2007WR006536. 

Gandomi, A. H. and Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. 

Communications in Nonlinear Science and Numerical Simulation, 17(12): 4831–4845. 

https://doi.org/10.1016/j.cnsns.2012.05.010. 

Gandomi, A. H., Yang, X. S., Alavi, A. H. and Talatahari, S. (2013). Bat algorithm for constrained 

optimization tasks. Neural Computing & Applications, 22: 1239–1255 

https://doi.org/10.1007/s00521-012-1028-9. 



 

96 

 

Garousi-Nejad, I., Bozorg-Haddad, O., Loáiciga, H. A. and Mariño, M. A. (2016). Application of 

the firefly algorithm to optimal operation of reservoirs with the purpose of irrigation supply 

and hydropower production. Journal of Irrigation and Drainage Engineering, 142(10): 

04016041. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001064. 

Garrigan, B., Adlam, A. L. R. and Langdon, P. E. (2018). Moral decision-making and moral 

development: toward an integrative framework. Developmental Review, 49: 80–100. 

https://doi.org/10.1016/j.dr.2018.06.001. 

Gaur, S., Sudheer, C., Graillot, D., Chahar B. R. and Kumar, D. N. (2013). Application of artificial 

neural networks and particle swarm optimization for the management of groundwater 

resources. Water Resources Management, 27: 927–941. https://doi.org/10.1007/s11269-012-

0226-7. 

Gerrard, M. and Gibbons, F. X. (2013). Health images and their effects on health behavior. Health, 

coping, and well-being: Perspectives from social comparison theory, 63. 

Geza, M., Barfield, B. J., Huhnke, R. L., Stoecker, A., Storm, D. E. and Stevens, E. W. (2009). 

Comparison of targeted replacement and vegetative filter strips for sediment control and cost 

effectiveness. Journal of Water Resources Planning & Management, 135(5): 406–409. 

https://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(406). 

Gino Sophia, S. G., Ceronmani Sharmila, V. and Suchitra, S. (2020). Water management using 

genetic algorithm-based machine learning. Soft Computing, 24(22): 17153–17165. 

https://doi.org/10.1007/s00500-020-05009-0. 

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. 

Computers and Operations Research, 13: 533–549. 

Glover, F. (1989). Tabu search–part I. ORSA Journal on Computing, 1(3): 190–206. 

Glover, F. and Sörensen, K. (2015). Metaheuristics. Scholarpedia, 10(4): 6532. 

https://doi.org/10.4249/scholarpedia.6532. 



 

97 

 

Goldberg. D. E. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule 

learning. [Doctoral Dissertation, University of Michigan at Ann Arbor, Michigan]. ProQuest 

Dissertations & Theses Global. 

Goldberg, D. E. and Kuo, C. H. (1987). Genetic algorithms in pipeline optimization. Journal of 

Computing in Civil Engineering, 1(2): 128–141. https://doi.org/10.1061/(ASCE)0887-

3801(1987)1:2(128). 

Goudhaman, M., (2018). Cheetah chase algorithm (CCA): a nature-inspired metaheuristic 

algorithm. International Journal of Engineering & Technology, 7(3): 1804–1811. 

Granco, G., Stamm, J. L. H., Bergtold, J. S., Daniels, M. D., Sanderson, M. R., Sheshukov, A. Y., 

Mather, M. E., Caldas, M. M., Ramsey, S. M., Lehrter II, R. J., Haukos, D. A., Gao, J., 

Chatterjee, S., Nifong, J. C. and Aistrup, J. A. (2019). Evaluating environmental change and 

behavioral decision-making for sustainability policy using an agent-based model: a case study 

for the Smoky Hill River Watershed. Kansas. Science of The Total Environment, 695: 133769. 

https://doi.org/10.1016/j.scitotenv.2019.133769. 

Griffiths, M. (2002). The European water framework directive: an approach to integrated river 

basin management. European Water Management Online, 5: 1–14. 

Guerrero-Luis, M., Valdez, F. and Castillo, O. (2021). A Review on the Cuckoo Search Algorithm. 

Studies in Computational Intelligence, 940. https://doi.org/10.1007/978-3-030-68776-2_7. 

Guillem, E., Murray, D., Robinson, T., Barnes, A. and Rounsevell, M. (2015). Modeling farmer 

decision-making to anticipate tradeoffs between provisioning ecosystem services and 

biodiversity. Agricultural Systems, 137: 12–23. https://doi.org/10.1016/j.agsy.2015.03.006. 

Guo, W. and Wang, H. (2010). Optimal operation of three gorges reservoir based on ant colony 

algorithm. In International Conference on Intelligent Computing and Cognitive Informatics, 

360–363. https://doi.org/10.1109/ICICCI.2010.101. 

Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009). Decomposition of the mean 

squared error and NSE performance criteria: Implications for improving hydrological 

modelling. Journal of Hydrology, 377: 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003. 



 

98 

 

Gurarslan, G. and Karahan, H. (2015). Solving inverse problems of groundwater-pollution-source 

identification using a differential evolution algorithm. Hydrogeology Journal, 23(6): 1109–

1119. https://doi.org/10.1007/s10040-015-1256-z. 

Guven, A. and Kisi, O. (2013). Monthly pan evaporation modeling using linear genetic 

programming. Journal of Hydrology, 503: 178–185. 

https://doi.org/10.1016/j.jhydrol.2013.08.043. 

GWP: (2000). Integrated water resources management. TAC Background Paper 4, Global Water 

Partnership Secretariat, Hantverkargatan 5, SE-112 21 Stockholm. 

Habibi Davijani, H., Banihabib, M. E., Nadjafzadeh, A. A. and Hashemi, S. R. (2016). Multi-

objective optimization model for the allocation of water resources in arid regions based on the 

maximization of socioeconomic efficiency. Water Resources Management, 30(3): 927–946. 

10.1007/s11269-015-1200-y. 

Haghighi, A. and Bakhshipour, A. E. (2012). Optimization of sewer networks using an adaptive 

genetic algorithm. Water Resources Management, 26(12): 3441–3456. 

https://doi.org/10.1007/s11269-012-0084-3. 

Hair Jr., J. F., Sarstedt, M., Hopkins, L. and Kuppelwieser, V. G. (2014). Partial least squares 

structural equation modeling (PLS-SEM) - an emerging tool in business research. European 

Business Review, 26(2): 106–121. https://doi.org/10.1108/EBR-10-2013-0128. 

Haith, D., and Shoemaker, L. (1987). Generalized watershed loading functions for stream flow 

nutrients. Water Resources Bulletin, 23(3): 471478. 

Hansen, N., Arnold, D. V. and Auger, A. (2015). Evolution Strategies. Handbook of 

Computational Intelligence, Springer. 871-898. 

Happe, K., Kellermann, K. and Balmann, A. (2006). Agent-based analysis of agricultural policies: 

an illustration of the agricultural policy simulator AgriPoliS, its adaptation, and behavior. 

Ecology and Society, 11(1): 49. 



 

99 

 

Hare, M. and Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models 

in environmental management. Mathematics and Computers in Simulation, 64: 25–40. 

https://doi.org/10.1016/S0378-4754(03)00118-6. 

Harifi, S., Khalilian, M., Mohammadzadeh, J. and Ebrahimnejad, S. (2019). Emperor Penguins 

Colony: a new metaheuristic algorithm for optimization. Evolutionary Intelligence, 12(2): 

211–226. https://doi.org/10.1007/s12065-019-00212-x. 

Havens, T. C., Spain, C. J., Salmon, N. G. and Keller, J. M. (2008). Roach Infestation 

Optimization. In Proceedings of IEEE Swarm Intelligence Symposium, St. Louis, MO, USA, 

1–7. 10.1109/SIS.2008.4668317. 

Hayyolalam, V. and Kazem, A. A. P. (2020). Black Widow Optimization Algorithm: A novel 

meta-heuristic approach for solving engineering optimization problems. Engineering 

Applications of Artificial Intelligence, 87: 103249. 

https://doi.org/10.1016/j.engappai.2019.103249. 

Heckbert, S., Baynes, T. and Reeson, A. (2010). Agent-based modeling in ecological economics. 

Annals of the New York Academy of Sciences, 1185: 39–53. 

Hedayatzadeh, R., Salmassi, F. A., Keshtgari, M., Akbari, R., and Ziarati, K. (2010). Termite 

colony optimization: A novel approach for optimizing continuous problems. In 18th Iranian 

Conference on Electrical Engineering, 553–558. 

https://doi.org/10.1109/IRANIANCEE.2010.5507009. 

Heřmanovský, M., Havlíček, V., Hanel, M. and Pech, P. (2017). Regionalization of runoff models 

derived by genetic programming. Journal of Hydrology, 547: 544–556. 

https://doi.org/10.1016/j.jhydrol.2017.02.018. 

Hernández, H., and Blum, C. (2012). Distributed graph coloring: an approach based on the calling 

behavior of Japanese tree frogs. Swarm Intelligence, 6: 117–150. 

https://doi.org/10.1007/s11721-012-0067-2. 

Herr, J. W. and Chen, C. W. (2012). WARMF: model use, calibration, and validation. Trans. 

ASABE, 55 (4):1385–1394. http://dx.doi.org/10.13031/2013.42249. 



 

100 

 

Hersovici, M., Jacovi, M., Maarek, Y. S., Pelleg, D., Shtalhaim, M. and Ur, S. (1998). The shark-

search algorithm. An application: tailored Web site mapping. Computer Networks and ISDN 

Systems, 30(1–7): 317–326. https://doi.org/10.1016/S0169-7552(98)00038-5. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press. 

Hooper, B. (2005). Integrated River Basin Governance: Learning from International Experiences. 

IWA Publishing.  

Horne, A., Szemis, J. M., Kaur, S., Webb, J. A., Stewardson, M. J., Costa, A. and Boland, N. 

(2016). Optimization tools for environmental water decisions: A review of strengths, 

weaknesses, and opportunities to improve adoption. Environmental Modelling & Software, 84: 

326–338. http://dx.doi.org/10.1016/j.envsoft.2016.06.028. 

Hsu, N. S. and Cheng, K. W. (2002). Network flow optimization model for basin-scale water 

supply planning. Journal of Water Resources Planning and Management, 128: 102–112. 

https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(102). 

Huber, L., Rüdisser, J., Meisch, C., Stotten, R., Leitinger, G. and Tappeiner, U. (2021). Agent-

based modelling of water balance in a social-ecological system: A multidisciplinary approach 

for mountain catchments. Science of The Total Environment, 755(1): 142962. 

https://doi.org/10.1016/j.scitotenv.2020.142962. 

Hussain, K., Mohd Salleh, M. N., Cheng, S. and Shi, Y. (2019). Metaheuristic research: a 

comprehensive survey. Artificial Intelligence Review, 52: 2191–2233. 

https://doi.org/10.1007/s10462-017-9605-z. 

Hutson J. L. and Wagenet, R. J. (1992). LEACHM: leaching estimation and chemistry model-a 

process-based model of water and solute movement, transformations, plant uptake, and 

chemical reactions in the unsaturated zone. Continuum 2(3). Water Resources Inst.,Cornell 

Univ, Ithaca. 

Ibanez, K. L., Prasad, T. D. and Paechter, B. (2008). Ant colony optimization for optimal control 

of pump in water distribution networks. Journal of Water Resources Planning and 

Management., 134(4): 337–346. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:4(337). 



 

101 

 

Ibrahim, M. K. and Ali, R. S. (2016). Novel optimization algorithm inspired by camel travelling 

behavior. Iraqi Journal for Electrical and Electronic Engineering, 12(2): 167–177.  

Izquierdo, L. R., Izquierdo, S. S. and Sandholm, W. H. (2019). Agent-Based Evolutionary Game 

Dynamics. University of Wisconsin-Madison. 

Fister, I. Jr., Yang, X. S., Fister, I., Brest, J. and Fister, D. (2013). A brief review of nature-inspired 

algorithms for optimization. Electrotechnical Review 80(3): 1–7.  

https://doi.org/10.48550/arXiv.1307.4186. 

Jaber, F. and Shukla, S. K. (2012). MIKE SHE: model use, calibration, and validation. 

Transactions of the ASABE, 55: 1479–489. 

Jaddi, N. S., Alvankarian, J. and Abdullah, S. (2017). Kidney-inspired algorithm for optimization 

problems. Communications in Nonlinear Science and Numerical Simulation, 42:358–369. 

https://doi.org/10.1016/j.cnsns.2016.06.006. 

Jager, W., Janssen, M. A., De Vries, H. J. M., De Greef, J. and Vlek, C. A. J. (2000). Behavior in 

commons dilemmas: homo-economicus and Homo-psychologicus in an ecologicaleconomic 

model. Ecology Economy, Special Issue: The human actor in ecological-economic models, 

35(3): 357–379. https://doi.org/10.1016/S0921-8009(00)00220-2. 

Jahandideh-Tehrani, M., Bozorg-Haddad, O. and Loáiciga, H. A. (2021). A review of applications 

of animal-inspired evolutionary algorithms in reservoir operation modelling. Water and 

Environment Journal, 35: 628-646. https://doi.org/10.1111/wej.12657. 

Jahandideh-Tehrani, M., Bozorg-Haddad, O. and Loáiciga, H.A. (2020). Application of particle 

swarm optimization to water management: an introduction and overview. Environmental 

Monitoring and Assessment, 192: 281. https://doi.org/10.1007/s10661-020-8228-z. 

Jain, N.K., Nangia, U. and Jain, J. A. (2018). Review of Particle Swarm Optimization. Journal of 

The Institution of Engineers (India), 99(B): 407–41.  https://doi.org/10.1007/s40031-018-

0323-y. 



 

102 

 

Jain, M., Singh, V. and Rani, A. (2019). A novel nature-inspired algorithm for optimization: 

squirrel search algorithm. Swarm and Evolutionary Computation, 44:148–175. 

https://doi.org/10.1016/j.swevo.2018.02.013. 

Jalali, M. R., Afshar, A. and Marino, M. A. (2006a) Reservoir operation by Ant Colony 

Optimization algorithms. Iranian Journal of Science & Technology, Transaction B, 

Engineering, 30(B1). 

Jalali, M. R., Afshar, A., and Marino, M. A. (2005) Improved ant colony optimization algorithm 

for reservoir operation. Hydroinformatics Center, Civil Engineering Department, Iran 

University of Science and Technology, Tehran, Iran (technical report). 

Jalali, M. R., Afshar, A. and Mariño, M. A. (2006b). Improved ant colony optimization algorithm 

for reservoir operation. Scientia Iranica. 13(3): 295–302. 

James, J. Q. and Li, V. O. (2015). A social spider algorithm for global optimization. Applied Soft 

Computing, 30: 614–627. 

Jaspers, F. G. W. (2003). Institutional arrangements for integrated river basin management. Water 

Policy, 5(1): 77–90. https://doi.org/10.2166/wp.2003.0004. 

Johnsson, H., Bergstrom, L., Jansson, P. E., and Paustian, K. (1987). Simulated nitrogen dynamics 

and losses in a layered agricultural soil, Agriculture, Ecosystems & Environment, 18(4): 333–

356. https://doi.org/10.1016/0167-8809(87)90099-5. 

Johnston, R. L. and Cartwright, H. M. (2004). Applications of Evolutionary Computation in 

Chemistry, Springer-Verlag, Berlin, Heidelberg. 

Jordehi, A. R. and Jasni, J. (2013). Parameter selection in particle swarm optimisation: a survey. 

Journal of Experimental & Theoretical Artificial Intelligence, 25(4): 572–542. 

https://doi.org/10.1080/0952813X.2013.782348. 

Joshi, A. S., Kulkarni, O., Kakandikar, G. M. and Nandedkar, V. M. (2017).  Cuckoo search 

optimization- A review. Materials Today: Proceedings, 4(8): 7262–7269. 

https://doi.org/10.1016/j.matpr.2017.07.055. 



 

103 

 

Jung, H. S. (2003). Queen-bee evolution for genetic algorithms. Electronics Letters, 39(6): 575–

576. https://doi.org/10.1049/el:20030383. 

Kahneman, D. (2003). Maps of bounded rationality: psychology for behavioral economics. 

American Economic Review, 93(5): 1449–1475. 

https://doi.org/10.1257/000282803322655392. 

Kalra, M. and Singh, S. (2015). A review of metaheuristic scheduling techniques in cloud 

computing. Egyptian Informatics Journal, 16(3): 275–295, 

https://doi.org/10.1016/j.eij.2015.07.001. 

Kangrang, A., Srikamol, N., Hormwichian, R., Prasanchum, H. and Sriwanpheng, O. (2019). 

Alternative Approach of Firefly Algorithm for Flood Control Rule Curves. Asian Journal of 

Scientific Research, 12: 431–439. https://doi.org/10.3923/ajsr.2019.431.439. 

Kantorovich, L. V. (1939). Mathematical methods of organizing and planning production. 

Management Science, 6(4): 366–422.  

Kapoor, C., Bajaj, H. and Kaur, N. (2012). Integration of Bacteria Foraging Optimization and Case 

Base Reasoning for Ground Water Possibility Detection. International Journal of Applied 

Information Systems, 2(4), ISSN: 2249-0868. 

Karabagh, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical function 

optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3): 

459–471. https://doi.org/10.1007/s10898-007-9149-x. 

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. (Technical 

Report-TR06). Department of Computer Engineering, Engineering Faculty, Erciyes 

University. 

Karimkashi, S and Kishk, A. A (2010). Invasive weed optimization and its features in 

electromagnetics. IEEE Transactions on Antennas and Propagation, 58(4):1269–1278. 

https://doi.org/10.1109/TAP.2010.2041163 

Karterakis, S. M., Karatzas, G. P., Nikolos, L. K. and Papadopoulou, M. P. (2007). Application of 

Linear Programmimg and Differential Evolutionary Optimization Methodologies for the 



 

104 

 

Solution of Coastal Subsurface Water Management Problems Subject to Environmental 

Criteria. Journal of Hydrology, 342:270–282. https://doi.org/10.1016/j.jhydrol.2007.05.027. 

Kashan, A. H. (2009). League championship algorithm: A new algorithm for numerical function 

optimization. In International Conference of Soft Computing and Pattern Recognition, 4348. 

10.1109/SoCPaR.2009.21. 

Kaveh, A. and Dadras Eslamlou, A. (2020). Water strider algorithm: A new metaheuristic and 

applications. Structures, 25: 520–541. https://doi.org/10.1016/j.istruc.2020.03.033. 

Kaveh, A. and Farhoudi, N. (2013). A new optimization method: Dolphin echolocation. Advances 

in Engineering Software, 59: 53–70. https://doi.org/10.1016/j.advengsoft.2013.03.004. 

Kazemzadeh-Parsi, M. J., Daneshmand, F., Ahmadfard, M. A., Adamowski, J. and Martel, R. 

(2015b). Optimal groundwater remediation design of pump and treat systems via a simulation-

optimization approach and firefly algorithm. Engineering Optimization, 47(1): 1–17. 

https://doi.org/10.1080/0305215X.2013.858138. 

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. International Conference on 

Neural Networks, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968. 

Khishe, M. and Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with 

Applications, 149: 113338. https://doi.org/10.1016/j.eswa.2020.113338. 

Kim, M. and Gilley, J. E. (2008). Artificial Neural Network estimation of soil erosion and nutrient 

concentrations in runoff from land application areas. Computers and Electronics in 

Agriculture, 64: 268–275. https://doi.org/10.1016/j.compag.2008.05.021. 

Kim, T., Heo, J.-H., Bae, D.-H. and Kim, J.-H. (2008). Single-reservoir operating rules for a year 

using multiobjective genetic algorithm. Journal of Hydroinformatics, 10(2): 163-179. 

https://doi.org/10.2166/hydro.2008.019. 

Kim, R. J., Loucks, D. P. and Stedinger, J. R. (2012). Artificial Neural Network Models of 

Watershed Nutrient Loading. Water Resources Management, 26:2781–2797. 

https://doi.org/10.1007/s11269-012-0045-x. 



 

105 

 

Kinsel, W. (1980). Creams: a field scale model for chemicals, runoff, and erosion from agricultural 

management systems. Tech. Rep., Conservation Report 26:640, US Department of 

Agriculture. 

Kirkpatrick, S., Gelatt Jr., C. D. and Vecchi, M. P. (1983). Optimization by Simulated Annealing. 

Science, 220(4598): 671–680. https://doi.org/10.1126/science.220.4598.671. 

Klein, R. L., Hendrix, G.W., Lohr, I. V., Kaytes, B. J., Sayler, D. R., Swason, E. M., Elliot, J. W. 

and Reganold, P. J. (2015). Linking ecology and aesthetics in sustainable agricultural 

landscapes: Lessons from the Palouse region of Washington, U.S.A. Landscape. Urban 

Planning, 134: 195–209. 

Kollat, J. B. and Reed, P. M. (2006). Comparing state-of-the-art evolutionary multiobjective 

algorithms for long-term groundwater monitoring design. Advances in Water Resources, 

29(6): 792–807. https://doi.org/10.1016/j.advwatres.2005.07.010. 

Koza, J. R. (1992). On the Programming of Computers by Means of Natural Selection. In Genetic 

Programming. The MIT Press. 

Krishnanand, K. N. and Ghose, D. (2009). Glowworm swarm optimisation: a new method for 

optimising multi-modal functions. International Journal of Computational Intelligence Studies, 

1(1): 93–119. https://doi.org/10.1504/IJCISTUDIES.2009.025340. 

Krysanova, V., Mueller-Wohlfeil, D. I., and Becker, A. (1998). Development and test of a spatially 

distributed hydrological / water quality model for mesoscale watersheds. Ecological 

Modelling, 106:261–289. 

Kumar, A., Lekhraj, Singh, S. and Kumar, S. (2021). Grey wolf optimizer and other metaheuristic 

optimization techniques with image processing as their applications: a review. IOP Conference 

Series: Materials Science and Engineering, 1136 012053. 

Kumar, D. N. and Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose Reservoir 

Operation. Water Resources Management, 20: 879–898. https://doi.org/10.1007/s11269-005-

9012-0. 



 

106 

 

Kumar, V. and Yadav, S. M. (2022). A state-of-the-Art review of heuristic and metaheuristic 

optimization techniques. Water Supply, 22(4): 3702. 10.2166/ws.2022.010. 

Kuok, K. K., Kueh, S. M. and Chiu, P. C. (2019). Bat optimisation neural networks for rainfall 

forecasting: case study for Kuching city. Journal of Water and Climate Change, 10(3): 569–

579. https://doi.org/10.2166/wcc.2018.136. 

Lam, Q. D., Schmalz, B. and Fohrer, N. (2011). The impact of agricultural Best Management 

Practices on water quality in a North German lowland catchment. Environmental Monitoring 

and Assessment, 183: 351–379. https://doi.org/10.1007/s10661-011-1926-9. 

Laurent, F. and Ruelland, D. (2011). Assessing impacts of alternative land use and agricultural 

practices on nitrate pollution at the catchment scale. Journal of Hydrology, 409(1–2): 440–450. 

https://doi.org/10.1016/j.jhydrol.2011.08.041. 

Lee, K. Y. and El-Sharkawi, M. A. (Eds.). (2008). Modern heuristic Optimization Techniques 

Theory and applications to Power systems. John Wiley & Sons. 

Lek, S., Guiresse, M. and Giraudel, J-L. (1999). Predicting stream nitrogen concentration from 

watershed features using neural networks. Water Resources, 33(16):3469–3478. 

Li, C., Frolking, S., and Frolking, T. A. (1992), A model of nitrous oxide evolution from soil driven 

by rainfall events: 2. Model applications, J. Geophys. Res., 97(D9), 9777–9783, 

https://doi.org/10.1029/92JD00510. 

Li, X., He, J. and Liu, X. (2009). Intelligent GIS for solving high‐dimensional site selection 

problems using ant colony optimization techniques. International Journal of Geographical 

Information Science, 23:4, 399–416. https://doi.org/10.1080/13658810801918491. 

Li, H., Lu, Y., Zheng, C., Yang, M. and Li, S. (2019). Groundwater Level Prediction for the Arid 

Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-

propagation Neural Network with Double Hidden Layers. Water, 11: 860. 

https://doi.org/10.3390/w11040860. 

Li, M. and Feng, X. (2020). Application of improved artificial bee colony algorithm in constant 

pressure water supply system. In Proceedings - 5th International Conference on Automation, 



 

107 

 

Control and Robotics Engineering, 521–525. 

https://doi.org/10.1109/CACRE50138.2020.9230243. 

Li, R., Jiang, Z., Li, A., Yu, S. and Ji, C. (2018). An improved shuffled frog leaping algorithm and 

its application in the optimization of cascade reservoir operation. Hydrological Sciences 

Journal, 63(15–16): 2020–2034. https://doi.org/10.1080/02626667.2018.1558814. 

Li, S., Liu, Y., and Yu, H. (2006). Parameter Estimation Approach in Groundwater Hydrology 

Using Hybrid Ant Colony System. In Huang, DS., Li, K. and Irwin, G.W. (Eds.) 

Computational Intelligence and Bioinformatics. Springer. 

https://doi.org/10.1007/11816102_20. 

Li, X. L., Shao, Z. J. and Qian, J. X. (2002). Optimizing method based on autonomous animats: 

Fish-swarm algorithm. System Engineering Theory and Practice, 22(11): 32-38. 

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J. and Arheimer, B. (2010). Development and 

testing of the HYPE (Hydrological Predictions for the Environment) water quality model for 

different spatial scales. Hydrology Research, 41(3–4): 295–319. 

https://doi.org/10.2166/nh.2010.007. 

Liu, J., Li, S., Ouyang, Z., Tam, C. and Chen, X. (2008). Ecological and socioeconomic effects of 

China’s policies for ecosystem services. Proceedings of the National Academy of Sciences of 

USA, 105: 9477–9482. https://doi.org/10.1073/pnas.0706436105. 

Liu, X., Li, X., Shi, X., Huang, K. and Liu, Y. (2012). A multi-type ant colony optimization 

(MACO) method for optimal land use allocation in large areas. International Journal of 

Geographical Information Science, 26(7):1325–1343. 

https://doi.org/10.1080/13658816.2011.635594.  

Liu, X., Ou, J., Li, X. and Ai, B. (2013a). Combining system dynamics and hybrid particle swarm 

optimization for land use allocation. Ecological Modelling. 257: 11–24. 

http://dx.doi.org/10.1016/j.ecolmodel.2013.02.027.  



 

108 

 

Liu, Y. (2009). Automatic calibration of a rainfall-runoff model using a fast and elitist multi-

objective particle swarm optimization. Earth Systems with Applications, 36: 9533–9538. 

https://doi.org/10.1016/j.eswa.2008.10.086.  

Liu, Y., Shen, H., Yang, W., and Yang, J. (2013b). Optimization of agricultural BMPs using a 

parallel computing based multiobjective optimization algorithm. International Journal of 

Environmental Research and Public Health, 1(1): 39–50. 

https://doi.org/10.22069/IJERR.2013.1685.  

Liu, Y., Tang, D., Liu, D., and Kon, X. (2014). A Land-use Spatial Allocation Model Based on 

Modified Ant Colony Optimization. International Journal of Environmental Research, 

8(4):1115-1126. 10.22059/ijer.2014.805 

Liu, Y., Wang, H., Ji, Y., Liu, Z. and Zhao, X. (2012). Land Use Zoning at the County Level Based 

on a Multi-Objective Particle Swarm Optimization Algorithm: A Case Study from Yicheng, 

China. International Journal of Environmental Research and Public Health, 9:2801–2826. 

https://doi.org/10.3390/ijerph9082801.  

Llewellyn, R. S. and Brown, B. (2020). Predicting adoption of innovations by farmers: what is 

different in smallholder agriculture? Applied Economic Perspectives and Policy, 42(1): 100–

112. https://doi.org/10.1002/aepp.13012.  

López-Ibáñez, M., Prasad, T. D., and Paechter, B. (2008). Ant colony optimization for optimal 

control of pumps in water distribution networks. Journal of water resources planning and 

management, 134(4), 337-346. https://doi.org/10.1061/ASCE0733-94962008134:4337 

Lovell, S. T. and Sullivan, W. C. (2006). Environmental benefits of conservation buffers in the 

United States: Evidence, promise, and open questions. Agriculture, Ecosystems & 

Environment., 112: 249–260. https://doi.org/10.1016/j.agee.2005.08.002. 

Lowrance, R., Dabney, S. and Schultz, R. C. (2002). Improving water and soil quality with 

conservation buffers. Journal of Soil and Water Conservation, 57(2): 36A–43A. 

Ma, S., He, J., Liu, F. and Yu, Y. (2011) Land-use spatial optimization based on PSO algorithm. 

Geo-spatial Information Science, 14(1): 54–61. https://doi.org/10.1007/s11806-011-0437-8. 



 

109 

 

Maaroof, B. B., Rashid, T. A. and Abdulla, J. M. (2022). Current Studies and Applications of 

Shuffled Frog Leaping Algorithm: A Review. Archives of Computational Methods in 

Engineering. https://doi.org/10.1007/s11831-021-09707-2.  

MacKenzie, S. H. (1996). Integrated Resource Planning and Management: the ecosystem approach 

in Great Lakes basin. Island Press. 

Madadgar, S., Afshar, A. (2009). An improved continuous ant algorithm for optimization of water 

resources problems. Water Resources Management, 23: 2119–2139. 

https://doi.org/10.1007/s11269-008-9373-2.  

Maia, R. D., de Castro, L. N. and Caminhas, W. M. (2013). Bee colonies as model for multimodal 

continuous optimization: The optbees algorithm. Applied Mathematical Sciences, 7(87):4327-

4351.  http://dx.doi.org/10.12988/ams.2013.35271. 

Maier, H. M., Simpson, A. R., Zecchin, A., Foong, W. K., Phang, K. Y., Seah, H. Y. and Tan, C. 

L. (2003). Ant colony optimization for design of water distribution systems. Journal of Water 

Resources Management and Planning, 129(3): 200–209. http://doi.org/10.1061/(ASCE)0733-

9496(2003)129:3(200).  

Maier, H. R., Razavi, S., Kapelan, Z., Matott, L. S., Kasprzyk, J. and Tolson, B. A. (2019). 

Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. 

Environmental Modelling and Software, 114: 195–213. 

https://doi.org/10.1016/j.envsoft.2018.11.018.  

Mann, P. S. and Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient 

clustering in wireless sensor networks. Artificial Intelligence Review, 51(14): 329–354. 

https://doi.org/10.1007/s10462-017-9564-4.  

Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J. F., Gutiérrez-Avilés, D., Melgar-García, L., 

Pérez-Chacón, R., Rubio-Escudero, C., Riquelme, J. C. and Troncoso, A. (2020). Coronavirus 

optimization algorithm: a bioinspired metaheuristic based on the covid-19 propagation model. 

Big Data, 8: 308–322. https://doi.org/10.1089/big.2020.0051.  



 

110 

 

Masoomi, Z., Mesgari, M. S. and Hamrah, M. (2012). Allocation of urban landuses by multi-

objective particle swarm optimization algorithm. International Journal of Geographical 

Information Science, 7(3): 542–566. https://doi.org/10.1080/13658816.2012.698016.  

Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G. and Gotts, N. M. (2007). Agent-based 

land-use models: a review of applications. Landscape Ecology, 22(10): 1447–1459. 

https://doi.org/10.1007/s10980-007-9135-1.  

McKinney, D. C. and Lin, M., D. (1994). Genetic algorithm solution of groundwater management 

models. Water Resource Research, 30(6): 1897–1906. https://doi.org/10.1029/94WR00554.  

Mehr, A. D., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M. A. and Yaseen, Z. M. (2018). 

Genetic programming in water resources engineering: A state-of-the-art review. Journal of 

Hydrology, 566: 643–667. https://doi.org/10.1016/j.jhydrol.2018.09.043.  

Mehrabian, A. R. and Lucas, C. (2006). A novel numerical optimization algorithm inspired from 

weed colonization. Ecological Informatics, 1(4): 355–366.  

https://doi.org/10.1016/j.ecoinf.2006.07.003. 

Memmah, M-M., Lescourret, F., Yao, X. and Lavigne, C. (2015). Metaheuristics for agricultural 

land use optimization. A review. Agronomy for Sustainable Development, 35:975–998. 

https://doi.org/10.1007/s13593-015-0303-4.  

Meng, C., Wang, X. and Li, Y. (2018). An optimization model for water management based on 

water resources and environmental carrying capacities: a case study of the Yinma River Basin, 

Northeast China. Water, 10:565. https://doi.org/10.3390/w10050565.nacenace.  

Meng, X. B., Gao, X. Z., Lu, L., Liu, Y. and Zhang, H. (2016). A new bio-inspired optimisation 

algorithm: bird swarm algorithm. Journal of Experimental & Theoretical Artificial 

Intelligence, 28 (4): 673–687. 

Meng, X., Liu, Y., Gao, X. and Zhang, H. (2014). A new bio-inspired algorithm: chicken swarm 

optimization. International Conference In Swarm Intelligence, 86–94. 



 

111 

 

Menozzi, D., Sogari, G. and Moras, C. (2015). Explaining Vegetable Consumption among Young 

Adults: An Application of the Theory of Planned Behaviour. Nutrients, 7: 7633–7650. 

https://doi.org/10.3390/nu7095357. 

Merriman, K. R., Daggupati, P., Srinivasan, R. and Hayhurst, B. (2019). Assessment of site-

specific agricultural Best Management Practices in the Upper East River watershed, 

Wisconsin, using a field-scale SWAT model. Journal of Great Lakes Research, 45(3): 619–

641. https://doi.org/10.1016/j.jglr.2019.02.004.  

MiarNaeimi, F., Azizyan, G. and Rashki, M. (2021). Horse herd optimization algorithm: A nature-

inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 

213, 106711. https://doi.org/10.1016/j.knosys.2020.106711.  

Michie, S., Johnston, M., Francis, J., Hardeman, W. and Eccles, M. (2008). From theory to 

intervention: Mapping theoretically derived behavioral determinants to behavior change 

techniques. Applied Psychology: An International Review., 57(4): 660–680. 

https://doi.org/10.1111/j.1464-0597.2008.00341.x.  

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic 

paradigm. Knowledge-Based Systems, 89: 228–249. 

https://doi.org/10.1016/j.knosys.2015.07.006.  

Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software, 83: 80–98. 

https://doi.org/10.1016/j.advengsoft.2015.01.010.  

Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving 

single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 

27: 1053–1073. https://doi.org/10.1007/s00521-015-1920-1.  

Mirjalili, S., Gandomi, A. H., Mirjalili, S. H., Saremi, S., Faris, H. and Mirjalili, S. M. (2017). Salp 

Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in 

Engineering Software, 114: 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002.  

Mirjalili, S. and Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering 

Software, 95: 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008. 



 

112 

 

Mirjalili, S., Mirjalili, S. M. and Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering 

Software, 69: 46–61. http://dx.doi.org/10.1016/j.advengsoft.2013.12.007.  

Miyasaka, M., Bao, Le Q., Okuro, T., Zhao, X. and Takeuchi, K. (2017). Agent-based modeling 

of complex social-ecological feedback loops to assess multi-dimensional trade-offs in dryland 

ecosystem services. Landscape Ecology, 32: 707–727. https://doi.org/10.1007/s10980-017-

0495-x.  

Moayedikia, A., Jensen, R., Wiil, U. K. and Forsati, R. (2015). Weighted bee colony algorithm for 

discrete optimization problems with application to feature selection. Engineering Applications 

of Artificial Intelligence, 44: 153–167.  

Moazenzadeh, R., Mohammadi, B., Shamshirband, S. and Chau, K. (2018). Coupling a firefly 

algorithm with support vector regression to predict evaporation in northern Iran. Engineering 

Applications of Computational Fluid Mechanics, 12(1): 584–597. 

https://doi.org/10.1080/19942060.2018.1482476.  

Moeini, R. and Soghrati, F. (2020). Optimum outflow determination of the multi-reservoir system 

using constrained improved artificial bee colony algorithm. Soft Computing, 24(14): 10739–

10754. https://doi.org/10.1007/s00500-019-04577-0.  

Moghaddam, A., Behmanesh, J. and Farsijani, A. (2016). Parameters estimation for the new four-

parameter nonlinear Muskingum model using the particle swarm optimization. Water 

Resources Management, 30: 2143–2160. https://doi.org/10.1007/s11269-016-1278-x.  

Mohammad-Azari, S., Bozorg-Haddad, O. and Loáiciga, H. A. (2020). State-of-art of genetic 

programming applications in water-resources systems analysis. Environmental Monitoring and 

Assessment, 192(2): 1-17. https://doi.org/10.1007/s10661-019-8040-9.  

Mohammadrezapour, O., Yoosefdoost, I. and Ebrahimi, M. (2017). Cuckoo optimization 

algorithm in optimal water allocation and crop planning under various weather conditions. 

Case study: Qazvin plain, Iran. Neural Computing & Applications, 31: 1879–1892. 

https://doi.org/10.1007/s00521-017-3160-z.  



 

113 

 

Monga, P., Sharma, M. and Sharma, S. K. (2021). A comprehensive meta-analysis of emerging 

swarm intelligent computing techniques and their research trend. Journal of King Saud 

University - Computer and Information Sciences. 

https://doi.org/10.1016/j.jksuci.2021.11.016.  

Montalto, F. A., Bartrand, T. A., Waldman, A. M., Travaline, K. A., Loomis, C. H., McAfee, C., 

Geldi, J. M., Riggall, G. J. and Boles, L. M. (2013). Decentralized green infrastructure: The 

importance of stakeholder behaviour in determining spatial and temporal outcomes. Structure 

and Infrastructure Engineering, 9(12): 1187–1205. 

https://doi.org/10.1080/15732479.2012.671834. 

Moosavian, N. and Lence, B. J. (2017). Nondominated sorting differential evolution algorithms 

for multiobjective optimization of water distribution systems. Journal of Water Resources 

Planning and Management, 143(4): 04016082. https://doi.org/10.1061/(ASCE)WR.1943-

5452.0000741. 

Mostert, E., Pahl-Wostl, C., Rees, Y., Searle, B., Tàbara, D. and Tippett, J. (2007). Social learning 

in European river-basin management: barriers and fostering mechanisms from 10 river basins. 

Ecology and Society, 12(1):19. 

Mozaffari, A., Fathi, A. and Behzadipour, S. (2012). The great salmon run: A novel bio-inspired 

algorithm for artificial system design and optimisation. International Journal of Bio-Inspired 

Computation, 4(5): 286–301. https://doi.org/10.1504/IJBIC.2012.049889.  

Mu˜noz-Carpena, R., Parsons, J. E. and Gilliam, J. W. (1999). Modeling hydrology and sediment 

transport in vegetative filter strips and riparian areas. Journal of Hydrology., 214:111–129. 

https://doi.org/10.1016/S0022-1694(98)00272-8. 

Mucherino, A. and Seref, O. (2007). Monkey search: a novel metaheuristic search for global 

optimization. Data Mining, Systems Analysis and Optimization in Biomedicine, 953: 162–

173. https://doi.org/10.1063/1.2817338.  

Mukhtarov, F. G. (2008). Intellectual history and current status of Integrated Water Resources 

Management: A global perspective. In: Pahl-Wostl, C., Kabat, P., Möltgen, J. (eds) Adaptive 



 

114 

 

and Integrated Water Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-540-75941-6_9. 

Müller, B., Bohn, F., Dressler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, 

J., Weise, H. and Schwarz, N. (2013). Describing human decisions in agentbased models - 

ODD+D, an extension of the ODD protocol. Environment Modelling & Software, 48:37–48. 

https://doi.org/10.1016/j.envsoft.2013.06.003. 

Nace, D., Demotier, S., Carlier, J., Daguinos, T. and Kora, R. (2001). Using linear programming 

methods for optimizing the real-time pump scheduling. In Bridging the Gap: Meeting the 

World's Water and Environmental Resources Challenges, 1–8. 

https://doi.org/10.1061/40569(2001)410.  

Needham, J. T., Watkins Jr., D. W., Lund, R. R. and Nanda, S. K. (2000). Linear programming for 

flood control in the Iowa and Des Moines rivers. Journal of Water Resources Planning and 

Management, 126: 118–127. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:3(118). 

Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization. The Computer 

Journal, 7(4): 308–313. https://doi.org/10.1093/comjnl/7.4.308.  

Nguyen, D. C. H., Ascough, J. C., Maier, H. R., Dandy, G. C. and Andales, A. A. (2017). 

Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping 

system model. Environment Modelling & Software, 97(C): 32–45. 

https://doi.org/10.1016/j.envsoft.2017.07.00.  

Nguyen, D. C. H., Maier, H. R., Dandy, G. C. and Ascough II, J. C. (2016). Framework for 

computationally efficient optimal crop and water allocation using ant colony optimization. 

Environmental Modelling and Software, 76: 37–53. 

https://doi.org/10.1016/j.envsoft.2015.11.003.  

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L Chan-Hilton, A., Karamouz, M., 

Minsker, B., Ostfeld, A., Singh, A. and Zechman, E. (2010). State of the art for genetic 

algorithms and beyond in water resources planning and management. Journal of Water 

Resources Planning and Management, 136(4): 412–432. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000053.  



 

115 

 

Nourani, V., Komasi, M. and Alami, M. T. (2011). Hybrid wavelet genetic programming approach 

to optimize ANN modelling of rainfall-runoff process. Journal of Hydrologic Engineering, 17: 

724–741. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000506. 

Nwankwor, E., Nagar, A. K. and Reid, D. C. (2013). Hybrid differential evolution and particle 

swarm optimization for optimal well placement. Computational Geosciences, 17(2): 249–268. 

https://doi.org/10.1007/s10596-012-9328-9. 

Odili, J. B., Kahar, M. N. M. and Anwar, S. (2015). African-buffalo optimization: a swarm-

intelligence technique. Procedia Computer Science, 76: 443–448. 

Öhlmer, B., Olson, K. and Brehmer, B. (1998). Understanding farmers’ decision making processes 

and improving managerial assistance. Agricultural Economics, 18: 273–290.   

https://doi.org/10.1111/j.1574-0862.1998.tb00505.x. 

Olariu, S., and Zomaya, A.Y. (Eds.) (2005). Handbook of Bioinspired Algorithms and 

Applications (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420035063. 

Oliveira, M., Pinheiro, D., Macedo, M., Bastos-Filho, C. and Menezes, R. (2020). Uncovering the 

social interaction network in swarm intelligence algorithms. Applied Network Science, 5: 24. 

https://doi.org/10.1007/s41109-020-00260-8.  

Orouji, H., Bozorg Haddad, O., Fallah-Mehdipour, E. and Marino, M. A. (2012). Estimation of 

Muskingum parameter by metaheuristic algorithm. Water Management, 166(6): 315–324. 

https://doi.org/10.1680/wama.11.00068.  

Ostadrahimi, L., Mariño, M. A. and Afshar, A. (2012). Multi-reservoir operation rules: multi-

swarm pso-based optimization approach. Water Resources Management, 26: 407–427. 

https://doi.org/10.1007/s11269-011-9924-9.  

Ostfeld, A. (2011). Ant Colony Optimization for water resources systems analysis – review and 

challenges. In (Ed.), Ant Colony Optimization - Methods and Applications. IntechOpen. 

https://doi.org/10.5772/13522.  



 

116 

 

Otieno, F. A. O. and Adeyemo, J. A. (2010). Strategies of differential evolution for optimum 

cropping pattern. Trends in Applied Sciences Research, 5: 1–15. 

Ozcan, E. and Mohan, C. K. (1999). Particle swarm optimization: surfing the waves. In 

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, 3: 1939–1944. 

https://doi.org/10.1109/CEC.1999.785510.  

Panagopoulos, Y., Markopoulos, C. and Mimikou, M. (2011). Reducing surface water pollution 

through the assessment of the cost-effectiveness of BMPs at different spatial scales. Journal of 

Environmental Management, 92: 2823–2835. https://doi.org/10.1016/j.jenvman.2011.06.035.  

Panagopoulos, Y., Makropoulos, C. and Mimikou, M. (2013). Multiobjective optimization for 

diffuse pollution control at zero cost. Soil Use Management, 29: 83–93. 

https://doi.org/10.1111/sum.12012.  

Pankaj, B. S., Naidu, M. N. and Vasan, A. (2020). Self-Adaptive Cuckoo Search Algorithm for 

Optimal Design of Water Distribution Systems. Water Resources Management, 34: 3129–

3146. https://doi.org/10.1007/s11269-020-02597-2.  

Parpinelli, R. S. and Lopes, H. S. (2011). An eco-inspired evolutionary algorithm applied to 

numerical optimization. Nature and Biologically Inspired Computing (NaBIC), 466–471. 

https://doi.org/10.1109/NaBIC.2011.6089631.  

Pasha, M. F. K. and Lansey, K. (2009). Optimal pump scheduling by linear programming. 

Proceedings of the World Environmental and Water Resources Congress, 1–10. 

Passino, K. M. (2010). Bacterial foraging optimization. International Journal of Swarm 

Intelligence Research, 1(1): 1–16. https://doi.org/10.4018/jsir.2010010101.  

Pelletier, P. J., Chapra, S. C. and Tao, K. (2006). A framework for modelling water quality in 

streams and rivers using genetic algorithm for calibration. Environmental Modelling and 

Software, 21: 419–465. https://doi.org/10.1016/j.envsoft.2005.07.002. 

Pham, D. T., Soroka, A. J., Ghanbarzadeh, A., Koc, E., Otri, S. and Packianather, M. (2007). 

Optimising neural networks for identification of wood defects using the bees algorithm. IEEE 

International Conference on Industrial Informatics, 1346–1351. 



 

117 

 

Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A. and Farahmand, H. (2019). Agent-based socio-

hydrological modeling for the restoration of Urmia Lake: Application of the theory of planned 

behavior. Journal of Hydrology., 576: 736–748. https://doi.org/10.1016/j.jhydrol.2019.06.080.  

Prakash, O. and Datta, B. (2014). Multiobjective monitoring network design for efficient 

identification of unknown groundwater pollution sources incorporating genetic programming-

based monitoring. Journal of Hydrologic Engineering, 19(11): 04014025. 

https://doi.org/10.1061/(ASCE)(HE).1943-5584.0000952.  

Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8): 5508–

5518. https://doi.org/10.1016/j.asoc.2011.05.008.  

Raju, K. S., Vasan, A., Gupta, P., Ganesan, K. and Mathur, H. (2012). Multiobjective differential 

evolution application to irrigation planning. ISH Journal of Hydraulic Engineering, 18(1): 54–

64. 

Rani, D., Jain, S. K., Srivastava, D. K. and Perumal, M. (2013). Genetic Algorithms and Their 

Applications to Water Resources Systems. In: Xin-She Yang, Amir Hossein Gandomi, 

Talatahari, S. and Alavi, A. H. (Eds.). Metaheuristics in Water, Geotechnical and Transport 

Engineering, Elsevier, 43-78. https://doi.org/10.1016/B978-0-12-398296-4.00003-9.  

Rao, R. V. and Keesari, H. S. (2018). Multi-team perturbation guiding Jaya algorithm for 

optimization of wind farm layout. Applied Soft Computing Journal, 71: 800–815. 

https://doi.org/10.1016/j.asoc.2018.07.036. 

Rao, R. V., Savsani, V. J. and Vakharia, D. (2011). Teaching–learning-based optimization: a novel 

method for constrained mechanical design optimization problems. Computer-Aided Design, 

43(3): 303–315. https://doi.org/10.1016/j.cad.2010.12.015. 

Rath, A., Samantaray, S. and Swain, P. C. (2019). Optimization of the Cropping Pattern Using 

Cuckoo Search Technique. In: Mishra, M., Mishra, B., Patel, Y., Misra, R. (Eds.). Smart 

Techniques for a Smarter Planet. Studies in Fuzziness and Soft Computing, Springer, Cham, 

19-35. https://doi.org/10.1007/978-3-030-03131-2_2.  



 

118 

 

Ravansalar, M., Rajaee, T. and Kisi, O. (2017). Wavelet-linear genetic programming: a new 

approach for modeling monthly streamflow. Journal of Hydrology, 549: 461–475. 

https://doi.org/10.1016/j.jhydrol.2017.04.018. 

Ravesteijn, W., Xingqiang, S. and Wennersten, R. (2009). The 2000 EU Water Framework 

Directive and Chinese Water Management: experiences and perspectives. River Basin 

Management V, 37–46. https://doi.org/10.2495/RM090041. 

Ray, T. and Liew, K. M. (2003). Society and civilization: An optimization algorithm based on the 

simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7(4): 386–

396. https://doi.org/10.1109/TEVC.2003.814902. 

Reddy, M. J. and Kumar, D. N. (2006). Optimal reservoir operation using multiobjective 

evolutionary algorithm. Water Resources Management, 20(6): 861–878. 

https://doi.org/10.1007/s11269-005-9011-1.  

Reeves, H. W. and Zellner, M. L. (2010). Linking MODFLOW with an agent-based land-use 

model to support decision making. Groundwater, 48(5): 649–660.  

https://doi.org/10.1111/j.1745-6584.2010.00677.x.  

Regulwar, D. G., Choudhari, S. A. and Raj, P. A. (2010). Differential evolution algorithm with 

application to optimal operation of multi-purpose reservoir. Journal of Water Resource and 

Protection, 2(6): 560–568. https://doi.org/10.4236/jwarp.2010.26064. 

Rixon, A., Moglia, M. and Burn, S. (2007). Exploring water conservation behavior through 

participatory agent-based modeling. Topics on system analysis and integrated water resource 

management, 73–96. 

Romero, F. I., Cozano, M. A., Gangas, R. A. and Naulin, P. I. (2014). Zonas ribereñas: protecciόn, 

restauraciόn y contexto legal en Chile. Bosque, 35(1): 3–12. https://doi.org/10.4067/S0717-

92002014000100001.  

Rounsevell, M. D., Robinson, D. T. and Murray-Rust, D. (2012). From actors to agents in socio-

ecological systems models. Philosophical Transactions of the Royal Society B:Biological 

Sciences, 367(1586): 259–269. https://doi.org/10.1098/rstb.2011.0187. 



 

119 

 

Rudolph G. (2012). Evolutionary Strategies. In: Rozenberg G., Bäck T. and Kok J.N. (Eds.) 

Handbook of Natural Computing. Springer. https://doi.org/10.1007/978-3-540-92910-9_22.  

Russo, A. D., Stochl, J., Painter, M., Shelly, F. G., Jones, B. P. and Perez, J. (2015). Use of the 

Theory of Planned Behavior to assess factors influencing the identification of students at 

clinical high-risk for psychosis in 16+ Education. BMC Health Services Research, 15(1): 1-

11. https://doi.org/10.1186/s12913-015-1074-y.  

SaberChenari, K., Abghari, H. and Tabari, H. (2016). Application of PSO algorithm in short-term 

optimization of reservoir operation. Environmental Monitoring and Assessment, 188(12): 1-

11. https://doi.org/10.1007/s10661-016-5689-1.  

Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S. and Portilla-Figueras, J. A. (2014). 

The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving 

Optimization Problems. The Scientific World Journal. https://doi.org/10.1155/2014/739768.  

Saleh, I., Kavian, A. and Jafarian, Z. (2017). The efficiency of vegetative buffer strips in runoff 

quality and quantity control. International Journal of Environmental Science and Technology, 

15(4): 811–820. https://doi.org/10.1007/s13762-017-1411-2.  

Sampathkumar, K. M., Ramasamy, S., Ramasubbu, B., Karuppanan, S. and Lakshminarayanan, 

B. (2021). Hybrid optimization model for conjunctive use of surface and groundwater 

resources in water deficit irrigation system. Water Science & Technology, 84(10–11): 3055–

3071. https://doi.org/10.2166/wst.2021.279.  

Sandberg, T. and Conner, M. (2008). Anticipated regret as an additional predictor in the theory of 

planned behavior: A meta-analysis. British Journal of Psychology, 47(4): 589–606. 

10.1348/014466607X258704. 

Saremi, S., Mirjalili, S. and Lewis, A. (2017). Grasshopper optimisation algorithm: theory and 

application. Advances in Engineering Software 105: 30–4. 

http://dx.doi.org/10.1016/j.advengsoft.2017.01.004.  



 

120 

 

Sarkheyli, A., Zain, A. M. and Sharif, S. (2015). The role of basic, modified, and hybrid shuffled 

frog leaping algorithm on optimization problems: a review. Soft Computing., 19: 2011–2038. 

https://doi.org/10.1007/s00500-014-1388-4.  

Savenije, H. H. G. and Van der Zaag, P.  (2008). Integrated water resources management: Concepts 

and issues. Physics and Chemistry of the Earth., 33: 290–297. 

https://doi.org/10.1016/j.pce.2008.02.003. 

Savic, D. A., Walters, G. A. and Davidson, J. W. (1999). A genetic programming approach to 

rainfall-runoff modelling. Water Resources Management, 13: 219–231. 

https://doi.org/10.1023/A:1008132509589.  

Schelling, T. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1: 143–

186. https://doi.org/10.1080/0022250X.1971.9989794.  

Schiezaro, M. and Pedrini, H. (2013). Data Feature Selection Based on Artificial Bee Colony 

Algorithm. In EURASIP Journal on Image and Video Processing, 1: 1–8. 

http://dx.doi.org/10.1186/1687-5281-2013-47.  

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A., 

McAllister, R. R. J., Müller, B., Orach, K., Schwarz, N. and Wijermans, N. (2017). A 

framework for mapping and comparing behavioral theories in models of socialecological 

systems. Ecological Economics, 131: 21–35. https://doi.org/10.1016/j.ecolecon.2016.08.008. 

Schulze, J., Müller, B., Groeneveld, J. and Grimm, V. (2017). Agent-Based Modelling of Social-

Ecological Systems: Achievements, Challenges, and a Way Forward. Journal of Artificial 

Societies and Social Simulation, 20(2): 8. https://doi.org/10.18564/jasss.3423.  

Sengupta, R., Lant, C., Kraft, S., Beaulieu, J., Peterson, W. and Loftus, T. (2005). Modeling 

enrollment in the Conservation Reserve Program by using agents within spatial decision 

support systems: an example from southern Illinois. Environment Planning B., 32: 821–834. 

https://doi.org/10.1068/b31193. 



 

121 

 

Selvaraj, C., Kumar, R. S., and Karnan, M. (2014). A survey on application of bio-inspired 

algorithms. International Journal of Computer Science and Information Technologies, 

5(1):366-370. 

Shadravan, S., Naji, H. R. and Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-

inspired metaheuristic algorithm for solving constrained engineering optimization problems. 

Engineering Applications of Artificial Intelligence, 80: 20–34. 

https://doi.org/10.1016/j.engappai.2019.01.001.  

Shahverdi, K. and Maestre, J. M. (2022). Grey wolf optimization for scheduling irrigation water. 

Journal of Irrigation and Drainage Engineering, 148(7): 04022020. 

https://doi.org/10.1061/(ASCE)IR.1943-4774.0001688.  

Sharif, M. and Wardlaw, R. (2000). Multireservoir systems optimization using genetic algorithms: 

case study. Journal of Computing in Civil Engineering, 14(4): 255–263. 

https://doi.org/10.1061/(ASCE)0887-3801(2000)14:4(255). 

Shi, Y. (2011). Brain Storm Optimization Algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. 

(Eds.) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, 

Springer, 6728:303–309. https://doi.org/10.1007/978-3-642-21515-5_36.  

Shi, Y. and Eberhart, R. C. (1999). Empirical study of particle swarm optimization. Proceedings 

of the 1999 Congress on Evolutionary Computation-CEC99, 3: 1945–1950. 

https://doi.org/10.1109/CEC.1999.785511.  

Silveira, C. L. B., Tabares, A. Faria, L. T. and Franco, J. F. (2021). Mathematical optimization 

versus Metaheuristic techniques: A performance comparison for reconfiguration of 

distribution systems. Electric Power Systems Research, 196: 107272. 

https://doi.org/10.1016/j.epsr.2021.107272.  

Simon, H. A. (1957). Models of Man. Wiley, New York. 

Singh, A. (2012). An overview of the optimization modelling applications. Journal of Hydrology, 

49(6–7): 167–182. https://doi.org/10.1016/j.jhydrol.2012.08.004.  



 

122 

 

Sivapalan, M., Savenije, H. G. H. and Blöschl, G. (2012). Socio-hydrology: A new science of 

people and water. Hydrological Processes, 26:1270–1276. https://doi.org/10.1002/hyp.8426. 

Skardi, M. J. E., Afshar, A. and Solis, S. S. (2013). Simulation-Optimization Model for Non-point 

Source Pollution Management in Watersheds: Application of Cooperative Game Theory. 

KSCE Journal of Civil Engineering, 17(6):1232–1240. https://doi.org/10.1007/s12205-013-

0077-7. 

Skår, S., Sniehotta, F. F., Araujo-Soares, V. and Molloy, G. J. (2008). Prediction of behavior vs. 

prediction of behavior change: The role of motivational moderators in the theory of planned 

behavior. Applied Psychology: An International Review, 57: 609–627.  

https://doi.org/10.1111/j.1464-0597.2008.00346.x. 

Smajgl, A., Brown, G. D., Valbuena, D. and Huigen, G. A. M. (2011). Empirical characterization 

of agent behaviors in socio-ecological systems. Environment Modelling & Software, 26: 837–

844. https://doi.org/10.1016/j.envsoft.2011.02.011. 

Slowik, A. and Kwasnicka, H. (2018). Nature Inspired Methods and Their Industry Applications—

Swarm Intelligence Algorithms. IEEE Transactions on Industrial Informatics, 14(3): 1004–

1015. https://doi.org/10.1109/TII.2017.2786782.  

Sörensen, K. (2013). Metaheuristics—the metaphor exposed. International Transactions in 

Operational Research, 22(1): 3–18. https://doi.org/10.1111/itor.12001.  

Sörensen, K. and Glover, F. W. (2013). Metaheuristics. In: Gass, S. I. and Fu, M. C. (Eds.) 

Encyclopedia of operations research and management science, Springer. 663: 960–970. 

Sörensen, K., Sevaux, M. and Glover, F. (2017). A History of Metaheuristics. In: Martí, R., 

Pardalos, P. and Resende, M. (Eds.) Handbook of Heuristics. Springer. 

https://doi.org/10.1007/978-3-319-07124-4_4.  

Spiliotis, M., Mediero, L. and Garrote, L. (2016). Optimization of hedging rules for reservoir 

operation during droughts based on particle swarm optimization. Water Resources 

Management, 30: 5759–5778.  https://doi.org/10.1007/s11269–016-1285-y.  



 

123 

 

Storn, R. and Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for Global 

Optimization over Continuous Spaces. Journal of Global Optimization, 11: 341–359. 

https://doi.org/10.1023/A:1008202821328.  

Stützle, T. and Hoos, H. H. (2000). MAX–MIN Ant System. Future Generation Computer 

Systems, 16(8): 889–914. https://doi.org/10.1016/S0167-739X(00)00043-1.  

Suen, J-P. and Eheart, J. W. (2003).  Evaluation of Neural Networks for Modeling Nitrate 

Concentrations in Rivers. Journal of Water Resources Planning and Management,129(6):505–

510. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(505). 

Suh, M. and Hsieh, G. (2016). Designing for future behaviors: Understanding the effect of 

temporal distance on planned behaviors. In Proceedings of the CHI Conference on Human 

Factors in Computing Systems, 1084–1096. https://doi.org/10.1145/2858036.2858591.  

Sun, P., Jiang, Z. Q., Wang, T. T. and Zhang, Y. K. (2016). Research and application of parallel 

normal cloud mutation shuffled frog leaping algorithm in cascade reservoirs optimal operation. 

Water Resources Management, 30(3): 1019–1035. https://doi.org/10.1007/s11269-015-1208-

3.  

Sur, C., Sharma, S. and Shukla, A. (2013). Egyptian vulture optimization algorithm – a new nature 

inspired meta-heuristics for knapsack problem. In: Meesad, P., Unger, H. and Boonkrong, S. 

(Eds.). 9th International Conference on Computing and Information Technology (IC2IT2013). 

Advances in Intelligent Systems and Computing, Springer, 209:227–237. 

https://doi.org/10.1007/978-3-642-37371-8_26.  

Surco, D. F., Vecchi, T. P. B. and Ravagnani, M. A. S. S. (2018). Optimization of water 

distribution networks using a modified particle swarm optimization algorithm. Water Supply, 

18(2): 660–678. https://doi.org/10.2166/ws.2017.148.  

Sweidan, A. H., El-Bendary, N., Hassanien, A. E., Hegazy, O. M. and Mohamed, A. E.-k. (2015). 

Water quality classification approach based on bio-inspired Gray Wolf Optimization. In 

International Conference of Soft Computing and Pattern Recognition (SoCPaR), 1–6. 

https://doi.org/10.1109/SOCPAR.2015.7492777.  



 

124 

 

Szemis, J. M., Maier, H. R. and Dandy, G. C. (2012). A framework for using ant colony 

optimization to schedule environmental flow management alternatives for rivers, wetlands, and 

floodplains. Water Resources Research, 48 (8): 1–21. 

https://doi.org/10.1029/2011WR011276.  

Szemis, J. M., Maier, H. R. and Dandy, G. C. (2014). An adaptive ant colony optimization 

framework for scheduling environmental flow management alternatives under varied 

environmental water availability conditions. Water Resources Research, 50: 7606–7625. 

https://doi.org/10.1002/2013WR015187.   

Tahershamsi, A., Kaveh, A., Sheikholeslami, R. and Azad, S. K. (2014). An improved firefly 

algorithm with harmony search scheme for optimization of water distribution systems. Scientia 

Iranica, 21(5): 1591–1607. 

Tapia, F., and Villavicencio, A. (2007). Uso de biofiltros para mejorar la calidad del agua de riego. 

Proyecto FONSAG C3-81-07-42: Establecimiento y evaluaciόn de biofiltros para reducir la 

contaminaciόn difusa en aguas de riego de las regiones VI y VII. (Boletín INIA No. 170). 

Instituto de Investigaciones Agropecuarias, Santiago, Chile, p. 128. 

Tayfur, G. (2017). Modern optimization methods in water resources planning, engineering and 

management. Water Resources Management, 31(10): 3205–3233. 

https://doi.org/10.1007/s11269-017-1694-6.  

Teodorovic, D. and Dell’Orco, M. (2005). Bee colony optimization–a cooperative learning 

approach to complex transportation problems. Advanced OR and AI methods in transportation, 

51–60. 

Theraulaz, G., Goss, S., Gervet, J. and Deneubourg, J. L. (1991). Task differentiation in Polistes 

wasp colonies: a model for self-organizing groups of robots. From animals to animats: 

Proceedings of the First international Conference on Simulation of Adaptive Behavior (eds.: 

Meyer; J. A. and Wilson, S. W.), MIT Press, 346-355.  

Tilahun, S. L. and Ong, H. C. (2015). Prey-Predator Algorithm: a new metaheuristic algorithm for 

optimization problems. International Journal of Information Technology & Decision Making, 

14(6): 1331–1352.  https://doi.org/10.1142/S021962201450031X.  



 

125 

 

Tu, Q., Li, H., Wang, X. and Chen, C. (2011). Ant colony optimization for the design of small-

scale irrigation systems. Water Resources Management, 25: 1537–1544. 

https://doi.org/10.1007/s11269-015-0943-9.  

Turrell, A. (2016). Agent-Based Models: understanding the economy from the bottom up. Bank 

of England Quarterly Bulletin, Q4. 

United States Department of Agriculture (USDA). (2000). Conservation buffers work. 

Economically and environmentally. Program Aid 1615 revised September 2000. Retrieved 

from: https://nrcspad.sc.egov.usda.gov/distributioncenter/pdf.aspx?productID=119.  

Upadhyaya, A. and Upadhyaya, A. (2021). Optimization of water productivity in Bhagwanpur 

distributary command of India employing TLBO and cuckoo search algorithms. Water Policy, 

23(2): 274–290. https://doi.org/10.2166/wp.2021.083.  

Valetov, D., Neuvazhaev, G., Svitelman, V. and Saveleva, E. (2019). Hybrid Cuckoo Search and 

Harmony Search Algorithm and Its Modifications for the Calibration of Groundwater Flow 

Models. In Proceedings of the 11th International Joint Conference on Computational 

Intelligence (IJCCI 2019), 221–228. ISBN: 978-989-758-384-1. 

https://doi.org/10.5220/0008345502210228.  

Vanclooster, M., Viaene, P., Diels, J. and Feyen, J. (1995). A deterministic validation procedure 

applied to the integrated soil crop model wave. Ecological Modelling, 81: 183–195. 

Vasan, A. and Simonovic, S. P. (2010). Optimization of water distribution network design using 

differential evolution. Journal of Water Resources Planning and Management, 136(2): 279–

287. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(279). 

van Dijk, W. F. A., Lokhorst, A. M., Berendse, F. and de Snoo, G. R. (2016). Factors underlying 

farmers’ intentions to perform unsubsidized agri-environmental measures. Land Use Policy., 

59: 207–216. https://doi.org/10.1016/j.landusepol.2016.09.003.  

Varol, H. A. and Bingul, Z. (2004). A new PID tuning technique using ant algorithm. In Proceeding 

of the IEEE 2004 American Control Conference, 3: 2154–2159. 



 

126 

 

Verma, H. (2020). A systematic review on firefly algorithm: past, present, and future. TechRxiv. 

Preprint. https://doi.org/10.36227/techrxiv.12122748.v1.  

Volk, M., Liersch, S. and Schmidt, G. (2009). Towards implementation of the European Water 

Frame Directive? Lesson learned from water quality simulations in an agricultural watershed. 

Land Use Policy, 26: 580–588. https://doi.org/10.1016/j.landusepol.2008.08.005.  

Wagh, V. M., Panaskar, D. B. and Muley, A. A. (2017). Estimation of nitrate concentration in 

groundwater of Kadava river basin-Nashik district, Maharashtra, India by using artificial 

neural network model. Modelling Earth System Environment, 3, 36.  

https://doi.org/10.1007/s40808-017-0290-3. 

Wang, G. G., Deb, S. and Cui, Z. (2015). Monarch butterfly optimization. Neural Computing and 

Applications, 31(7): 1995–2014. https://doi.org/10.1007/s00521-015-1923-y.  

Wang, G. G., Deb, S. and Coelho, L. D. S. (2015). Elephant-herding optimization. In 3rd 

International Symposium on Computational and Business Intelligence, 1–5. 

Wang, H., Cui, Z., Wang, W., Zhou, X., Zhao, J., Lv, L. and Sun, H. (2017a). Firefly algorithm 

for demand estimation of water resources. In: Liu, D., Xie, S., Li, Y., Zhao, D. and El-Alfy, 

ES. (Eds.) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, 

Springer, 10637:11–20. https://doi.org/10.1007/978-3-319-70093-9_2.  

Wang, H., Wang, W., Cui, Z., Zhou, X., Zhao, J. and Li, Y. (2018). A new dynamic firefly 

algorithm for demand estimation of water resources. Information Sciences, 438: 95–106, ISSN 

0020-0255. https://doi.org/10.1016/j.ins.2018.01.041.  

Wang, J. S., and Li, X. S. (2019). An improved grey wolf optimizer based on differential evolution 

and elimination mechanism. Nature Scientific Reports, 9(1): 1–21. 

https://doi.org/10.1038/s41598-019-43546-3.  

Wang, W., Liu, D. and Wang, H. (2017b). Firefly algorithm for multi-objective optimal allocation 

of water resource. International journal of innovative computing and application, 8(4): 222–

227. 



 

127 

 

Wang, D., Tan, D. and Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft 

Computing, 22: 387–408. https://doi.org/10.1007/s00500-016-2474-6.  

Watson, N. (2004). Integrated river basin management: A case for collaboration. International 

Journal of River Basin Management, 2(4): 243–257. 

https://doi.org/10.1080/15715124.2004.9635235. 

Wedde, H. F., Farooq, M. and Zhang, Y. (2004). BeeHive: an efficient fault-tolerant routing 

algorithm inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., 

Gambardella, L.M., Mondada, F. and Stützle, T. (Eds.). Ant Colony Optimization and Swarm 

Intelligence, ANTS 2004. Lecture Notes in Computer Science, 3172. Springer, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-540-28646-2_8.  

Weersink, A. and Fulton, M. (2020). Limits to profit maximization as a guide to behavior change. 

Applied Economic Perspectives and Policy, 42 (1): 67–79. 

https://doi.org/10.1002/aepp.13004.  

Wolpert, D. H. and Macready, W. G. (1996). No free lunch theorems for optimization. IEEE 

Transactions on Evolutionary Computation, 1(1):67–82. https://doi.org/10.1109/4235.585893. 

Wu, C. C., Lai, K.-C. and Sun, R.-Y. (2008). GA-based job scheduling strategies for fault tolerant 

grid systems. In IEEE Asia-Pacific Services Computing Conference, 27–32. 

Wu, Tq., Yao, M. and Yang, Jh.  (2016). Dolphin swarm algorithm. Frontiers of Information 

Technology & Electronic Engineering, 17: 717–729. https://doi.org/10.1631/FITEE.1500287.  

Yang, X. S. and Deb, S. (2009). Cuckoo Search via Lévy flights. World Congress on Nature & 

Biologically Inspired Computing, 210-214. https://doi.org/10.1109/NABIC.2009.5393690.  

Yang, X. S. and Gandomi, H. A. (2012). Bat algorithm: a novel approach for global engineering 

optimization. Engineering Computations, 29(5): 464–483. 

Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, 

T. (Eds.) Stochastic Algorithms: Foundations and Applications. SAGA. Lecture Notes in 

Computer Science, Springer, Berlin. https://doi.org/10.1007/978-3-642-04944-6_14.  



 

128 

 

Yang, X. S. (2012). Flower pollination algorithm for global optimization. In: Durand-Lose, J., 

Jonoska, N. (Eds.) Unconventional Computation and Natural Computation. UCNC 2012. 

Lecture Notes in Computer Science, Springer. https://doi.org/10.1007/978-3-642-32894-7_27. 

Yang, X. S. (2014). Cuckoo Search. In Nature-Inspired Optimization Algorithms, Elsevier, 129–

139, ISBN 9780124167438, https://doi.org/10.1016/B978-0-12-416743-8.00009-9.  

Yang, X. S. and Deb, S. (2014). Cuckoo search: recent advances and applications. Neural 

Computing and Applications, 24: 169–174. https://doi.org/10.1007/s00521-013-1367-1.  

Yang, X. S., Deb, S., Zhao, Y. X., Fong, S. and He, X. (2018). Swarm intelligence: past, present 

and future. Soft Computing, 22: 5923–5933. https://doi.org/10.1007/s00500-017-2810-5.  

Yang, X. S. and He, X. (2013). Bat algorithm: literature review and applications. International 

Journal of Bio-Inspired Computation, 5(3): 141-149. 

https://doi.org/10.1504/IJBIC.2013.05509.  

Yang, Z., Yang, K., Hu, H. and Su, L. (2019). The cascade reservoirs multi-objective ecological 

operation optimization considering different ecological flow demand. Water Resources 

Management, 33(1): 207–228. https://doi.org/10.1007/s11269-018-2097-z.  

Yasar, M. (2016). Optimization of Reservoir Operation Using Cuckoo Search Algorithm: Example 

of Adiguzel Dam, Denizli, Turkey. Mathematical Problems in Engineering, 1316038. 

https://doi.org/10.1155/2016/1316038.  

Yoo, J. H. (2009). Maximization of hydropower generation through the application of a linear 

programming model. Journal of Hydrology, 376: 182–187. 

https://doi.org/10.1016/j.jhydrol.2009.07.026. 

Yu, S., Ji, C., Xie, W. and Liu, F. (2011). Instructional mutation ant colony algorithm in application 

of reservoir operation chart optimization. In Fourth International Symposium on Knowledge 

Acquisition and Modeling, 462–465. https://doi.org/10.1109/KAM.2011.126.  

Zarei, A., Mousavi, S. F., Eshaghi Gordji, M. and Karami, H. (2019). Optimal reservoir operation 

using bat and particle swarm algorithm and game theory based on optimal water allocation 



 

129 

 

among consumers. Water Resources Management, 33: 3071–3093. 

https://doi.org/10.1007/s11269-019-02286-9.  

Zakermoshfegh, M. and Neyshabouri, S. A. A. S. and Lucas, C. (2008). Automatic calibration of 

lumped conceptual rainfall-runoff model using particle swarm optimization. Journal of 

Applied Sciences, 8: 3703–3708. https://doi.org/10.3923/jas.2008.3703.3708.  

Zecchin, A. C., Maier, H. R., Simpson, A. R., Roberts, A., Berrisford, M. J., and Leonard, M. 

(2003). Max-min ant system applied to water distribution system optimisation. 

Zecchin, A. C., Maier, H. R., Simpson, A. R., Leonard, M. and Nixon, J. B. (2007). Ant colony 

optimization applied to water distribution system design: comparative study of five algorithms. 

Journal of Water Resources Planning and Management, 133(1): 87–92. 

https://doi.org/10.1061/(ASCE)0733-9496(2007)133:1(87).  

Zervoudakis, K. and Tsafarakis, S. (2020). A mayfly optimization algorithm. Computers & 

Industrial Engineering, 145: 106559. https://doi.org/10.1016/j.cie.2020.106559.  

Zhang, G., Hamlett, J. M., Reed, P. and Tang, Y. (2013). Multiobjective optimization of low 

impact development designs in an urbanizing watershed. Open Journal of Optimization, 2: 95–

108. http://dx.doi.org/10.4236/ojop.2013.24013.  

Zhang, J., Zhu, Z., Chang, Y., Wu, D., Du, L. and Cui, Z. (2019). Demand estimation of water 

resources based on coupling algorithm. Chinese Control And Decision Conference (CCDC), 

714–719. https://doi.org/10.1109/CCDC.2019.8832522.  

Zhang, L. M., Dahlmann, C. and Zhang, Y. (2009). Human-inspired algorithms for continuous 

function optimization. In IEEE international conference on Intelligent Computing and 

Intelligent Systems (ICIS), 1: 318–321.  

Zhang, X., Srinivasan, R., Zhao, K. and Liew M.V. (2009). Evaluation of global optimization 

algorithms for the parameter calibration of a computationally intensive hydrological model. 

Hydrological Processes, 23: 430–441. https://doi.org/10.1002/hyp.7152.  



 

130 

 

Zhang, Y., Wang, S. and Ji, G. (2015). A comprehensive survey on particle swarm optimization 

algorithm and its applications. Mathematical Problems in Engineering. 

https://doi.org/10.1155/2015/931256.  

Zhao, T., Zhao, J. and Yang, D. (2014). Improved dynamic programming for hydropower reservoir 

operation. Journal of Water Resources Planning and Management, 140(3): 365–374. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000343. 

Zheng, F., Simpson, A. R. and Zecchin, A. (2012). A Performance Comparison of Differential 

Evolution and Genetic Algorithm Variants Applied to Water Distribution System 

Optimization. In World Environmental and Water Resources Congress 2012: Crossing 

Boundaries, 2954–2963. 

Zubair, M. and Garforth, C. (2006). Farm-level tree planting in Pakistan: The role of farmers’ 

perceptions and attitudes. Agroforestry Systems, 66(3): 217–229. 

https://doi.org/10.1007/s10457-005-8846-z.  

 



 

131 

 

  



 

132 

 

Appendix A 

Supplementary materials of Chapter 2 

Table. 2.I List of some of the popular bio-inspired metaheuristic algorithms 

Abbreviation Full name Reference Year 

Swam-Intelligence based bio-inspired algorithms 

SDS Stochastic Diffusion Search (Bishop, 1989) 1989 

ACO Ant colony optimization (Dorigo, 1991) 1991 

PSO Particle Swarm Optimization (Eberhart and Kennedy, 1995) 1995 

SA Shark Algorithm  (Hersovici, et al., 1998) 1998 

FSO Fish Swarm Optimization (Li et al., 2002) 2002 

SFLA Shuffled Frog Leaping Algorithm (Eusuff and Lansey, 2003) 2003 

SCA Society and civilization optimization (Ray and Liew, 2003) 2003 

BH BeeHive (Wedde et al., 2004) 2004 

ABC Artificial Bee Colony  (Karaboga, 2005) 2005 

BCO Bee Colony Optimization (Teodorovic and Dell’Orco, 

2005) 

2005 

CSO Cat Swarm Optimization (Chu et al., 2006),  2006 

HBMO Honey Bee Mating Optimization (Afshar et al., 2007) 2007 

BEA Bees Algorithm (Pham et al., 2007) 2007 

FBSA Fast Bacterial Swarming Algorithm (Chu et al., 2008) 2008 

RIO Roach Infestation Optimization (Havens et al., 2008) 2008 

BO Bumblebees Optimization  (Comellas and Matrinez, 2009) 2009 

CS Cuckoo Search (Yang and Deb, 2009) 2009 

FA Firefly Algorithm (Yang, 2009) 2009 

GSO Glowworm Swarm Optimization (Krishnanand and Ghose, 2009) 2009 

LCA League Championship Algorithm (Kashan, 2009) 2009 

BFO Bacterial Foraging Optimization (Passino et al., 2010) 2010 

JTF Japanese Tree Frogs (Hernández and Blum, 2012) 2010 

TCO Termite Colony Optimization (Hedayatzadeh et al., 2010) 2010 

ASO Anarchic Society Algorithm  (Ahmadi-Javid, 2011) 2011 
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BSO Brain Storm Optimization  (Shi, 2011) 2011 

TLBO Teaching Learning Based 

Optimization  

(Rao et al., 2011) 2011 

BA Bat Algorithm (Yang and Gandomi, 2012) 2012 

GSR Great Salmon Run (Mozaffari et al., 2012) 2012 

KH Krill Herd  (Gandomi and Alavi, 2012) 2012 

DSO Dolphin Swarm Opitmiztaion  (Wu et al., 2016) 2013 

SSO Social Spider Optimization (Cuevas et al., 2013) 2013 

CRO Coral Reefs Optimization (Salcedo-Sanz et al., 2014) 2014 

CFA Cuttle Fish Optimization (Eesa et al., 2014) 2014 

GWO Grey Wolf Optimizer (Mirjalili et al., 2014) 2014 

SOS Symbiotic Organisms Search (Cheng and Prayogo, 2014) 2014 

SMO Spider Monkey Optimization (Bansal et al., 2014) 2014 

CSO Chicken-Swarm Optimization (Meng et al., 2014) 2014 

JA Jaguar Algorithm (Chen et al., 2015) 2015 

ALO Ant Lion Optimizer (Mirjalili, 2015b) 2015 

MBO Monarch Butterfly Optimization (Wang et al., 2015) 2015 

MFOA Moth-flame optimization algorithm  (Mirjalili, 2015a) 2015 

PPA Prey-Predator Algorithm (Tilahun and Ong, 2015) 2015 

ABO African-Buffalo Optimization  (Odili et al., 2015) 2015 

EHA Elephant Herding Algorithm  (Wang et al., 2015) 2015 

PIO Pigeon-Inspired Optimization  (Duan and Qiao, 2014) 2015 

SSA Social Spider Algorithm   (James and Li, 2015) 2015 

DA Dragonfly algorithm (Mirjalili, 2016) 2016 

SWA Sperm Whale Algorithm (Ebrahimi and Khamehchi, 2016) 2016 

WOA Whale Optimization Algorithm  (Mirjalili and Lewis, 2016) 2016 

MFO Mosquito Flying Optimization  (Alauddin, 2016) 2016 

CA Camel Travelling Behavior  (Ibrahim and Ali, 2016) 2016 

BSA Bird-Swarm Algorithm  (Meng et al., 2016) 2016 

CSA Crow Search Algorithm  (Askarzadeh, 2016) 2016 
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RDA Red Deer Algorithm (Fard and Hajiaghaei-Keshteli, 

2016) 

2016 

GOA Grasshopper Optimisation Algorithm (Saremi et al., 2017) 2017 

KA Kidney Algorithm (Jaddi et al., 2017) 2017 

KWA Killer Whale Algorithm (Biyanto et al., 2017) 2017 

WSA Salp Swarm Optimization (Mirjalili et al., 2017) 2017 

MRA Mushroom Reproduction 

Optimization 

(Bidar et al., 2018) 2018 

MIA Meerkats Inspired Algorithm (Al-Obaidi et al., 2018) 2018 

CBA Cheetah Chase Algorithm (Goudhaman, 2018) 2018 

HHO Harris Hawks optimization (Bairathi and Gopalani, 2020) 2019 

SO Sailfish Optimizer (Shadravan et al., 2019) 2019 

SSA* Squirrel Search Algorithm  (Jain et al., 2019) 2019 

EPC Emperor-Penguins Colony  (Harifi et al., 2019) 2019 

BWOA Black Widow Optimization 

Algorithm 

(Hayyolalam and Kazem, 2020) 2020 

ChoA Chimp Optimization Algorithm (Khishe and Mosavi, 2020) 2020 

COA Coronavirus Optimization Algorithm (Martínez-Álvarez et al., 2020) 2020 

MOA Mayfly Optimization Algorithm (Zervoudakis and Tsafarakis, 

2020) 

2020 

WSA Water Strider Algorithm (Kaveh and Dadras Eslamlou, 

2020) 

2020 

HHOA Horse Herd Optimization Algorithm (MiarNaeimi et al., 2021) 2021 

ACVO Anti-Coronavirus Optimization 

Algorithm 

(Emami, 2022) 2022 

Non-Swam-Intelligence based bio-inspired algorithms 

GA Genetic Algorithms (Holland, 1975) 1975 

GP Genetic Programming (Fogel et al., 1966) 1992 

DE Differential Evolution (Storn and Price, 1996) 1996 

GE Gene Expression (Ferreira, 2001) 2001 

NSGA-II Non-dominated Sorting GA-II (Deb et al., 2002) 2002 
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QBE Queen-Bee Evolution (Jung, 2003) 2003 

WO Weed Optimization Algorithm  (Mehrabian and Lucas, 2006) 2006 

IWO Invasive Weed Optimization (Karimkashi and Kishk, 2010) 2006 

DEMC Differential Evolution Markov Chain (Braak, 2006)  2006 

ICA Imperialistic Competitive Algorithm (Atashpaz-Gargari and Lucas, 

2007) 

2007 

MSA Monkey Search Algorithm (Mucherino and Seref, 2007) 2007 

HIA Human Inspired Algorithm (Zhang et al., 2009b) 2009 

ECO Eco-inspired evolutionary Algorithm (Parpinelli and Lopes, 2011) 2011 

FPA Flower Pollination Algorithm (Yang, 2012) 2012 

OB Opt Bees (Maia et al., 2013) 2012 

EVOA Egyptian Vulture Optimization 

Algorithm 

(Sur et al., 2013) 2013 

DEO Dolphin Echolocation Optimization (Kaveh and Farhoudi, 2013) 2013 
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Appendix B 

Supplementary materials of Chapter 3 

Table 3.I Percentage long-term annual mean TN reduction at subbasin level 

Subbasin 

No. 

% TN Reduction  

by ACO 

% TN Reduction  

by PSO 

Binary Difference 

Indicator 

1 18.27 18.25 1 

2 0.03 0.03 0 

3 16.33 16.32 1 

4 0.08 0.08 1 

5 0.0 0.00 0 

6 7.4 6.58 1 

7 21.79 21.77 1 

8 0.20 0.20 0 

9 26.78 26.76 1 

10 6.15 5.43 1 

11 28.33 28.32 1 

12 6.11 5.41 1 

13 24.71 24.71 0 

14 33.33 33.33 0 

15 43.86 43.86 0 

16 0.05 0.05 0 

17 0.0 0.0 0 

18 0.04 0.04 0 

19 0.0 0.0 0 

20 0.0 0.0 0 

21 0.0 0.0 0 

22 0.05 0.05 0 

23 0.10 0.10 0 

24 0.17 0.17 0 

25 0.00 0.00 0 
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The binary difference indicator is provided in the last column. A value of 1 indicates the subbasin 

reaches where ACO performs slightly better than PSO. A value of 0 indicates same performance 

by both algorithms. 
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Appendix C 

Supplementary materials of Chapter 4 

4.A. Figures 

 

Figure 4.I Study area - Larqui river basin  

 

Data source: DIVA-GIS (https://www.diva-gis.org/gdata) and  

Ide-Minagri (http://ide.minagri.gob.cl/geoweb/index.php/descargas) 
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Figure 4.II Representation of the four types of agents in NetLogo 
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Figure 4.III Soil erosion in different field classes 

Figure 4.III represents the soil losses experienced by the farmers during the simulation period for the ‘actual’ case with a 5m width 

buffer.which is used by most of the farmers (27 out of 74) in the study area. 
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Figure 4.IV Soil erosion vs. retention with and without VFS 

While the soil retention of different widths of buffer in both cases appear similar, a clear difference is observed in the years 2002 and 

2006 where annual soil eroded is greater due to intensive rainfall. It can be seen that VFS performs better compared to the ‘actual’ case 

in retaining the soil losses due to erosion. Amongst the different widths of VFS, larger widths of VFS perform much better.  
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4.B. Tables 

Table 4.I Field classes and their characteristics 

Field 

Class 

Min. Farm Size 

[ha] 

Max. Farm 

Size [ha] 

Number of 

farmers  

Swidth  

[m] 

Slength 

[m] 

1 0.5 1 11 110 1 Swidth 

2 2 5 31 153 1.5 Swidth 

3 5 10 13 170 0.43 Swidth 

4 11 29 8 311.4 0.54 Swidth 

5 30 60 5 346.5 0.33 Swidth 

6 61 200 6 447.2 0.25 Swidth 
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Table 4.II ODD+D protocol for the developed ABM of farmer decision-making (according to the protocol developed by Müller et al. (2013)) 

Outline  Guiding questions ODD+D Model description for the developed ABM 

O
v
er

v
ie

w
 

I.i Purpose I.i.a What is the purpose of the 

study? 

The purpose of the study is to develop a socio-hydrological 

framework to improve the acceptance of environmental 

measures by stakeholders. This is tested for use of vegetative 

filter strip as a land use management strategy to reduce soil 

erosion in the agricultural fields of farmers and thus prevent 

water pollution in the adjacent streams. 

An ABM is developed on the social theory of behavior 

(Theory of Planned Behavior aka TPB), and coupled with 

the environmental process model to model soil loss 

(VFSMOD-W).  

This framework provides the perspective of farmers to the 

policymakers so that they can develop policies to promote 

the use of VFS based on the field situation. 

I.ii.b For whom is the model 

designed? 

Scientists, decision-makers, farmer organizations and 

farmers (stakeholders) 

I.ii Entities, 

state variables, 

and scales 

I.ii.a What kinds of entities are in 

the model? 

Agents: Framers;  

Spatial units: Grids representing individual agricultural fields 

Institution: Farmer organizations;  

Environment and collectives: Larqui river basin of 74 

farmers that are classified to 4 behavioral categories 
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(perceptive, proactive, interactive and bounded rational 

based on quantitative ordinals derived from the field survey) 

and 6 field class depending on the size of the agricultural 

field (see Table 4.1). 

I.ii.b By what attributes (i.e. state 

variables and parameters) are 

these entities characterized? 

Agents: an agent represents one individual farmer who is the 

owner of the land. 

Spatial units: one grid represents one piece of land owned by 

a farmer 

Collectives: decision-making by the agents depending on 

their behavioral categorization; farmer organization. 

I.ii.c What are the exogenous 

factors/drivers of the model? 

Loss of soil due to erosion in the agricultural fields, the 

monetary investment and benefits of VFS and the behavioral 

categorization of the agents 

I.ii.d If applicable, how is space 

included in the model? 

Not included 

I.ii.e What are the temporal and 

spatial resolutions and extents of 

the model? 

One-time step represents one day and the simulation was run 

for 10 years from 1998 to 2008. Each grid cell represents the 

agricultural field owned by the agent. No spatial definition is 

given. 

I.iii Process 

overview and 

scheduling 

I.iii.a What entity does what, and 

in what order? 

The agents, every three years, decide if they want to expand 

the width of the VFS they have based on their behavioral 
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categorization and the utility they made over the past three 

years. 
 D

es
ig

n
 C

o
n
ce

p
ts

 

II.i Theoretical 

and Empirical 

Background 

II.i.a Which general concepts, 

theories or hypotheses are 

underlying the model’s design at 

the system level or the level(s) of 

the submodel(s) (apart from the 

decision model)? What is the link 

to the complexity and the purpose 

of the model? 

Based on the Theory of Planned Behavior (TPB), 

standardized regression weights are derived from the data 

collected in the survey. These weights are used in the ABM 

model to weigh upon the decision making of the agent. Apart 

from the TPB, utility function is developed that encompasses 

monetary values from different agricultural activities 

including implementation of VFS and losses due to soil loss, 

and benefits of implementing VFS. The results from 

VFSMOD-W is the third sub-model used in this study, 

which provides the trigger to the agents to decide on the 

width of VFS based on the threshold of soil loss. 

II.i.b On what assumptions is/are 

the agents’ decision model(s) 

based? 

The agents follow a bounded rational decision or profit-

maximizing decision by considering the environmental 

information. Their decision is based on the decision-making 

rule developed for the study based on the interactions had 

with the farmers on-site. The rules are presented in Table .2. 

II.i.c Why is a/are certain decision 

model(s) chosen? 

The decision model used in the study is derived from the 

data gathered from the on-site survey and farmer interaction. 
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II.i.d If the model / a sub-model 

(e.g. the decision model) is based 

on empirical data, where does the 

data come from? 

The data is collected from the on-site survey. 

II.i.e At which level of 

aggregation were the data 

available? 

Individual-level 

 

II.ii Individual 

Decision 

Making 

II.ii.a What are the subjects and 

objects of decision-making? On 

which level of aggregation is 

decision-making modeled? Are 

multiple levels of decision making 

included? 

Individual agents are the subjects of decision-making while 

the width of the VFS is the object. 

Multiple levels of decision-making are not included. 

II.ii.b What is the basic rationality 

behind agents’ decision-making in 

the model? Do agents pursue an 

explicit objective or have other 

success criteria? 

In this study, the rationality for decision making varies 

between different behavioral categorization. Utility 

maximization is considered for proactive agents. In the case 

of the perceptive agents’ utility non-negativity is taken into 

account. Bounded rational and interactive agents ensure that 

the utility doesn’t decrease. 

II.ii.c How do agents make their 

decisions? 

The agents decide based on utility function and behavioral 

categorization ensuring non-negative monetary values. 
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II.ii.d Do the agents adapt their 

behavior to changing endogenous 

and exogenous state variables? 

And if yes, how? 

No 

II.ii.e Do social norms or cultural 

values play a role in the decision-

making process? 

The societal influence which is defined as the subjective 

norm in TPB plays a role in the model. 

II.ii.f Do spatial aspects play a 

role in the decision process? 

Yes, the fields of the agents are divided into 6 different 

classes for ease of calculation. However, they hardly 

influence decision-making.On the other hand, the width of 

VFS which is also a spatial entity for a field influences the 

soil loss, benefits gained. 

II.ii.g Do temporal aspects play a 

role in the decision process? 

Yes. The decision of the farmer about the width of VFS is 

made once every three years. 

II.ii.h To which extent and how is 

uncertainty included in the agents’ 

decision rules? 

It is not included. 

II.iii Learning  

II.iii.a Is individual learning 

included in the decision process? 

How do individuals change their 

decision rules over time as a 

consequence of their experience? 

Yes, individual learning is included in the model. The 

farmers compare the utility generated over the past three 

years with the current utility and change their decision 

accordingly. 
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II.iii.b Is collective learning 

implemented in the model? 

No, collective learning is not included in this model. 

II.iv 

Individual 

Sensing 

II.iv.a What endogenous and 

exogenous state variables are 

individuals assumed to sense and 

consider in their decisions? Is the 

sensing process erroneous? 

Sensing process is not included. 

II.iv.b What state variables of 

which other individuals can an 

individual perceive? Is the sensing 

process erroneous? 

Though no sensing process is included, the behavior of other 

agents influence interactive and bounded rational agents on 

their decision making. 

II.iv.c What is the spatial scale of 

sensing? 

No spatial scale is used. 

II.iv.d Are the mechanisms by 

which agents obtain information 

modeled explicitly, or are 

individuals simply assumed to 

know these variables? 

They are modeled explicitly based on the information 

collected from the onsite survey. 

II.iv.e Are costs for cognition and 

costs for gathering information 

included in the model? 

No, the cost of gathering information is not included. 
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II.v Individual 

Prediction 

  

II.v.a Which data uses the agent to 

predict future conditions? 

Future prediction is not used in the study, however, learning 

from the past is used to decide for the current time-step. 

II.v.b What internal models are 

agents assumed to use to estimate 

future conditions or consequences 

of their decisions? 

Not applicable 

II.v.c Might agents be erroneous 

in the prediction process, and how 

is it implemented? 

Not applicable 

II.vi 

Interaction 

II.vi.a Are interactions among 

agents and entities assumed as 

direct or indirect? 

Agents belonging to the bounded rational and interactive 

categorization interact with other agents.  

II.vi.b On what do the interactions 

depend? 

The interactions depend on the behavioral categorization of 

the agents. 

II.vi.c If the interactions involve 

communication, how are such 

communications represented? 

The standardized regression weight of subjective norm is 

used to weigh in on the behavioral entity of the agents to 

indicate the influence of interaction. 

II.vi.d If a coordination network 

exists, how does it affect the agent 

behavior? Is the structure of the 

network imposed or emergent? 

A coordination network is not used in this study. 
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II.vii 

Collectives 

II.vii.a Do the individuals form or 

belong to aggregations that affect, 

and are affected by, the 

individuals? Are these 

aggregations imposed by the 

modeler or do they emerge during 

the simulation? 

Yes, the farmer organization has its weight which is 

triggered when at least 50% of the agents join the 

organization. This is because such organizations partake only 

if at least 50% of the farmers register themselves with the 

organization. These are imposed depending on the 

information collected during the on-site survey.  

II.vii.b How are collectives 

represented? 

They are represented separately as agents who interact with 

farmer organizations. 

II.viii 

Heterogeneity 

II.viii.a Are the agents 

heterogeneous? If yes, which state 

variables and/or processes differ 

between the agents? 

The agents are heterogeneous because they represent farmers 

who exhibit heterogeneous behavior. The exchange will 

affect the results of the simulation, but the overall trend 

might not be affected. 

II.viii.b Are the agents 

heterogeneous in their decision-

making? If yes, which decision 

models or decision objects differ 

between the agents? 

The agents are heterogeneous in decision-making as defined 

by the decision-making rules. The object of utility function 

maximization, maintenance and non-negation vary 

depending on the behavioral categorization of the agents.  

II.ix 

Stochasticity 

 

II.ix.a What processes (including 

initialization) are modeled by 

assuming they are random or 

partly random? 

None. 
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II.x 

Observation 

II.x.a What data are collected from 

the ABM for testing, 

understanding, and analyzing it, 

and how and when are they 

collected? 

The data on the number of farmers choosing different widths 

of VFS at every three-year interval is collect based on 

behavioral categorization and field classes for understanding 

the decision-making and analyzing it.  

II.x.b What key results, outputs or 

characteristics of the model are 

emerging from the individuals? 

(Emergence) 

The results are discussed in detail in section 3.3 

D
et

ai
ls

 

II.i 

Implementatio

n Details 

III.i.a How has the model been 

implemented? 

The model is developed in NetLogo. It has a simulation 

runtime of approx. 3 minutes when running on normal speed 

and the development of it took up to 6 months. 

III.i.b Is the model accessible and 

if so where? 

The model code will be provided upon request. 

 

III.ii 

Initialization 

III.ii.a What is the initial state of 

the model world, i.e. at time t=0 of 

a simulation run? 

At t=0, there are 4 perceptive agents, 10 proactive agents, 49 

interactive agents, and 11 bounded rational agents. Each 

agent has an initial length of VFS and field class assigned 

based on data collected during the onsite survey.  

 

III.ii.b Is initialization always the 

same, or is it allowed to vary 

among simulations? 

Yes, it is always the same as it is the field data. 
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III.ii.c Are the initial values 

chosen arbitrarily or based on 

data? 

The initial values are based on data collection. 

 

III.iii Input 

Data 

III.iii.a Does the model use input 

from external sources such as data 

files or other models to represent 

processes that change over time? 

Yes, the parameters used in the model are derived from 

external sources.  

The model uses soil retention and soil loss results from 

VFSMOD-W and observed rainfall events. 

III.iv 

Submodels 

 

III.iv.a What, in detail, are the 

sub-models that represent the 

processes listed in ‘Process 

overview and scheduling’? 

The behavior equation as per TPB and utility function 

equation described in the paper are used. 

III.iv.b What are the model 

parameters, their dimensions, and 

reference values? 

Please refer to Table 4.1 for parameters of the utility 

function. Equations 4.1-4.5 show the utility function used in 

the model, and Table 4.4 depicts the standardized regression 

weights of behavioral function derived from the onsite 

survey.  

III.iv.c How were sub-models 

designed or chosen, and how were 

they parameterized and then 

tested? 

The behavioral sub-model is designed from the information 

collected during the on-site survey. The data fit of the TPB 

model is tested for reliability (Cronbach’s alpha). The 

parameters of the utility function sub-model are collected 

from the literature review.  
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4.C. QUESTIONNAIRE 

 

(1) Basic details 

Name: _______________________________________  Age: _______ years 

Contact information: ____________________________ 

a. What is the size of your land? 

__________________ hectares  

b. What is the length of the stream next to or through the land parcel? 

__________________ meters 

c. There is water in the stream 

 
d. What crop do you grow in the land? 

__________________________________________________________  

 

e. I use the stream water for irrigating my land 

 
f. If for the question (e.) is ‘also other sources’ and ‘never’ what is the other source 

of water you use? 

___________________________________________________________ 

 

g. The irrigation system I use is 

___________________________________________________________ 

(Example: drip irrigation, central pivot, sprinkler, gravitational furrow) 

h. In the future, I would like to implement another irrigation system 

(   ) Yes    (   ) No 

If yes, the new irrigation system: ____________________________________ 

 

i. Please provide a rough sketch indicating the farmland, buffer strip, stream and the 

road to the farm 
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(2) Environmental knowledge 

a. How is the water quality of the stream? 

 
b. I am concerned with the quality of water I receive 

 

c. I am concerned with the quality of water in the stream 

 

d. I am concerned with the quality of water in the region 

 
e. I have a moral obligation to maintain water quality 

 

f. How knowledgeable do you feel about water quality in your stream? 

 

g. Protecting the environment is important to me 

 

h. The stream is the lifeline of the region 

 
i. I would be upset if my activities harmed the stream 
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j. I want to conserve the stream for my future generations 

 
 

k. I use nutrients to increase my agricultural yield 

 
l. I have soil erosion from my farmland 

 

m. I replace the eroded soil 

 

n. I lose nutrients excessively with the eroded soil 

 
 

(3) Knowledge on buffer strips 

a. I have heard of buffer strips before 

(   ) Yes    (   ) No 

 

b. I have buffer strip in my farmland 

(   ) Yes    (   ) No  (   ) only in some places 

Reason: _______________________________________________ 

 

c. The width of the buffer strip is __________________ meters 

 

d. The buffer strip I have is 
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(   ) Natural (forest)   (   ) Manmade (modified) 

 

e. I have the buffer strip because: 

__________________________________________________________ 

 

f. If the answer to (b) is no then, I would like to have buffer strip in my land 

 

g. Having a buffer strip has benefited me  

 

h. List few uses of buffer strips 

_______________________________________________________________ 

_______________________________________________________________ 

i. My neighbour has buffer strip in his/her land 

(   ) Yes    (   ) No 

j. I interact with my neighbours  

 

k. Number of neighbours that are my close friends 

 

l. I think the effect of buffer strips includes improved: 

 

i. Water quality downstream 
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ii. Water quality in my stream 

 

iii. Water quality in the Biobio region 

 

iv. Character of my property (aesthetics) 

 

v. Fish habitat 

 

vi. Wildlife habitat in the region 

 

vii. Flood protection downstream 

 

viii. Property values will increase 

 
ix. Access to buffer program payments 

 
m. Are you a member of ‘Junta de Vigilancia’ or any local committee? 

(   ) Yes    (   ) No 
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Local committee: _____________________________________________ 

n. If yes, do you consult with the committee for any environmental decision making to 

your farm? 

(   ) Yes    (   ) No 

Recent decision: ______________________________________________ 

o. Has any committee or anyone has spoken to you about buffer strips in the past? 

(   ) Yes    (   ) No 

Who?: _______________________________________________________ 

 

(4) Willingness to implement buffer  

Would you be more willing if :  

a. A buffer reduced streambank erosion 

 

b. You had a say in designing your buffer 

 

c. Weeds were removed for you 

 

d. A buffer made water runoff from your property cleaner 

 

e. The trees and shrubs for the buffer were free 

 
f. The trees were fruit or nut trees 
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g. I am allowed to sell the produce from the buffer  

 
h. You received yearly payments for your buffer costs 

 
i. Volunteers planted the buffer 

 
j. You received a one-time payment for your buffer installation 

 
k. You were given guidance on how to build a buffer 

 
l. Most of your neighbors installed stream buffers 

 
m. Someone in your neighborhood installed a buffer 

 
n. A good friend installed a buffer 

 
(5) I do not want buffer strips because: 

a) Takes away too much land  
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b) Doesn’t make sense to have for the size of my land 

 

c) Maintenance takes time and money 

 

d) Would bother my neighbors 

 

e) List any other obstacles you face to implement buffer strips 

_______________________________________________________________ 

f) I don’t want others to decide what is on my property 
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